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Uniform generation of anonymous and neutral preference

profiles for social choice rules

Ömer Eğecioğlu

Abstract. The Impartial Anonymous and Neutral Culture (IANC) model of social choice as-
sumes that the names of the voters as well as the identity of the alternatives are immaterial.
This models allows for comparison of structural properties social choice rules (SCRs) for large
values of the parameters empirically: whether Condorcet winners exist, whether Borda and
Condorcet winners are identical, whether Plurality with run-off winners are among Borda win-
ners, for example.

We derive an exact formula for the number of equivalence classes of preference profiles
(called roots) in this model. The number of terms in the formula depends only on the number
of alternatives m, and not the much larger number of voters n. In IANC, the equivalence
classes defining the roots do not have the same size, making their uniform generation for large
values of the parameters nontrivial. We show that the Dixon–Wilf algorithm can be adapted
to this problem, and describe a symbolic algebra routine that can be used for Monte-Carlo
algorithms for the study of various structural properties of SCRs.
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1. Introduction

There are a few basic models used for the analysis of the properties and behaviors of
various social choice rules (SCRs) through probabilistic methods designed to gener-
ate voter preferences. Among these, Impartial Culture (IC) uses preference profiles
(which show how each of n voters in an electorate ranks m alternatives as an m × n
matrix) in which each is profile is equally likely. This model has been introduced in
social choice literature by Guilbaud [9]. For linearly ordered m alternatives chosen
by n voters, IC assumes that each voter independently selects her preference ranking
according to a uniform distribution, resulting in a total number of m!n profiles.

The Impartial Anonymous Culture (IAC) model on the other hand, is based on the
presentation of voter preferences by anonymous profiles where the names of the voters
are neglected. As introduced by Fishburn and Gehrlein [6], an anonymous profile is
the representative profile of an anonymous equivalence class (AEC) which is the set of
preference profiles that can be generated from each other via permuting only the names
of the voters. IAC assumes that each AEC is equally likely. The number of AECs
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for linearly ordered m alternatives by n voters is given by the binomial coefficient
(

n+m!−1
m!−1

)

, as this is a balls-in-boxes type of a counting problem (see Feller [5]).
The Impartial Anonymous and Neutral Culture (IANC) model that is studied here,

treats voter preferences through a class of preference profiles where not only the names
of the voters, but also the names of the alternatives are immaterial. This approach re-
flects two basic axioms of social choice theory: Anonymity and Neutrality. Anonymity
requires voters to be treated equally whereas neutrality prohibits a SCR from having
a built-in bias for or against any one or more alternatives. The equivalence classes in
this model are the anonymous and neutral equivalence classes (ANECs). The equiva-
lence classes as well as equivalence class representatives are also referred to as roots.
Thus, each root represents a structurally distinct preference profile under simultaneous
fulfillment of anonymity and neutrality axioms. We denote by R(m, n) the number of
roots for linearly ordered m alternatives by n voters.

This paper provides a formula for R(m, n), which is then used to provide an algo-
rithm that generates roots from the uniform distribution. This allows for a testbed that
can be used to answer various questions about the properties of anonymous and neutral
SCRs by the Monte-Carlo method. Properties such as the likelihood of the existence
of a Condorcet winner, the probability that the Borda and the Condorcet winners are
identical, the probability that Plurality winners are a subset of Borda winners, etc., are
among questions that can be empirically answered.

We use ideas from the theory of symmetric functions to obtain a formula for R(m, n)
which is a sum of terms where the number of terms depends only on m and not the
much larger n. There is a combinatorial explosion in the computation of R(m, n) for
large values of m and n, and a simple enumeration of roots is insufficient to select rep-
resentatives from the uniform distribution. Furthermore, the ANECs do not all have
the same size. This makes uniform generation appear somewhat problematic, but we
use the Dixon–Wilf algorithm along with the formula for R(m, n) to overcome this
problem.

This paper is organized as follows. Section 2 outlines the basic ideas and introduces
the notation we need. The first formula for the number of roots R(m, n) appears in
Theorem 3.1 of Section 3. By using a result from the theory of symmetric functions
(Theorem 3.2), we obtain the simpler expression for R(m, n) given in Theorem 3.3.
This immediately yields a number of explicit formulas which we derive for small val-
ues of m in Section 4. In Section 5 we outline the Dixon–Wilf algorithm, and indicate
its use to generate roots from the uniform distribution. A symbolic algebra routine
built on this theory is then described, and sample Mathematica runs are given.

The basic ideas of discrete mathematics, group theory and group actions to the ex-
tent used here can be found in Feller [5], Wielandt [13], and Kerber [10]. Ideas related
to the symmetric functions can be found in MacDonald [11]. The main reference on
SCRs is Moulin [12]. IC and IAC models are presented in more detail in Berg and
Lepelley [1] and Gehrlein [7].
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2. Preliminaries

In this section, we give a brief outline of the elements of permutations, integer par-
titions, and group actions on finite sets and their application to the notion of roots.
We start with preference profiles, and give an example that demonstrates both type of
equivalence classes of preference profiles: AEC, and ANEC.

A preference profile is an m × n matrix which shows how each of the n voters lin-
early orders m alternatives. We assume that the voters correspond to the columns and
the alternatives correspond to the rows of the matrix. As an example, let us consider a
case with n = 4 voters and two alternatives a1 and a2. There are two possible linear
preference rankings for two alternatives: a1 is strictly preferred to a2, or a2 is strictly
preferred to a1.

Example 2.1. For m = 2 and n = 4, m!n = 16 preference profiles are as listed below.

x1 =
a1 a1 a1 a1

a2 a2 a2 a2
x2 =

a2 a2 a2 a2

a1 a1 a1 a1
x3 =

a1 a1 a2 a2

a2 a2 a1 a1

x4 =
a1 a2 a1 a2

a2 a1 a2 a1
x5 =

a2 a2 a1 a1

a1 a1 a2 a2
x6 =

a2 a1 a2 a1

a1 a2 a1 a2

x7 =
a1 a2 a2 a1

a2 a1 a1 a2
x8 =

a2 a1 a1 a2

a1 a2 a2 a1
x9 =

a1 a1 a1 a2

a2 a2 a2 a1

x10 =
a1 a1 a2 a1

a2 a2 a1 a2
x11 =

a1 a2 a1 a1

a2 a1 a2 a2
x12 =

a2 a1 a1 a1

a1 a2 a2 a2

x13 =
a1 a2 a2 a2

a2 a1 a1 a1
x14 =

a2 a1 a2 a2

a1 a2 a1 a1
x15 =

a2 a2 a1 a2

a1 a1 a2 a1

x16 =
a2 a2 a2 a1

a1 a1 a1 a2

The
(5

1

)

= 5 AECs for this example are

{x1}, {x2}, {x3, x4, x5, x6, x7, x8}, {x9, x10, x11, x12}, {x13, x14, x15, x16} (2.1)

The profiles x9 and x10 are in the same AEC since x10 is obtained from x9 by inter-
changing the 3-rd and the 4-th columns. Preference profiles x9 and x15 are in different
AECs as no permutation of the columns of x9 will give x15.

When we construct the ANECs, in addition to renaming the columns, there are two
possible ways of renaming the alternatives: one leaves the names of the alternatives
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intact, and the other switches a1 and a2. If we apply these operations to the AECs
above, we obtain a coarser partition of the 16 preference profiles, giving us three roots
(ANECs) θ1, θ2, θ3:

θ1 = {x1, x2},

θ2 = {x3, x4, x5, x6, x7, x8}, (2.2)

θ3 = {x9, x10, x11, x12, x13, x14, x15, x16}.

Therefore R(2, 4) = 3. In (2.2), preference profiles x9 and x15 are in the same equiv-
alence class since x15 is obtained from x9 by interchanging the 3-rd and the 4-th
columns, and simultaneously switching a1 and a2.

Let [n] = {1, 2, . . . , n}. We denote by Sn the group of permutations on [n]. A
group G acts on a finite set Ω if each g ∈ G gives rise to a permutation of the elements
of Ω, such a way that the identity element does nothing, while a composition of actions
corresponds to the action of the composition. We denote by xg the image of x ∈ Ω

under the permutation of Ω induced by g. The subset of Ω

{xg | g ∈ G}

is called the orbit of x ∈ Ω. A group action splits up Ω into a disjoint union of subsets

Ω = θ1 + θ2 + · · · + θR (2.3)

where each θi is a group orbit and the “+” signifies disjoint union. The θi are the
equivalence classes under the action of G on Ω where we define x, y ∈ Ω to be
equivalent iff there exists some g ∈ G such that y = xg. If xg = x then x is fixed by
g. For g ∈ G let

Fg = {x ∈ Ω | xg = x}

denote the set of elements of Ω fixed by g. Consider now a finite group G acting on a
set Ω. The number R of equivalence classes can be computed by the formula

R =
1
|G|

∑

g∈G

|Fg| (2.4)

which is known as the Frobenius lemma, or Burnside lemma. For detailed information
on permutations groups and their actions on finite sets, we refer the reader to Kerber
[10], or Wielandt [13].

In the setting of IANC, a preference profile of voters [n] and alternatives A =
{a1, a2, . . . , am} is represented as an m× n matrix in which each column is a permu-
tation of A. Let Ω = Ω(m, n) denote the set of these preference profiles. Evidently,
|Ω| = (m!)n.

Roots can be characterized as the orbits of the action of the product group Sn ×Sm

on Ω = Ω(m, n). R = R(m, n) is then the number of roots. Elements of Sn × Sm



Uniform generation of preference profiles 245

are pairs of permutations (σ, τ) with σ ∈ Sn and τ ∈ Sm, where the group operation
is componentwise composition of permutations. In the action of g = (σ, τ) on Ω, a
preference profile xg is obtained from the profile x by permuting the columns (voters)
according to σ, and simultaneously permuting the alternatives by mapping each ai to
aτ(i), i = 1, 2, . . . , m. Representing permutations by their cycle factorization, the fol-
lowing example illustrates this action for n = 4 voters and alternatives A = {a1, a2}:

Example 2.2.

x =
a1 a1 a2 a2

a2 a2 a1 a1

g = ((13)(24), (1)(2)) → xg =
a2 a2 a1 a1

a1 a1 a2 a2

g = ((13)(24), (12)) → xg =
a1 a1 a2 a2

a2 a2 a1 a1
= x

In particular, g = ((13)(24), (12)) fixes x.

R(m, n) can now be computed using the Frobenius lemma (2.4). To state our results
we need more notation. A partition λ of an integer n is a weakly decreasing sequence
of nonnegative integers λ = (λ1 ≥ λ2 ≥ · · · ≥ λn) with n = λ1 +λ2 + · · ·+λn. Each
of the integers λi > 0 is called a part of λ. For example λ = (3, 2, 2) is a partition of
n = 7 into three parts. It has two parts of size two and one part of size three. If λ is a
partition of n, then this is denoted by λ & n. Each partition of n has a type denoted by
the symbol 1α12α2 · · ·nαn , which signifies that λ has αi parts of size i for 1 ≤ i ≤ n.
For example the type of λ = (3, 2, 2) is 10223140506070. We can omit the zeros that
appear as exponents and write the type of λ as 2231.

A permutation σ of [n] defines a partition of n where the parts of the partition are
the cycle lengths in the cycle decomposition of σ. The cycle type of σ is defined as the
type of the resulting partition. For example σ = (142)(35)(67) has cycle type 2231.
For any λ & n of type 1α12α2 · · ·nαn , define the number

zλ = 1α12α2 · · ·nαnα1!α2! · · ·αn!. (2.5)

It is well known that the number of permutations of cycle type 1α12α2 · · ·nαn is given
by z−1

λ n! where λ is the partition of cycle lengths of σ. For example in the symmetric
group S7, there are

7!
22312!1!

= 210

permutations having the same cycle type 2231 as (142)(35)(67). The collection of
permutations which have a given cycle type is called a conjugacy class. In the group
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Sn×Sm conjugacy classes are indexed by a pair of partitions λ & n, µ & m. If C is the
conjugacy class where the cycle types are given by λ and µ, then |C| = n!m! z−1

λ z−1
µ .

For integers d and n we use the symbol d |n to mean that d divides n evenly. For
any statement S the indicator function of S is

χ(S) =

{

1 if S is True,

0 if S is False.

For partitions λ and µ, GCD(λ) denotes the greatest common divisor (GCD) of the
parts of λ, and LCM(µ) denotes the least common multiple (LCM) of the parts of µ.

For an integer k with 0 ≤ k ≤ x, extend the definition of the ordinary binomial
coefficient

(

x
k

)

to nonintegral values of x by setting

(

x

k

)

=

{

x!
k!(x−k)! if x is integral,

0 otherwise.
(2.6)

3. Counting roots

Theorem 3.1. The number of roots R(m, n) is given by

R(m, n) =
∑

λ # n

∑

µ # m

χ(LCM(µ) | GCD(λ)) z−1
λ z−1

µ m!α1+α2+···+αn (3.1)

where the type of λ is 1α12α2 · · ·nαn and zλ is as defined in (2.5).

Proof. As we have remarked, the number of roots R(m, n) is given by the number of
orbits R in the decomposition (2.3). We first determine the nature of the fixed points
of g ∈ Sn × Sm, and then use the Frobenius lemma to prove this theorem. Suppose
g = (σ, τ) with the corresponding partitions λ & n and µ & m. Suppose the type of λ
is 1α12α2 · · ·nαn . Then

|Fg| =

{

m!α1+α2+···+αn if LCM(µ) | GCD(λ),

0 otherwise.
(3.2)

To prove this claim, suppose xg = x. Let t be the order of τ in Sm. Thus t is
the smallest integer such that the permutations τ, τ 2, . . . , τ t are all distinct. Con-
sider a cycle c in the cycle decomposition of σ. Without loss of generality, we can
assume that c = (1 2 · · · k), and the first column of x is (a1, a2, . . . , am). Un-
der the action of g on x, the first column of x is mapped to the second column,
the second column to the third, etc., and finally the k-th column is mapped back
to the first. At the same time under the action of τ , (a1, a2, . . . , am) is mapped
to (aτ(1), aτ(2), . . . , aτ(m)); (aτ(1), aτ(2), . . . , aτ(m)) to (aτ 2(1), aτ 2(2), . . . , aτ 2(m)), etc,
and finally (aτ t−1(1), aτ t−1(2), . . . , aτ t−1(m)) back to (a1, a2, . . . , am). It follows that if
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x is fixed by g, then the first k columns of x must be made up of a number of repetitions
of the block of t columns

a1 aτ(1) aτ 2(1) · · · aτ t−1(1)

a2 aτ(2) aτ 2(2) · · · aτ t−1(2)
...

...
... · · ·

...

am aτ(m) aτ 2(m) · · · aτ t−1(m)

(3.3)

Therefore t | k. Since this holds for any cycle of σ, t divides the GCD of the cy-
cle lengths of σ, which is GCD(λ). On the other hand, the order of a permuta-
tion is the LCM of its cycle lengths, and therefore t = LCM(µ). Conversely, if
LCM(µ) | GCD(λ) then the above argument shows that xg = x. Hence xg = x
iff LCM(µ) | GCD(λ). The quantity α1 + α2 + · · · + αn is the total number of cycles
of σ. The columns of x permuted by each cycle of σ is determined by a single column
of the cycle, which can be picked one of m! ways. It follows that the number of fixed
points of Note 1:

Correct
grammar?

of
?

−→ is

|Fg| = χ(LCM(µ) | GCD(λ)) m!α1+α2+···+αn . (3.4)

Since |Fg| depends only on the cycle structure of σ and τ , we can make the summation
in the Frobenius lemma (2.4) over pairs of partitions that define the conjugacy classes,
and multiply the expression in (3.4) by the cardinality of the corresponding conjugacy
class. This gives

R(m, n) =
1

n!m!

∑

λ # n

∑

µ # m

χ(LCM(µ) | GCD(λ)) n!m! z−1
λ z−1

µ m!α1+α2+···+αn

which is (3.1). !

The expression in (3.1) for R(m, n) is a double sum, and the number of terms in-
volved in the summation is the product of the number of partitions of n and the number
of partitions of m. Since the number of partitions of an integer grows exponentially,
the evaluation of R(m, n) via (3.1) does not look practical.

Suppose however that LCM(µ) = d. Then the contribution of µ to the sum (3.1)
can be written as

z−1
µ

∑

λ#n
d |λi,∀i

z−1
λ m!α1+···+αn . (3.5)

To be able to use this expression to simplify the number of terms in the computation
of R(m, n), we need to evaluate the sum

∑

λ#n
d |λi,∀i

z−1
λ m!α1+···+αn . (3.6)

Fortunately, we can find a closed form expression for (3.6) by using methods from
the theory of symmetric functions.
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Theorem 3.2. For positive integers n, r, d with d | r,

∑

λ#n
d |λi,∀i

z−1
λ rα1+···+αn =

(n
d + r

d − 1
r
d − 1

)

(3.7)

where the type of λ is λ is 1α12α2 · · ·nαn and the binomial coefficient is defined as in

(2.6).

Proof. Let S denote the left hand side of (3.7). Unless d divides each λi (and conse-
quently n), S is zero. Otherwise let ρi = λi

d for i = 1, 2, . . . , n. Then ρ & n
d . If the

type of λ is 1α12α23α3 · · · , then the type of ρ is 1αd2α2d3α3d · · · . Then

S =
∑

λ#n
d |λi,∀i

rαd+α2d+α3d+···

dαd(2d)α2d(3d)α3d · · ·αd!α2d!α3d! · · ·

=
∑

ρ # n

d

rαd+α2d+α3d+···

dαd(2d)α2d(3d)α3d · · ·αd!α2d!α3d! · · ·

=
∑

ρ # n

d

z−1
ρ

(r

d

)αd+α2d+α3d+···
.

To evaluate this last expression, we use an identity from the theory of symmetric func-
tions. The n-th power sum pn and the n-th homogeneous (or complete) symmetric
function hn in the variables x1, x2, . . . , xN are defined by setting

pn =
N

∑

i=1

xn
i (3.8)

hn =
∑

1≤i1≤i2≤···≤in≤N

xi1xi2 · · ·xin . (3.9)

For any partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λn) of n, define

pλ =
n

∏

i=1

pλi
. (3.10)

It can be shown that (see MacDonald [11])

hn =
∑

λ # n

z−1
λ pλ.

Take the number of variables N = r
d and put each xi = 1. Then each pλi

evaluates
to r

d . Therefore pλ evaluates to ( r
d)α1+α2+···+αn where the type of λ is 1α12α2 · · ·nαn .
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In our case the partition in question is ρ, and consequently pρ evaluates to
( r

d)α1+α2d+α3d+···. Therefore S is given by n-th homogeneous symmetric function
hn in the variables x1, x2, . . . , x r

d
where each variable is set equal to 1. From the

definition (3.9), this is a balls-in-boxes type of a count: it is the number of ways of dis-
tributing n

d indistinguishable balls into r
d distinguishable boxes (see Feller [5]). This

is given by the binomial expression on the right hand side of (3.7). !

Combining the two results we obtain

Theorem 3.3.

R(m, n) =
∑

µ # m

z−1
µ

(n
d + m!

d − 1
m!
d − 1

)

(3.11)

where d = d(µ) = LCM(µ), the binomial coefficient is defined as in (2.6), and zµ is

as defined in (2.5).

Note that the summation in (3.11) is over partitions of m only, and is independent
of the number of voters n.

4. Explicit formulas

Theorem 3.3 has some immediate implications. We obtain explicit formulas for the
number of roots for small values of m as follows.

4.1. n voters and m = 2 alternatives

For m = 2, the partitions of m are (1, 1) and (2) with LCM(1, 1) = 1, LCM(2) = 2
and z(1,1) = z(2) = 2. Therefore

R(2, n) =
1
2

(

n + 1
1

)

+
1
2

(n
2
0

)

(4.1)

This is another way of saying

R(2, n) =

{

1
2n + 1 if n is even,
1
2(n + 1) if n is odd.

4.2. n voters and m = 3 alternatives

For m = 3, there are three partitions (1, 1, 1), (2, 1), and (3) of m with
LCM(1, 1, 1) = 1, LCM(2, 1) = 2, LCM(3) = 3, and z(1,1,1) = 6, z(2,1) = 2,
and z(3) = 3. Thus

R(3, n) =
1
6

(

n + 5
5

)

+
1
2

(n
2 + 2

2

)

+
1
3

(n
3 + 1

1

)

. (4.2)



250 Ömer Eğecioğlu

4.3. n voters and m = 4 alternatives

The partitions of m = 4 are (1, 1, 1, 1), (2, 1, 1), (2, 2), (3, 1), (4) with

LCM(1, 1, 1, 1) = 1, LCM(2, 1, 1) = LCM(2, 2) = 2,

LCM(3, 1) = 3, LCM(4) = 4,

z(1,1,1,1) = 24, z(2,1,1) = 4, z(2,2) = 8, z(3,1) = 3, z(4) = 4.

Therefore

R(4, n) =
1
24

(

n + 23
23

)

+
3
8

(n
2 + 11

11

)

+
1
3

(n
3 + 7

7

)

+
1
4

(n
4 + 5

5

)

.

4.4. n and m! relatively prime

In this case, only the term corresponding to the partition is µ = (1, 1, . . . , 1) in the
sum (3.11) is nonzero. Since with zµ = m! for this partition, an immediate corollary
is the following result of Giritligil and Doğan [8]:

Corollary. When n and m! are relatively prime, the number of roots R(m, n) is given

by

R(m, n) =
1

m!

(

n + m! − 1
m! − 1

)

.

Remark 4.1. By means of a symbolic algebra package such as Mathematica, we can
easily calculate the value of R(m, n) for relatively large values of m and n using the
general formula in Theorem 3.3. As examples

R(5, 5) = 1876255

R(5, 10) = 2049242056940

R(5, 20) = 5908312923863263889174

R(5, 30) = 214658568936630826879925768420 .

5. Dixon–Wilf algorithm and uniform generation of roots

The importance of being able to access the values of R(m, n) for large and uncon-
strained values of m and n becomes apparent when we try to generate roots from the
uniform distribution. The ability to compute the value of R(m, n) together with the
Dixon–Wilf algorithm allows us to construct a symbolic package to generate the roots
such that each root is produced with probability 1/R(m, n).

Suppose in general that a group of permutations G acts on a set Ω. Consider the
decomposition of Ω into orbits θ1, θ2, . . . , θR as in (2.3). If the number of orbits R is
known, then the following procedure, usually referred to as the Dixon–Wilf algorithm
(Dixon and Wilf [2]) can be used to generate an orbit θ from the uniform distribution.
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5.1. Basic elements of the Dixon–Wilf algorithm

(i) Select a conjugacy class C ⊆ G with probability

pC =
|C||Fg|

R · |G|

where g is some member of C.

(ii) Select uniformly at random some x ∈ Fg.

(iii) Return the orbit θ that contains x.

The crucial aspect of the Dixon–Wilf algorithm is that it is guaranteed to return an
orbit (or the representative x of the orbit) distributed uniformly over the set of all orbits.
The task of having to generate an orbit from the uniform distribution is transferred to
being able to select a conjugacy class in G with a certain probability as given in the
first step of the Dixon–Wilf algorithm, and then being able to pick uniformly a random
profile from a fixed point set Fg.

We calculate the number of orbits R = R(m, n) by using Theorem 3.3. In addition,
we can calculate the necessary parameters as required in the Dixon–Wilf algorithm
such as the size of the conjugacy classes for the product group of IANC.

A conjugacy class C ⊆ Sn × Sm is defined by a pair of partitions λ & n, µ & m.
Suppose the type of λ is 1α12α2 · · ·nαn and g = (σ, τ) is an arbitrary element of C.
We have

|G| = n!m!

|C| = n!m! z−1
λ z−1

µ

|Fg| = χ(LCM(µ) | GCD(λ)) m!α1+α2+···+αn

R = R(m, n).

Therefore we need to pick C with probability

pC =
χ(LCM(µ) | GCD(λ)) z−1

λ z−1
µ m!α1+α2+···+αn

R(m, n)
.

Consider the list L = {(πi, fi) | i = 1, 2, . . . , R} where each πi is a pair of partitions
λ & n, µ & m with LCM(µ) | GCD(λ). For such a pair πi, the corresponding fraction
fi is defined by

fi =
z−1
λ z−1

µ m!α1+α2+···+αn

R(m, n)
.

Thus f1, f2, . . . , fR is an ordering of the nonzero probabilities pC of conjugacy classes.
Compute the partial sums

s1 = f1, s2 = f1 + f2, s3 = f1 + f2 + f3, . . . , sR = f1 + f2 + · · · + fR = 1.
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If we generate a real number in x ∈ [0, 1] uniformly, the probability that si−1 < x ≤ si

is precisely the probability pC , where C is the i-th conjugacy class in the ordering of
the elements of L. Suppose the selected class is defined by the pair of partitions λ & n,
µ & m. We pick σ ∈ Sn of type λ by writing the integers 1, 2, . . . , n, and grouping
them into cycles in the order they appear. For instance for λ = (3, 2, 2) this yields
σ = (1 2 3)(4 5)(6 7). Similarly we construct τ ∈ Sm by considering the type of µ and
grouping the integers 1, 2, . . . , m accordingly in the order they appear. The resulting
pair is our element g ∈ C.

Finally, we need to return a preference profile x ∈ Fg, making sure that x is selected
uniformly at random from Fg. This is easily accomplished by picking uniformly at ran-
dom a permutation of a1, a2, . . . , am for every cycle of σ, and by placing the permuted
alternatives as the smallest indexed column in each cycle. The other columns of the
cycle are then filled up by the images of this initial permuted column under the iterates
of τ as in (3.3).

We have implemented this idea to generate roots from the uniform distribution as
a Mathematica program called GenerateRoot[m, n]. The program takes a pair of in-
tegers m, n as input and generates an m × n preference profile x. The resulting x is
guaranteed to be distributed over the R(m, n) roots uniformly. This is the surprising
application of the Dixon–Wilf algorithm.

Example 5.1. We have run the uniform root generation algorithm k times, for k run-
ning from 10 to 10000 in powers of 10 for m = 2 and n = 4. For each x returned
by GenerateRoot[2, 4] we checked whether x ∈ θ1, x ∈ θ2, or x ∈ θ3 (see (2.2) in
Section 2). Pr[Hits from orbit θ1] is the ratio of the number of x ∈ θ1 to k. Pr[Hits
from orbit θ2] and Pr[Hits from orbit θ3] are calculated similarly. Figure 1 shows the
resulting computed probabilities. Since there are 3 orbits θ1, θ2, θ3 in this case, the
actual probability for each is 0.333 . . .

No. of trials k Pr[Hits from θ1] Pr[Hits from θ2] Pr[Hits from θ3]

10 0.2 0.5 0.3

100 0.34 0.29 0.37

1000 0.352 0.348 0.3

10000 0.3235 0.3396 0.3369

Figure 1. Random generation of roots from the uniform distribution with n = 4 voters and m =

2 alternatives. Each trial is the generation of a root from Ω(2, 4) by using the Mathematica
routine GenerateRoot[2, 4].
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After preprocessing, about 7 milliseconds were required to generate a 5 × 20 pref-
erence profile, and about 24 milliseconds to generate a 7 × 25 preference profile. The
CPU time necessary to generate a random root from the uniform distribution for var-
ious values of the input parameters n and m, as well as the measurement details are
given in Figure 2.

Figure 2. The computer time needed to generate preference profiles in the IANC model as
a function of the input integers n and m using GenerateRoot[m, n]. The first graph is the
initialization phase of the algorithm for a given n,m pair. This is only executed once for each
pair of interest. The second graph is the time required for the generation of 100 preference
profiles for the given parameters n,m, after the initialization. The range of values plotted is
2 ≤ m ≤ 7 and 2 ≤ n ≤ 25. The vertical axis is time in seconds, ranging from 0 to 2.75. The
experiments were performed on Mathematica 6.0 running on a desktop with an 2.40 GHz Intel
Core 2 CPU and 3.24 GB of RAM.

5.2. Likelihood of Condorcet winner to be a Plurality winner

As an example of applications of IANC and GenerateRoot[m, n], we describe a
Monte-Carlo experiment to compute the probability of Condorcet and Plurality Rule’s
winners to coincide for varying values of m and n.

Recall that an alternative is a Condorcet-winner if it is preferred to each other al-
ternative by a majority of voters. However, a Condorcet Paradox occurs when social
outcome is not transitive, even though the individual preferences are not, due to the
conflict in majority wishes.

Plurality Rule simply chooses the alternatives which are most popular as top-ranked
candidates in a profile. Consider the likelihood of Condorcet Rule and Plurality Rule
choosing the same winner. For simplicity, consider only odd values of n which guaran-
tees that the Condorcet winner, when it exists, is unique. Plurality can choose multiple
winners. In this case, we check if any one of the Plurality winners is the Condorcet
winner.

The procedure followed for the experiment is as follows: Given n and m, let
GenerateRoot[m, n] generate a random root uniformly. If the generated profile x
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does not have a Condorcet winner, then we simply generate another root. For each
root that does have a Condorcet winner, say ai, we check and see if ai is also chosen
by Plurality. For this we consider the first row of x and make sure that ai occurs in
this row at least as many times as every aj , for 1 ≤ j ≤ m. The ratio of the number of
roots in which the Condorcet winner is also a plurality winner to the total number of
roots generated which have Condorcet winners is an approximation to the probability
that a Condorcet winner is also a Plurality winner.

A plot of these probabilities for various n and m computed by using k = 1000
Condorcet winners for each case, appears in Figure 3.

11 21 31 41

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

m=5

m=4

m=3

Figure 3. The probability that the Condorcet winner is also a Plurality winner in the IANC
model. The raw data has been smoothed out by a 5-term moving-average filter. The horizontal
axis is the number of voters n, through odd integers from 3 to 41. The number of samples used
is k = 1000 per m/n pair.

6. Concluding remarks

Based on two fundamental axioms of social choice, anonymity and neutrality, the
IANC model uses root profiles for generating public preferences, where the names
of both the voters and the alternatives are ignored.

We derived an efficient formula for their number, and described the the ingredients
of a symbolic algebra package for the generation of roots from the uniform distribution
by means of the Dixon–Wilf algorithm. In this way, IANC allows for the analysis
of the behaviors of anonymous and neutral SCRs with respect to varying number of
alternatives and voters by means of Monte-Carlo methods.
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Applications of this model and the procedure GenerateRoot[m, n] to the study of
experimental comparisons for various SCRs is in progress (Eğecioğlu and Giritligil
[3], [4]).
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3. Ö. Eğecioğlu and A. E. Giritligil, Public Preference Structures with Impartial Anonymous
and Neutral Culture Model, preprint.
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