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ABSTRACT

Graph analysis is a critical component of applications saghbn-
line social networks, protein interactions in biologicatworks,
and Internet traffic analysis. The arrival of massive grapita
hundreds of millions of nodes,g. social graphs, presents a unique
challenge to graph analysis applications. Most of thesdicpp
tions rely on computing distances between node pairs, wiaich
large graphs can take minutes to compute using traditidgal a
rithms such as breadth-first-search (BFS).

In this paper, we study ways to enable scalable graph priocess
on today’s massive graphs. We explore the design spageapif
coordinate systems, a new approach that accurately approximates
node distances in constant time by embedding graphs intaicoo
nate spaces. We show that a hyperbolic embedding produkes re
atively low distortion error, and propos$@gel, a hyperbolic graph
coordinate system that lends itself to efficient paralilan across
a compute cluster. Rigel produces significantly more ateuex
sults than prior systems, and is naturally parallelizabless com-
pute clusters, allowing it to provide accurate results fap@s up to
43 million nodes. Finally, we show that Rigel’s functiorgltan be
easily extended to locate (hear-) shortest paths betwes pairs.
After a one-time preprocessing cost, Rigel answers nostaitie
queries in 10’s of microseconds, and also produces shqrégit
results up to 18 times faster than prior shortest-path systeith
similar levels of accuracy.

1. INTRODUCTION

Fast and scalable analysis of massive graphs is a signifibaht
lenge facing a number of application areas, including ensacial
networks, biological protein interaction networks, andlgsis of
the Internet router backbone. For example, a social ganveoniet
might search for “central” users to help deploy new gameslewh
a social auction site [31] wants to tell a buyer if a specifanit
is being auctioned by someone in her social circles. Idesilgh
queries should be answered quickly, regardless of the $ifteeo
graph, or even if the graph themselves are changing over time

Unfortunately, these goals are simply unattainable foaysd
massive graphs. This is because numerous graph analy&is pro
lems such as centrality computation, node separation, and ¢
munity detection all rely on the simpleode distance (length of
shortest path) primitive, which scales badly with graplesigor
graphs generated from social networks such as Facebook{00
lion nodes), LinkedIn (80 million) and Twitter (100 milligncom-
puting the shortest path distance between a single paird#scan
take a minute or more using traditional algorithms such aadith-
first-search (BFS) [24]. Similarly, variants such as Dijesand
Floyd-Warshall also fail to scale to these graph sizes.

Without an efficient alternative for node distance comparat
recent work has focused on exploring efficient approxinmedilgo-
rithms [24, 26, 1]. Our prior work [1], described the ideagoéph
coordinate systems, which embeds graph nodes into points on a co-
ordinate system. The resulting coordinates can be usedi¢klyu

approximate node distance queries on the original graph.ir®u
tial system, which we refer here to as SystemX, was a cergili
system that approximated node distances by mapping nodis to
Euclidean coordinate system. It has several limitationprac-
tice. First, SystemX’s initial graph embedding processeistial-
ized and computationally expensive, which presents afsigni
performance bottleneck for larger graphs. Second, SystneX
sults produce error rates between 15% and 20%, which lifmés t
types of applications it can serve. Finally, it is unable toduce
actual paths connecting node pairs, which is often neceésaa
number of graph applications.

In this work, we seek to extend work anaph coordinate sys-
tems by developing a practical system that provides significamt i
provement in accuracy, scalability, and extended funetipn We
systematically explore decisions in the design of a gragirdio
nate system, and make two key observatioR&st, we propose
to extend our work on graph coordinate systems, by embedding
large graphs in a hyperbolic space for lower distance distoer-
rors. Our embedding algorithm naturally parallelizes tostly
embedding process across multiple servers, allowing ostesy
to quickly embed multi-million node graph&econd, we propose
a novel way to use graph coordinates to efficiently locatetekb
paths between node pairs. The result of our wolRigel, a hyper-
bolic graph coordinate system that supports queries fdr botle
distance and shortest paths on today’s large social grafsfisr
a one-time, easily parallelizable, preprocessing phaggel Ran
resolve queries in tens of microseconds, even for massisialso
graphs up to 43 million nodes.

Our paper describes four key contributions.

e In Sections 3 and 4, we describe the detailed design of Rigel,
and show how we can minimize embedding time by effec-
tively parallelizing the most computationally expensieetp
of the graph embedding process.

e We evaluate a distributed prototype of Rigel using sociapbs
of different sizes from several OSNs, including Facebook,
Flickr, Orkut, LiveJournal, and Renren. Our results shaat th
Rigel achieves consistently improved accuracy compared to
SystemX, and scales to large graphs of up to 43 million nodes.

e In Section 5, we implement three different social graph-anal
ysis applications on top of the Rigel system. Our results il-
lustrate both the accuracy and scalability of the Rigelesyst
for use in real graph analysis applications.

e Finally, we propose an approach to approximate shortelsspat
for any node pair using graph coordinates. We compare Rigel’
shortest path results to those from recently proposed tech-
niques. Rigel paths provide accuracy similar to the most
accurate of prior schemes, while resolving queries up to 18
times faster.

1.1 Social Network Graph Datasets

Throughout our paper, we use a number of anonymized social



Graphs Nodes Edges Avg. Path Len.
Egypt 246K 1,618K 5.0
Norway 293K 5,589K 4.2
L.A. 275K 2,115K 5.2
Flickr 1,715K 15,555K 5.1
Orkut 3,072K 117,185K 4.1
Livejournal | 5,189K 48,942K 5.4
Renren 43,197K  1,040,429K 5.0

Table 1: A variety of social graphs used in our work.

graph datasets gathered from measurements of online swtial
works to guide and evaluate our system design. We utilizeah to
of 7 social graphs, ranging in size from 246,000 nodes anchil:6
lion edges, to 43.2 million nodes and 1 billion edges. Wetlistr
key characteristics in Table 1.

Three of these graphs, Egypt, Los Angeles (LA) and Norway,
are Facebook regional networks shared by the authors of T3¢
remaining four graphs are significantly larger graphs ceavitom
the Flickr, Orkut, LiveJournal, and Renren social netwpiach
with millions of nodes and edges. We use them to test the efibgi
and scalability of our system. The Livejournal, Flickr anck@
are datasets shared by the authors of [17]. With 43 milliotleso
and more than 1 billion edges, our largest dataset is a sogpth
Renren, the largest online social network in China. We olethi
this graph after seeking permission from Renren and theoeith
of [9]. While these graphs are still significantly smalleaththe
current user populations of Facebook (600 million) and ktfik
(80 million), we believe our graphs are large enough to destrate
the scalability of our mechanisms.

2. BACKGROUND AND RELATED WORK

Our goal is to develop a practical system that quickly answer
node distance queries for today’'s massive social graphsdoTo
so, we will use our proposed conceptgraph coordinate systems
(GCS), an approach that tolerates an initial computationathead
in order to provide node-distances approximations tha¢ tadn-
stant time regardless of graph size. In this section, wedlice the
concept of graph coordinate systems, and related work gohgra
embedding and social networks.

2.1 Background

Graph coordinate systems, a concept first proposed in S}qtEm
seek to provide accurate estimates of distances betwequaamyf
graph nodes. At a high level, this approach captures the leomp
structure of a high dimensional graph, and computes a legse+
sentation for it in the form of a fixed position for each graplde in
a coordinate space. Each node’s coordinate position isahsasch
that its distance to another node in the coordinate spacehemt
its real shortest path distance to that node in the actughgrin
Figure 1 for example, the shortest path distance betweeeasnbd
and B is 3 in the graph, and the Euclidean distance between their
coordinate positions is 3.1.

Pros and Cons. The advantage of using a GCS is that, once

a graph is embedded, the system can answer each node distanc

query using a small amount of time independent of the gragsh si
i.e. O(1) time. In practice, each query takes only a few microsec-
onds (us) to compute. This is very attractive for applications that
require large numbers of node distance computations, sicbra-
puting graph-wide metrics like graph diameter and avereaat p
length. To process queries on a given graphhowever, a GCS
must first compute a one-time embedding@finto the coordi-
nate spacei.e. compute the coordinate positions of each graph

d(A,B)=3

Edge
Shortest Path

Figure 1: An example of graph embedding to an Euclidean
space. For example, the shortest path distance between nade
A and B is 3 in the graph (left), and the Euclidean distance
between their coordinates is 3.1 (right).

node. This initial step can be computationally expensind,scales
roughly linearly with graph sizei.e. O(n) for a graph withn
nodes. Finally, a graph coordinate system provides gootbapp
mations to graph queries, but does not provide perfecttsesul

Goals. We focus on two goals in our exploration of the GCS
design space. First, we seek to optimize the graph embedaling
maximize accuracy. Second, since graph embedding is bydar t
biggest source of computational cost in a GCS system, our goa
is to ensure that we can take advantage of distributed congput
resourcese.g. server clusters, to ensure scalability as graphs con-
tinue to grow.

2.2 Work on Embedding in Geometric Spaces

Embedding techniques have been used in a variety of applicat
contexts. The most recent and well-known use of embedduiy te
niques was in the context of network coordinate systems tosest
timate Internet latencies without performing exhaustind-&o-end
measurements [21, 7, 5]. In contrast, we are interested dmgjn
an efficient embedding metric that preserves shortest patteage
complex graphs, such as those derived from social networks.

We highlight three popular geometric spaces: EuclideaheB&p
ical and Hyperbolic, and summarize prior experiences witdse
spaces from both measurement and theoretical studies.

Euclidean. Euclidean embedding was first used on simple
graphs such as planar graphs and trees [25]. It was wideti/tose
predict “distances” such as routing latency between letehnnsts [21,
5]. For example, GNP [21] is a centralized system that uses a
small number of public landmarks to embed all Internet hosts
the space. Similar systems proposed later include thoeg ugp-
schitz embedding [32], a spring force model [5] and mostmdge

a system using Euclidean Big-Bang Simulation [29]. These sy
tems calibrate nodes’ geometric positions based on distaag.
Internet round-trip time (RTT), which are measured in aritisted
manner. Still later work proposed bounds on the distortibBuw
clidean embedding. To the best of our knowledge, J. R. Leesnt
result [13] proves the tightest upper bour@(+/Iog n log log n)

for an-point Euclidean embedding.

gpherical. Vivaldi [16] was the first to investigate the accu-

racy of embedding a network into a spherical coordinate espac
While morphing on spherical spaces is widely used in compute
vision [11], there is little theoretical work investigagirspherical

embedding.

Hyperbolic. A hyperbolic space can be thought of a space
with a tightly-connected core, where all paths between sq@des
through. Intuitively, both social graphs and the Intermgtology
should fit this model well, since they both feature highly mected



graph cores. Experimental systems for embedding Interiset d
tances [15, 30, 16] generally showed improved accuracy avalr
ogous systems that used Euclidean spaces.

There is limited work on theoretical characteristics of Ep
bolic spaces embedding. In the context of ad hoc wireless net
works, Kleinberg proved thatgreedy hyperbolic embedding yields
routes with low stretch [10], where greedy embedding is plyra
embedding with the following property: for any pair of nodesv),
there is at least one neighbor of nogdeloser to node) than node
u itself. A recent work [4] improves the greedy embedding algo
rithm for dynamic graphs, and proposes a modified greedyngut
algorithm for message routing.

While these projects are about Hyperbolic embedding dlyos,
they either focus on graphs in the context of routing in veissinet-
works or on small synthetic graphs'$0 nodes as in [4]). A later
project [23] proposes a graph model using Hyperbolic spttss
is capable of producing synthetic graphs with scale-fregcgiral
properties. Unlike our work, this project aims to genergtetisetic
graphs instead of embedding real graphs.

2.3 Social Network Applications and Studies

Here we briefly summarize other related projects on sociali-ap
cations and social network measurements.

Shortest-path based Applications.  Recently, social networks
have inspired a numerous security protocols and sociaicgpigins
in a number of fields. In Section 5, we will evaluate our pro-
posed system using three of the most common social analysis a
plications: graph separation metrics, graph centralityl, distance-
ranked social search [24, 18].

There are many other social applications relying on shopit
computations. For instance, information disseminatigoB lever-

perbolic space is in fact significantly more accurate thacliilean
and spherical alternativks

In this section, we describBigel, a hyperbolic graph coordi-
nate system (GCS) for estimating node distance queriesor8ef
answering queries on a particular graph, the graph musbérsmn-
bedded into a hyperbolic coordinate space, a process travas
computing ideal coordinate values for each node in the gréy
describe hyperbolic coordinate computation in Rigel, pneésle-
tails of Rigel's graph embedding process, and explore thman
of system parameters on embedding accuracy. Whereveibfmssi
we compare Rigel's results directly to comparable resuitained
from running SystemX [1], our prototype GCS based on Euelide
coordinates.

3.1 Distance Computation in the Hyperboloid

There are five known “Hyperbolic models” that have been pro-
posed for different purposes and graph structures, inctuthe
Half-plane, the Poincaré disk model, the Jemisphere matel,
Klein model and the Hyperboloid model [30]. Each model is a
different method of assigning coordinates and computistpdices
over the same hyperbolic structure. Since choosing a model f
damentally changes how graphs can be embedded, it is dyrrent
unknown how the choice of models affects embedding distorti

In designing Rigel, we chose thdyperboloid model for two
practical reasons. First, computing distances betweepbivids in
this model is computationally much simpler than alterreativod-
els. Second, the computational complexity of calculatiisgathces
is independent of the space curvature. This gives us addltitex-
ibility in tuning the structure of the hyperbolic space fomgroved
embedding accuracy.

The curvature parameter(c < 0 in our model) is another im-

age distances between nodes to find the most influential nodes Portant parameter in the definition of the Hyperbolic spa&@.[

Community detection algorithms on social graphs (see aiaxy
from [6]) can benefit from shortest path distances betweealeso
to classify them in different clusters. Furthermore, altpons for
detecting Sybil attacks are similar to community detecstmate-
gies [33] which make them suitable candidates to leveragsyai
tem. Neighborhood function [22] uses node distance diginhs
to predict whether two graphs are similar or not. Mutualrfds de-
tection computes the mutual friends between social usessrsin
the Overstock social auction site query the social grapleédhew
they are connected to sellers of a given product [31]. Alséhap-
plications rely heavily on shortest path computations, thedefore
can benefit significantly from our system.

Studies of Online Social Networks. Recently, a number of
large measurement studies have studied the structure ioE®d-
cial networks through graph measurement and analysis.Xaon-e
ple, Mislove et al. published a comprehensive paper to aralgta
crawled from Flickr, Livejournal, Orkut and Youtube [17]. iW
son et al. generated large social graphs and interactigrhgriay
crawling the Facebook network [34]. Jiang et al. [9] usedstime
methodology to generate a large social graph of 43 milli@rsisn
Renren, the Chinese Facebook clone. Finally, Twitter waby/aad
in [12], and other studies modeled behavior of social netwsers
using network level data measurements [2, 28].

3. AHYPERBOLIC GRAPH COORDINATE
SYSTEM

A number of recent projects have shown that hyperbolic space
can more accurately capture distances on a network grapi[30
23]. We also empirically compute distortion metrics [14] aur
social graphs for different coordinate systems, and fintitteahy-

Whenc = 0, the Hyperbolic space reduces to the Euclidean space.
The choice ofc also has significant impact on the level of distor-
tion between the real node distances and their images onythe H
perbolic space. For a Hyperboloid model with curvaturehe dis-
tance between twa-dimension points: = (x1,x2,...,x,) and

y = (y1,Y2,...,yn) is defined as follows:

8(z,y) = arccosh <\j 1+ Zx?)(l + Zy?) _ Z%Zﬁ) el
i=1 i=1 i=1

@
As we will empirically show in Section 3.3.1, smaller abgelu
values ofc (when5 > |¢| > 1) produce lower distortion.

3.2 Computing a Hyperbolic Embedding

We now describe a basic (centralized) algorithm for embegidi
a graph into our Hyperbolic space. At a high level, we folldwe t
“landmarks” approach proposed in [1], where we first choose a
small number of nodes as landmarks, whete< N and N is
the number of nodes i&. We first use a global optimization algo-
rithm to fix the coordinates of these landmarks, such that tie-
tances to each other in the coordinate space are as closssilsi@o
to their matching path distances in the graph. We refer wdtap
as “bootstrapping.” Once the landmarks are set, we comjeate t
positions of all remaining nodes, such that each node’sulists to
all landmarks in the coordinate space closely match itsshoinde
distances to those landmarks in the graph.

The rationale behind this approach is that computing “gdoun
truth,” i.e. the shortest path length between any two nodes, is an

!Since these results confirm other published results [308} v&e
omit them for brevity.



expensive task. This is unlike other embedding applicatieq.
Internet latencies, where a single “Ping” would get the thséance
between 2 nodes. Thus “calibrating” node positions in avwia&
fashion would generate a large numbéX (V?)) of breadth-first-
search (BFS) computations. By choosing a small, constanbeu
of landmarks, we only need to compute a BFS tree for each land-
mark. The resulting values represent shortest path lerfgihs
all remaining nodes to these landmarks, and are sufficiecalto
brate their coordinate values. As in [1], we choose the laréim
as nodes with highest degree, as a way to efficiently appabeim
nodes with high centrality.

Next, to compute the coordinate position for a graph node, we
randomly select 6 out of thel (I = 100) landmarks. Recall that
we computed a global BFS from each landmark to all nodes in the
graph during the bootstrapping step. Thus we know the antde
distances in the graph between the new node and each of its
selected landmarks. We apply the Simplex method [19] to edenp
an optimal coordinate such that distances between the matliésa
landmarks in the coordinate space match the known nodendesta

Optimizing Local Paths. It has been shown in Internet em-
bedding systems [15] that the largest errors are introdudseh
estimating paths or node distances for nearby nadesiodes sep-
arated only by 1 or 2 hops. In the context of graphs, this isaamy e
limitation to overcome, since 1-hop neighbors are easitgssible
via graph representations such as edge lists or adjacericic@esa
Rigel uses local neighbor information to augment the nodevkn
edge about its close-by topology. Before answering a quara f
pair of nodes, Rigel first checks their adjacency lists teecteif
they are direct neighbors or 2 hop neighbors (share a nod®in t
adjacency list).

This additional memory access increases Rigel’s per-glaery
tency, but is still a worthwhile tradeoff for two reasonsrsEi ac-
curacy in resolving local graph queries is critical to mamgpdn
operations. Second, we will show later that even after thée op
mization, overall latency for each query is still limited tens of
micro-seconds for our graphs.

3.3 Embedding Accuracy on Real Graphs

We now investigate the impact on embedding accuracy by two
parameters, curvature of the spacand number of dimensions of
the spacer. We report experimental results using three Facebook
datasets presented in Table 1. The results on the remairaphg
are consistent with these results, and are omitted for tyreNiext,
we take a closer look at the magnitude of approximation srasra
function of the actual path lengths, and find that as expectta-
tive errors are highest for node pairs already closeby igthph.

3.3.1 Impact of Curvature and Dimension

In order to derive the parameters that maximize the accuwhcy
our system, we evaluate the impact of two important paramete
Hyperbolic space: curvature and number of dimensions.

Impact of Curvature. The curvature: of a Hyperbolic space is
an important parameter that determines the structure dfhee.
We build different Hyperbolic spaces using curvature valtieat
range from—>50 to 0, and investigate the effect on the accuracy of
the distance estimation using our three Facebook sociphgra
Figure 2 plots the average relative error when the curvatanies
between-50 and0. When the curvature ig, the Hyperbolic space
is equivalent to an Euclidean space. We include this valubeas
rightmost point in our plot. From our results, we see thatate
erage error decreases significantly as the curvature agiprsa 1.
We performed further fine grain tests with curvature valuesiiad

0.35 ‘ ‘
= Norway
<] 0.3 Egypt -+ PR 4
| LA, oo
© i
g Curvature=0 |
[3}
o
)
I 0.1
[}
Z 005 1
O 1 1 1 1 1 1
-50 -40 -30 -20 10 5 -1
Curvature

Figure 2: Impact of hyperbolic curvature on accuracy.
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Figure 3: Average absolute errors for paths of different lergths.
The top three lines are from SystemX with errors in[0.6, 3.4].
The bottom three lines are from Rigel with errors in [0, 0.9].

—1, and find that the accuracy of our system reaches a plateau nea
—1. Results at curvature of -1 aB®% more accurate than results
from an Euclidean system, shown in the plot as curvatuée hus

we use the curvature value atl in the rest of this paper.

The impact of Dimensions. The number of dimensions of a
geometric space plays an important role in determining tioel-a
racy level in the estimate of distances between nodes. fduere
we vary the number of dimensions frointo 14 and evaluate the
resulting accuracy. Increasing dimensions reduces tloe fom
more than).2 to about0.1, with most of the significant improve-
ment occuring betweed and6 dimensions. Since the results are
not new, we omit the figure for brevity. Since the number ofelim
sions is a linear factor in the computational complexityhef Sim-
plex method used in our embedding, we need to balance pigdict
accuracy against computational complexity. We find a sweet s
close tol0 dimensions, where the accuracy has essentially reached
a plateau. Thus we also u$e-dimension for our Hyperbolic sys-
tem. This has the added benefit of providing a fair and direct-c
parison with our instance of SystemX, which uses a 10-diimens
Euclidean space.

3.3.2 Accuracy and Per-query Latency

In this section, we examine accuracy as a function of pattien
and also compare per-query latency across a number of syskem
all cases, we use a 10-dimensional Hyperbolic space witratune
of —1.

Accuracy vs Path Length.  We explore the accuracy of predic-
tions for paths of different lengths. Our accuracy breakuoglls
us how our node distance approximations perform, as a famofi
how far away the two nodes are apart in the actual graph.

Figure 3 shows the average absolute errors per path length on
three Facebook graphs by leveraging two embedding systeyss:
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Figure 4: Average absolute errors comparing Rigel and the
“Landmark” scheme from CIKM 2009. The “Landmark”
scheme shows errors in the rang€0.5, 4], and Rigel in [0, 0.9].

Graphs | SystemX Rigel-S Rigel| BFS
Egypt 0.2us 0.3%s 6.8s | 0.75s
L.A. 0.18s  0.3%s 8.5us | 1.027s

Norway [ 0.1%us 0.3%s 17.8s | 1.44s

Table 2: Response time for SystemX, Rigel-S, Rigel and BFS.

temX (using an Euclidean space) and Rigel. The bottom times |
are the results of Rigel where the average absolute errgoaifr
length ranges betwe@and0.9. Comparing Rigel to SystemX (the
top three lines in Figure 3), we confirm a noticeable improsem
Indeed, SystemX presents an average absolute error pdepgth
betweerD.6 and3.4 which is significantly higher than Rigel. This
shows that using hyperbolic spaces clearly has a significgact
on accuracy. Also note that SystemX produces extremely larg
rors for closeby node pairs. These errors are completetyirgdited
by Rigel’s local path optimization.

We also compare Rigel's accuracy against the “Landmarkéiseh
proposed in [24]. Our results in Figure 4 show that Rigel $ign
cantly outperforms [24] regardless of the real node disde-
tween the nodes. A comparison with Figure 3 shows that Syétem
also provides slightly better accuracy than [24].

Query Latency.  Table 2 shows the average per-query response
time required to compute the distance of two randomly setbct
nodes using SystemX, Rigel, and BFS. We also plot the quew ti

of Rigel without the local path optimization, and label it‘&sgel-

S.” Rigel-S requires slightly longer time than SystemX, dese

of the increased complexity of the hyperboloid coordinatmpu-
tation. Memory accesses in Rigel’s local path optimizatoids
several microseconds to each query. But overall, Rigefsjpery
time is still 5 orders of magnitude faster than BFS.

4. EMBEDDING MASSIVE GRAPHS

While we have described basic techniques to embed largégrap
to a hyperbolic space, preliminary evaluation of our system
vealed a significant challenge. Because the complexity it&in
embedding scales linearly with the number of nodes in thphgra
embedding a graph with multi-milliore(g. 43M) nodes can take up
to a week to complete. This processing overhead presenggié si
icant performance bottleneck, and the final limitation fiva@vents
the practical application of Rigel on today’s massive dagiaphs.

In this section, we describe a natural way to address this lim
tation by leveraging the availability of distributed senadusters.
Rigel's embedding process is easily parallelizable acnosiiple
servers, allowing us to reduce embedding time from a few ttags
few hours using a cluster of 50 commodity servers. We reférigo

Parallel Rigel
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Figure 5: A high-level view of how embedding is parallelized
and its netimpact on embedding latency for Renren, our largst
graph.

optimization as “parallel Rigel.” Here, we describe medbars
involved in parallelizing Rigel's embedding process, amehteval-
uate its impact using four large social graphs.

4.1 Parallelizing Graph Embedding

Parallelizing Rigel is feasible because of two reasons.stFir
landmark bootstrapping requires computing BFS trees dofoten
each landmark, which can be run independently and in paoaile
different servers. Second, after bootstrapping, eachhgnapeu
can also be embedded independently and in parallel basetkon t
coordinates of the global landmarks. Because the numbeydga
are large, we just need to distribute nodes across serversstoe
load balancing.

Parallel Rigel. We integrate the above mechanisms with the
original Rigel design. The result Barallel Rigel, an optimized
version of Rigel that scales to massive social graphs. Eigur
demonstrates the Parallel Rigel system on top of and casitde
the original Rigel design. It consists of three componeptsal-
lel bootstrapping, graph partitioning andparallel embedding. The
parallel bootstrapping module distributes BFS tree coatpurt re-
lated to each landmark across servers, one or more landmpearks
server. The graph partitioning module provides a balanésdtal-
tion of nodes across servers. The cost of this operatiorgigyitae
since simple partitioning schemes are sufficient. Finafg, par-
allel embedding module embeds all graph nodes in paraliekac
the servers, allowing Parallel Rigel to achieve significgeedup.
We have implemented a fully-functional prototype of pashll
Rigel, and used it to embed the largest graph we have, the 43 mi
lion node graph from the Renren online social network. Asisee
Figure 5, running the centralized version of Rigel on a srgige
memory server (Dell PowerEdge server with 32GB of RAM) re-
quired 136 hours to perform initial bootstrapping (compgtBFS
trees), and more than 10 days to do the actual node embedding o
all graph nodes. Applying parallel Rigel to the same grapér av
cluster of 50 servers (Dell Xeon, 2GB) reduces the parabhet-b
strap process to 2.7 hours, and embedding to only 6.4 hours.

4.2 Experimental Results

Using Parallel Rigel, we can now embed multi-million nodemrs
in a reasonable amount of time. In the following, we use fduoo
day’s massive social graphs, Flickr, Orkut, Livejournad &enren,
to examine the accuracy and efficiency of Parallel Rigel. dtraa-
acteristics of these four graphs are listed in Table 1.

Accuracy. We first examine the accuracy of Parallel Rigel's
coordinate system by comparing it to SystemX. In Figure 6 loe p
the average absolute error for different path lengths uBagllel



Graphs Bootstrap (hours) Graph Partitioning (hours) Embedding (hours Response
Rigel  P-Rigel P-Rigel Rigel P-Rigel BFS Rigel
Flickr 1.4 0.028 0.003 9.7 0.24 24.5s 12.9s
Orkut 7.5 0.15 0.005 19.4 0.42 56.2s  36.@6s
Livejournal | 4.8 0.096 0.008 32.2 0.66 65.2s 8.4is
Renren 136.2 2.7 0.07 250 6.4 1598.5s 28.8s

Table 3: Comparing the time complexity of Rigel and Parallel Rigel (RRigel) using a cluster of 50 servers. The parallelizationeduces the embedding
time by nearly a factor of 50. Compared to BFS, the per-query esponse time of both Rigel and Parallel Rigel is at least 8 oails of magnitude lower.
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Figure 6: Average Absolute Error for different path lengths
computed by Parallel Rigel and SystemX.

Rigel and SystemX. Like our previous results on smaller Baok
graphs, Parallel Rigel not only significantly improves tleewracy
of long distance prediction, but also reduces the error antstis-
tance estimation. We have also verified that Parallel Riggbpms
similar to the original Rigel on these graphs.

Computation Efficiency. We now evaluate the efficiency of
Parallel Rigel by comparing its computation time againsit tf
the original Rigel design. By utilizing a cluster of serveparallel
Rigel can distribute the computation tasks of landmark $toap-
ping and graph embedding into multiple parallel servers.il&h
Parallel Rigel does require an extra step of graph partigpby
distributing nodes among machines, it only leads to a miner i
crease in time complexity, less than 0.1% of the originalt&toap-
ping time. Table 3 shows the comparison when Parallel Rigs r
on a cluster of 50 servers. We see that Parallel Rigel achidese
to linear speedup, even slightly better due to better merisotg-
tion across multiple servers.

Flickr xxxxxx
Orkut eseesss
40 Livejournal s
Renren @ ;

Speedup
N
[6;]

RR]

%

R

# of machines

Figure 7: Average speedup achieved by Parallel Rigel on d#f-
ent cluster configurations.

Using Rigel, we build an application to compute the graph sep
aration metrics listed above, and examine their accuracgony-
paring their results to ground truth. Since computing sstrpath
length between all node pairs takes several days even fanoali-
est graph (Facebook Egypt), we take a random sampling agiproa
to compute the ground truth. We randomly sample 5000 nodes
from the three Facebook graphs, 500 nodes from Flickr, bivej
nal and Orkut, and 00 nodes from Renren, and use shortest path
lengths between these pairs to derive the separation metric

We report the results in Table 4 for Radius, Diameter and Av-
erage Path Length on seven different graphs, for Rigel,eGyxt
and Ground Truth. In general, Rigel consistently providesen
accurate results compared to SystemX. More importantlgeRi
provides results across all three metrics that are extsecieke
to ground truth values.

5.2 Computing Graph Centrality

To examine the impact of the cluster size, we also compare the Graph centrality is an extremely useful metric for socigblap

speedup achieved by Parallel Rigel using 5, 10, 20 and 5@rserv
where speedup is the decrease in embedding time. Resulig-in F
ure 7 show that run time decreases almost linearly with etissze.

5. APPLICATIONS

We demonstrate the effectiveness and efficiency of Rigebin s
cial network analysis and applications by implementingsahcom-
mon graph applications. In each case, we compare the agonfrac
Rigel against that of SystemX [1].

5.1 Computing Separation Metrics

Social network graphs are known for displaying the “Smalt\/o
behavior. Graph separation metrics such as diametersraduliav-
erage path length, have been widely used to examine andifyuant
the Small World behavior. But since each of these metriégsgein
large numbers of node distance computations, computing tbe
large graphs can become extremely costly or even intractabl

cations such as influence maximization [3] and social sedfohn
example, application developers can use node centralitesdo
identify the most influential nodes for propagating infotioa in

an online social network. Formally, the most “central” naslele-
fined as the node who has the lowest average node distande to al
other nodes in the network.

Using Rigel, we implement a simple application to computageno
centrality directly from node distance values, where a naitle a
small average path length has a high centrality score. Azbgive
examine the accuracy of our Rigel-enabled application lngprd-
ing the centrality ofc = 5000 randomly chosen nodes on the three
Facebook graphs; = 500 randomly chosen nodes each for Flickr,
Livejournal Orkut, and: = 100 nodes for Renren. For each graph,
we sort thesa: nodes by centrality, and select the fopodes. We
compute the “accuracy” of Rigel's centrality ordering byuating
the number of overlapping nodes:) in Rigel's topk nodes and
actual topk centrality nodes as computed by BFS on the original
graph. We study the accuracy of our Rigel-based system aatibe



| Metric |  Method [ Egypt L.A. Norway]| Flickr Orkut Livejournal Renren|

Radius Ground Truth 9 11 8 13 6 13 12

Rigel 8.7 11.0 7.5 12.7 6.4 12.2 12.0

SystemX 9.2 10.7 7.8 12.6 6.3 12.0 12.1
Diameter Ground Truth| 14 18 12 19 8 17 15

Rigel 14.8 17.9 11.7 18.6 10.2 17.7 14.9

SystemX 14.4 17.8 12.2 17.3 10.0 16.8 14.9
Average | Ground Truth| 5.0 5.2 4.2 5.1 4.1 5.4 5.0
Path Rigel 4.9 51 4.2 5.0 4.3 55 4.9
Length SystemX 4.7 5.0 4.1 4.3 3.9 4.8 4.6

Table 4. Comparing separation metric results, as computed 9 Rigel, SystemX, and BFS (ground truth).
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Figure 8: Average accuracy of queries for the topt high centrality nodes. Rigel consistently outperforms SyemX.

of m to k.

We perform our experiments on all seven of our social graphs,
and find the results to be highly consistent. For the restisfsc-
tion, we will only report results for three of them: Facebdas
Angeles, Orkut and Livejournal. Figure 8 shows the certyralc-
curacy results for different values &f As expected, the accuracy
of both Rigel and SystemX increases with largeralues. In gen-
eral, Rigel consistently outperforms SystemX for différgraphs
and different values of.

5.3 Distance-Ranked Social Search

cantly outperform SystemX’s Euclidean coordinates. Orejdur-
nal, for example, when we rank the td6f% search results, average
accuracy of Rigel i§0% while SystemX only achievet)%.

6. SHORTEST PATHS IN RIGEL

A number of critical graph-based applications require ndy o
the length of the shortest path between two nodes, but aésacth
tual shortest path connecting them. For example, users oéed
to know the exact social links that connect them to another ins
LinkedIn. Similarly, users in the Overstock social auctgystem
can perform a search to see how they are connected to theafelle

Social networks such as Facebook and LinkedIn can best servea given object [31].

their users by ranking search results by the proximity oheasult
to the user in the social graph [18]. This is because useiiatg
to care about its social proximity to the origin of the seaeult as
much as the quality of the result itseilfe. a user would pay more
interest to results from her close friend rather than those fan
unrelated stranger.

Despite its usefulness, including social distance in $eggsults
is highly costly due to the number of node distance compuiati
necessary for each social search query. Instead, we camadeve
Rigel's constant time node-distance functionality to Gyibwerful
distance-based social search applications.

To verify the impact of Rigel on distance-ranked social skar
we perform the following experiment. For each node who aiés
a query, we randomly seletd0 nodes in the network to respond
to the query. We sort the responses by their social distantieet
query node, computed via both Rigel and SystemX, and reh&n t
top k& nodes for the user. We then compute the samektogsults
by computing social distance using BFS, and examine theeperc
of overlapping nodes between the result sets as a measucewf a
racy. We repeat this experimesa00 times on smaller graphs like
Egypt, L.A. and Norway, and00 times on our largest graphg.
Renren. We vary the parametefrom 5 to 50, and show the results
of L.A, Orkut and Livejournal in Figure 9. The results shovatth
Rigel's hyperbolic coordinates allow it to consistentlydasignifi-

In this section, we describe a novel extension to Graph Coor-
dinate Systems that produces accurate approximationsoofesh
paths by using node distance queries as a tool. We first descri
how this extension to Rigel can compute short paths betwegn a
two nodes. Next, we describe the Sketch algorithm [27], an ef
ficient algorithm for shortest path estimation, and itsdailip al-
gorithms including SketchCE, SketchCESC, and TreeSketh [
Finally, we compare Rigel's shortest path algorithm agaatisof
these algorithms on a variety of social graphs in both acyuaad
per-query runtime. We show that while Rigel requires siniliee-
processing times to these algorithms, Rigel's shortestspaturn
query results 3-18 times faster, while matching the besheé
algorithms in accuracy.

6.1 Finding Shortest Paths using Rigel

We now describe a heuristic that uses our coordinate system t
find a good approximation of the shortest path connectinghany
nodes. Our algorithm, which we cd®igel Paths, uses techniques
reminiscient of the routing algorithm in [23].

Given two nodesA and B, we start by computing the distance
between themi( A, B). If the distance is 1 or 2 hops, we can use
simple lookup on their adjacency lists to determine thetslsbpath
between them. If the predict distance between the nodeg&teagr
than 2 hops, then we begin an iterative process where we @ttem
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Figure 9: Average accuracy of social search queries that ratn top k ranked nodes

to explore potential paths between the nodes using the icaded
space as a directional guide.

Starting fromA, we use Rigel to estimate the distance of each of
its neighborsV;* to B. The expected distance for a neighbor on the
shortest path should b A, B) — 1. If any neighbor’s estimated
distance is within & factor of that prediction, it is considered a
candidate node to explore. For each43$ neighbors that qualify
as a candidate node, we repeat the process to obtain caslfdat
hop 2. This process iterates until one of the candidate nisdas
direct neighbor ofB.

At each iteration of the algorithni,e. for the n*" hop, we keep
a maximum number of candidatés, ... to explore. Choosing this
number manages the tradeoff between exploring too manys path
(and extending processing latency) and exploring too fethga
(and finding a dead end or inefficient paths). In practice vomsh
Cmaz to be 30, and to be 0.3.

6.2 Sketch-based Algorithms for Shortest Path

Here, we describe existing state-of-the-art algorithmegpiprox-
imating shortest paths in graphs. Two recent projects egglfour
total algorithms for locating shortest paths, all basedanawnts of
the Sketch algorithm [27, 8]. Here we describe these algoistso
that we can compare them against Rigel in both accuracy any qu
latency.

Sketch [27]. Sketch is a landmark based solution where each
node computes its shortest paths to the landmarks and tlesn us
common landmarks between itself and another node in théngoap
estimate their shortest paths. This method seleets|log N | sets

of landmark nodes, wher® is the number of nodes in the graph.
For each node in the graph, Sketch computes its shortest tmth
k (k=2) different landmarks in each set [27]. Those shortestpat
are precomputed by leveraging the results of BFS treesddote
each landmark. Therefore, for an undirected graph, each i®d
associated witlk - r shortest paths.

Cycle Elimination, Short Cutting and TreeSketch [8].  These
three algorithms are variants of the basic Sketch appraadmfl-
ing shortest paths, and all three are described in Hfst, Cy-
cle Elimination improves Sketch by simply removing cycleshe
estimated path computed by Sketch. We refer to this alguarith
as SketchCESecond, Short Cutting improves Sketch by searching
for bridging edges between two nodegndy, wherex is on the
path between the source and the landmark;aisdon the path be-
tween the landmark and the destination. As soon as such ansdg
found, the edge betweenandy replaces the sub-path through the
landmark. This approach also includes the SketchCE ogiioiz.

It locates shorter paths, but dramatically increases ctatipnal
time. We will refer to this algorithm as SketchCESC.

and SketchCESC. At query time, TreeSketch builds two trees,
rooted at the source and one rooted in the destination. These
are formed using precomputed paths to landmarks; therettoee
computational time is proportional to the complexity of Idirig

the trees and not to the BFS operations. Given the two trhes, t
path search starts from both root nodes, and iterativelyoesp
more nodes from both trees. BFS computation starts frons rafot
both trees. For each visited nodén a tree, its neighbors are com-
puted and compared with any visited nadé the other tree. As
soon as a common node is found, the shortest path betweeresour
and destination is constructed with the following three-paths:

the subpath from source to nodgthe edg€w, v), and the sub-path
from v to the destination. While TreeSketch produces very accu-
rate paths, it is computationally slow due to the tree cocsion

and extensive search process.

6.3 Comparing Shortest Path Algorithms

We compare ouRigel Paths algorithm to Sketch and its im-
proved variants SketchCE, SketchCESC and TreeSketch. ke co
pare both accuracy and per-query latency.

Experimental Settings.  To compare Rigel Paths against prior
work, we obtained the source code for the four sketch-base al
gorithms from their authors [8]. All of their code runs on RDF
3X[20], a specialized database system optimized for efft@eor-
age and computation of large graphs. All graph experimeetgw
performed on Dell quad-core Xeon servers with 24GB of RAM,
except for Renren experiments, which were performed onailyi
configured Dell servers with 32GB of RAM.

Accuracy. For each of the seven graphs in Table 1, we ran-
domly sample 5000 node pairs, and compare the shortest@ath r
sults of Rigel Paths, Sketch, SketchCE, SKetchCESC, areSketch
algorithms against the actual shortest paths computedr& Ble
evaluate the accuracy of these algorithms in two ways. ,Rirst
break down the absolute errors by the length of the shortekt p
Second, we compute the estimate shortest paths, of the 0G0 p
of nodes, hop by hop and observe the similarity comparedtéh
ground truth.

Figure 10 shows the average absolute error of the five differe
algorithms broken down by length of the actual shortest.gadre
we define the absolute error as the additional number of hops i
the estimated path when compared to the shortest path. Asebef
we only show the Los Angeles Facebook, Orkut and Livejournal
graphs for brevity, because their results are represeatafi re-
sults on other graphs. The results show consistent tremdssthe
graphs. The Sketch and SketchCE algorithms are highly inacc
rate, and generally produce shortest paths that are ro2ghgps
longer than the shortest path. TreeSketch and Rigel are dis¢ m

Finally, TreeSketch is a tree-based approach that improves Sketctaccurate algorithms. They produce extremely accuratédtsesmd

by adding another optimization to those implemented in Si@E

are often indistinguishable from each other. Both producem
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Figure 10: Absolute error (in hops) of shortest paths returred by Rigel Paths, Sketch, SketchCE, SketchCESC and TreeSkh.
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Figure 11: CDF of the absolute error in path finding among Rigé Paths, Sketch, SketchCE, SketchCESC and TreeSketch.

more accurate results than SketchCESC. we can distribute Rigel's preprocessing phase acrossptautiia-

We show the CDF of absolute errors of the different algorghm  chines with close to linear speedup. Once we consider thisrfa
in Figure 11. This shows a clearer picture of the distributid we see that we can reduce Rigel preprocessing to match Jistch
errors. Again, Rigel paths and TreeSketch are by far the atust- by spreading the load over 2 or 3 machines.
rate algorithms. Both produce exact shortest paths forge lara- Per-query latency is likely to be a much more important measu
jority of node pairs. Both are significantly better than Sk€ESC. of performance, since large social graphs are unlikely tnge
SketchCE and Sketch are fairly inaccurate, and providespaitin significantly over short time periods. Again, we choose 5000e
multiple hop errors for the overwhelming majority of nodédrpa pairs at random from each of the graphs, and compare the aver-

While Rigel Paths provides accuracy that matches or bebts al  age query response time for each of the algorithms. Theestort

the Sketch based algorithms, we will show later that it isigig path algorithms, Sketch, SketchCE, Rigel Paths, SketclCatfsl

cantly faster than both SketchCESC and TreeSketch (rarfiging TreeSketch are ordered in Table 5 from left to right from s ést

a factor of 3 to a factor of 18 depending on the specific graph). to the slowest. Recall from prior results that Sketch and@ieE
Finally, we also compared the length of the shortest pathsdo produce paths that are highly inaccurate, introduce an aver-

by our Rigel Paths algorithm to node distance values estidnay age of 2-3 additional hops in each path. Of the two best dlyos,

Rigel. Interestingly, Rigel Paths is more accurate, withadlite Rigel Paths and TreeSketch, Rigel paths returns results&cton
errors below 0.3, compared to errors between 0.5 and 4. iRigel of the time required by TreeSketch and SketchCESC. Thedgaten
Paths achieves this higher level of accuracy because itdges reduction ranges from-3 (against SketchCESC on Renren) to a
actual graph structure to compute its shortest paths. factor of 18 (against SketchCESC on Flickr). We show a CDF of

these results in Figure 12. Rigel Paths is clearly much fastmn
both TreeSketch and SketchCESC.

Finally, we also include the node-distance computatioe firmm
Rigel as a point of reference. Clearly, finding actual ststnpaths
is orders of magnitude more expensive than simply compuiiraig
distance. Luckily, the large majority of graph analysiktaenly re-
quire node-distance computation, and only user-intaractileries
require the full shortest path between node pairs.

Computational Costs. A scalable system for analyzing large
graphs requires both accuracy and efficiency. We now compare
Rigel Paths and the four Sketch algorithms on computatitme
complexity. We break down our analysis into two components.
First, we measure each algorithnpeeprocessing time. For Rigel
Paths (and Rigel), this represents the time required to erttee
graph into the coordinate spaé¢e. computing coordinates for all
nodes. All Sketch algorithms share the same bootstrappotgps,
which includes computing shortest paths (using BFS) tofdheir

landmark nodes [8]. Our second component measures the eompu 7. CONCLUSION

tational latency required to resolve each query. All experits are Traditional algorithms for performing graph analytics oager
run on a single server. As before, Renren experiments werenu  Scale to today’s massive graphs with millions of nodes ahidis
our 32GB RAM server, while all other experiments were run on Of edges. Computing distances and shortest paths betwei@s no

identical 24GB RAM servers. lies at the heart of most graph analysis metrics and apitatand
We summarize all of our timing results in Table 5. Looking is often responsible for making them intractable on larggphs.

at the bootstrap times, we see that Rigel takes roughly 2n@sti We propose Rigel, a hyperbolic graph coordinate systenafhat

longer to preprocess. Note, however, that these measutemmay proximates node distances by first embedding graphs intperhy

capture bootstrap times for a single server. As shown inrEigy bolic space. Even for graphs with 43 million nodes and 1-dsill

edges, Rigel not only produces significantly more accuregalts
2\We can observe this result by comparing Figure 10 and Figure 6 than prior system, but also answers node distance queri€ssinf



Graphs Preprocessing (Hourg Per-Query Response Timgs)
Rigel Sketch Rigel Sketch SketchCE Rigel Paths SketchCESC TreeSHKetch
Egypt 1.3 0.43 6.8 1781 1792 3667 38044 62407
L.A. 1.5 0.54 8.4 936 946 4008 20597 56828
Norway 1.4 0.67 17.8 1492 1501 4621 21472 59635
Flickr 9.7 3.3 12.9 17157 17178 41279 732332 630890
Orkut 19.4 13.1 36.6 21043 21054 49470 273586 730284
Livejournal | 32.2 14.2 8.4 75101 75114 28355 253976 348464
Renren 250 348 28.9 124327 124334 181814 546925 25947%6

Table 5: Comparing the preprocessing times and per-query reponse times of Rigel Paths, Sketch and variants SketchCE,
SketchCESC and TreeSketch. Preprocessing/embedding tinfier Rigel (and Rigel Paths) is for single server (non-parakl version).
Compared to the Sketch algorithms, Rigel Paths reduces thegr-query latency by a factor of 3 (against SketchCESC on Reran) to

a factor of 18 (against SketchCESC on Flickr).
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Figure 12: CDF of computing time in path finding among Rigel Pdhs, Sketch, SketchCE, SketchCESC and TreeSketch.

microseconds using commodity computing servers. For theemo
challenging task of computing shortest paths, we propogelRIi
Paths, a highly efficient algorithm that leverages Rigefidendis-
tance estimates to locate shortest paths. The results pregsive.
Rigel Paths produces exact shortest paths for the largerityapd
node pairs, matching the most accurate of prior systems. iAnd
does this quickly, returning results up to 18 times fastantbtate-
of-the-art shortest-path systems with similiar levelsafiaacy.
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