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Administrative

• The Final Examination will be:
Monday June 6, 12:00–15:00, PHELPS 1401

• New Exercises are posted
Try to answer Question 2 before Thursday.



Last Week / This Week

• Last week we looked at quantum money and quantum 
cryptography, which uses the qubit states 0,1,+,–.

• This week we will extend this idea to describe 
“quantum fingerprinting”.

• Also this week: superdense quantum coding and 
quantum teleportation of quantum states.



Fingerprinting

Assume two parties A and B that each have data in the 
form of a (long) string x and y∈{0,1}N.

A and B want to check if they have the same data, 
without revealing a priori to the other their strings.
They do this by sending (publicly) information about their 
strings (x and y) to a trusted third party C, who decides.

Sending the whole strings is not allowed because the 
strings are too long / risk of eavesdropping.

A and B want to have a way of fingerprinting their strings.



Quantum Fingerprinting

“Quantum Fingerprinting” refers to a way of mapping the 
strings x,y∈{0,1}N to quantum states |φx〉 and |φy〉, that live 
in a ‘much smaller than 2N’-dimensional Hilbert space,
such that from ψ and φ we can tell decide whether x=y.

The set { |φx〉 : x∈{0,1}N } cannot be mutually orthogonal. 
Instead we will have to work with near orthogonal states.

Central Idea: Encode x∈{0,1}N into m qubit state |φx〉
(with m much smaller than N).  
Do this in a way such that |〈φx|φy〉|2 ≤ ½ if x≠y.
Third party decides if |φx〉 = |φy〉 or not.



Simple Example

Let x and y be from a set of 6 possibilities.
Let |φx〉 and |φy〉 be qubits from the set of 6 states
{|0〉, |1〉, (|0〉+|1〉)/√2, (|0〉–|1〉)/√2, (|0〉+i|1〉)/√2, (|0〉–i|1〉)/√2}

For all qubit states with x≠y we have |〈φx|φy〉|2 ≤ ½.
The third party receives two unknown states |φx〉 and |φy〉
that are either the same or very different.

How to distinguish between these two possibilities?

A Quantum State Equality Tester for unknown states can 
be implemented with a Controlled Swap Test…



Controlled Swap Test

• Given two unknown quantum states |ψ〉 and |φ〉, 
are they the same or not?

• You can test this using the Controlled Swap Test”
C-SWAP:|0,x,y〉 # |0,x,y〉
C-SWAP:|1,x,y〉 # |1,y,x〉
in the circuit…………….

• Observing a “0” indicates that |ψ〉 and |φ〉 are close
to each other, observing a “1” that they are far apart.

• What are the exact probabilities?
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Probabilities of C-SWAP

• The evolution of the system is
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Equality Testing

• The previous calculations
show that if |〈φ,ψ〉|2 ≈ 1, 
then the probability of
observing a “0” is ≈ 1.

• If |〈φ,ψ〉|2 ≈ 0, then the probability of “0” is ≈ ½.

• By repeating the experiment a number of times 
(using fresh copies of |ψ〉 and |φ〉), we can –with 
near certainty– distinguish between the cases 
|ψ〉 = |φ〉 and |〈φ,ψ〉|2 ≤ ½.
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More on Q-Fingerprinting

Using methods from error correction it is possible
to encode N bits of information into M ≈ c log N qubits
such that |〈φx|φy〉|2 ≤ ½ if x≠y.

Even if we have to send many copies of the the
fingerprint, it will still be more efficient than sending 
the N classical bits of the original strings x and y.

Added advantage: because we send such a highly 
compressed quantum state, it is impossible to infer 
the string x from the fingerprint |φx〉.



Communication & Entanglement

• Holevo’s bound tells us that we can encode only one bit 
of information into one qubit.
This bound assumes that the qubit is unentangled.

• Things change if we allow the communication of qubits
that are entangled with qubits of the receiver.

• What happens if A and B share a prior entangled 
pair of qubits |EPR 〉 = (|0A,0B〉+|1A,1B〉)/√2 before 
Alice is to send (quantum) information to Bob?



Superdense Quantum Coding

• Let A and B share an EPR pair of qubits.
Alice wants to transmit classical information to Bob.

• Using Superdense coding, A can send two bits 
of information to B, using only one qubit.

• Approach: Depending on A’s input {1,2,3,4} she applies 
to her side of the EPR pair, one of 4 transformations
{ I, X, Y, Z}, and sends her EPR qubit to Bob.

• From the changed EPR pair, Bob decodes which 
transformation A has applied.  This can be done reliably 
and will transfer 2 bits of information from A to B.



How to Do It?                              

• Look back at Question 1, 
Exercises 2 (Week 3)

• The four transformations
give us four entangled
states that are mutually
orthogonal…

• With a CNOT and a Hadamard, Bob can map those
states to the outputs |00〉, |01〉, –i|11〉 |and |10〉.

)1100()Z(

)01i10i()Y(

)0110()X(

)1100()I(

2
1

2
1

2
1

2
1

−

−

+

+

a

a

a

a



More on Superdense Coding

• One can prove that the 2 bits / 1 qubit ratio is optimal:
it is not possible to send (say) 3 bits of information
using 1 qubit and lots of entanglement.

• Superdense coding is not possible classically.

• Experimental implementation of superdense coding:
[Zeilinger et al.,1996, Innsbruck, Austria]

• Can we do the inverse: Send quantum information 
using classical communication between A and B?



What is Teleportation?

Alice
Bob

1β0αq

 qubit unknown

+=

Alice wants to send her unknown quantum information to Bob.

A and B do not have a quantum channel: 
only classical communication is allowed.

Alice cannot tell Bob what the values α,β are,
nor can she measure |q〉 to see what they are.

Solution: Use

an entangled 

EPR pair



Towards Teleportation

The first two qubits
are on Alice’s side
The 3rd one is Bob’s

After H/CNOT, they
share an EPR pair.

Alice performs a CNOT and a Hadamard to her 2 
qubits and measures them in the 0/1 basis.

What can she expect to observe?



Output?
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Regardless of
the values α,β
the probability 
of measuring
{00,01,10,11}
is one-quarter. 



Effect of A’s Measurement
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leftmost qubits (A’s side), 
the third qubit (B’s side)
is 1-out of-4 permutations
of the original qubit |q〉.

When A measures the
two bits ∈{00,01,10,11}
the qubit of B collapses
to 1 of the 4 versions of q.

When A tells B which one of the 4 outcomes she has observed,
Bob knows what to do to correct his qubit to the original |q〉.

Outcome “00”: → α|0〉+β|1〉
Outcome “01”: → α|1〉+β|0〉
Outcome “10”: → α|0〉–β|1〉
Outcome “11”: → α|1〉–β|0〉



Bob’s Correction

When A tells B which one of the 
4 outcomes she has observed, 
Bob knows what to do to correct 
his qubit to the original |q〉…

“00”: → α|0〉+β|1〉
“01”: → α|1〉+β|0〉
“10”: → α|0〉–β|1〉
“11”: → α|1〉–β|0〉

If first bit is a “1”, Bob applies a Z gate |b〉 # (–1)b|b〉.
If 2nd bit is a “1”, Bob applies a NOT |b〉 # |b⊕1〉

The outcome will always be α|0〉+β|1〉 = |q〉

Bob has (re)created the unknown qubit q that was on 
Alice’s side.  During the process Alice has ‘lost’ her 
copy of the qubit (otherwise we would have copied q).



Teleportation
Alice

Bob

Alice applies a CNOT
and a Hadamard to
q and her EPR half.

She measures the bits in 
the 0/1 basis and sends
the information to Bob.

Bob receives the two
bits and acts on his
side of the EPR, in 
a way that recreates
the unknown qubit
|q〉 = α|0〉+β|1〉.

unknown qubit
|q〉 = α|0〉+β|1〉.

Shared EPR pair

G



What Just Happened?

• Teleportation requires one EPR pair and two classical 
bits to transfer one qubit from A to B.

• Superdense coding requires one EPR pair and one 
quantum bit to transfer two classical bits of information.

• The qubit did not get copied: Alice’s measurement 
destroyed it on her side.

• The outcome of Alice’s measurement is completely 
random and independent of the α,β values of |q〉.
A and B learn nothing about the unknown qubit.



Alice’s Measurement

• Initially, Bob’s part of the EPR pair has nothing to
do with the qubit q on Alice’s side.

• After she has performed her measurement, this 
appears to have changed: Now Bob’s EPR-half is 
(almost) identical to q (except for some ‘corrections’).

• Does Alice’s measurement instantaneously change 
B’s qubit in a way that can be used for communication?

• Answer: No (of course).  Until Bob has received the 
two bits of information from Alice, his qubit remains 
as random as it was before the measurement.



So What does Happen?

• What exactly happens when one half of an EPR pair gets 
measured is a deep question in physics.

• Example, take |EPR〉=(|00〉+|11〉)/√2 between A and B.
• If B measures his part, he will see 0/1 with 50%/50%.

We say that this is caused by of the unavoidable 
randomness of quantum physics.

• But if A has measured her qubit beforehand, then she
knows with 100% that Bob will observe the same value.

• When is the outcome of a measurement determined?



Classical Correlations

• Compare a classically correlated state: 
Two distributed bits with are promised to be equal, but 
are otherwise random (“00” or “11”)

• Again, Bob does not know what value he will see.
But when Alice knows her value, she can predict
Bob’s value with 100% accuracy.

• In this situation we would say that the randomness on 
Bob’s side is due to his ignorance : The outcome is
predetermined, but he is just unaware of it.

• In quantum mechanics, on the other hand, the outcome 
does not seem to be predetermined…



Complete Description?

• The question is: When we say that two qubits are in the 
state |EPR〉=(|00〉+|11〉)/√2, is that all there is to know?

• From it, we cannot predict what the outcomes of our 
measurements will be, so some information seems to 
be missing in our description (ignorance).

• Are there “hidden variables” that we could include in 
our description of the quantum state that would predict 
the outcomes of (future) measurements?

• Answer: This is not the case.



Hidden Variables

In a hidden variable theory, the particles A and B
have determined beforehand what the outcomes
will be when (later on) they are measured.  

Several kinds of measurements are possible
so each particle would have a list of answers
for the various kinds of measurements:

Measurement: Outcome: 
“0”? “Yes”
“+”? “No”

Such lists cannot mimic 

the statistics of quantum 

mechanics that we see in 

the laboratory.



Three Party Entanglement

Greenberger, Horne and Zeilinger
described a three qubit state that 
is entangled over three parties 
A,B,C: |GHZ〉=(|000〉+|111〉)/√2

Party A will change the phase of her qubit according to 
|0〉#|0〉 and |1〉#eiα|1〉.  Same for B,C with angles β,γ.
After that they perform a Hadamard gate and measure
their qubits in the standard 0/1 basis…



Midterm Flashback

• What happens was the last question on the Midterm.

• If the sum α+β+γ = 0 mod 2π then the parity of the 
outcome bits will be even.  If α+β+γ = π mod 2π, 
then the parity of the three bits will be odd.

• You can use this to implement a distributed even/odd 
deciding algorithm that minimizes the communication
between the three parties A,B and C.

• It is impossible to implement this algorithm using a 
“hidden variables technique”…


