CS290A, Spring 2005:

Quantum Information & Quantum Computation

Wim van Dam Engineering 1, Room 5109 vandam@cs

http://www.cs.ucsb.edu/~vandam/teaching/CS290/

Administrative

- The Final Examination will be: Monday June 6, 12:00–15:00, PHELPS 1401
- New Exercises are posted Try to answer Question 2 before Thursday.

Last Week / This Week

- Last week we looked at quantum money and quantum cryptography, which uses the qubit states 0,1,+,-.
- This week we will extend this idea to describe "quantum fingerprinting".
- Also this week: superdense quantum coding and quantum teleportation of quantum states.

Fingerprinting

Assume two parties A and B that each have data in the form of a (long) string x and $y \in \{0,1\}^N$.

A and B want to check if they have the same data, without revealing a priori to the other their strings. They do this by sending (publicly) information about their strings (x and y) to a trusted third party C, who decides.

Sending the whole strings is not allowed because the strings are too long / risk of eavesdropping.

A and B want to have a way of *fingerprinting* their strings.

Quantum Fingerprinting

"Quantum Fingerprinting" refers to a way of mapping the strings $x,y \in \{0,1\}^N$ to quantum states $|\phi_x\rangle$ and $|\phi_y\rangle$, that live in a 'much smaller than 2^N'-dimensional Hilbert space, such that from ψ and ϕ we can tell decide whether x=y.

The set { $|\phi_x\rangle$: $x \in \{0,1\}^N$ } cannot be mutually orthogonal. Instead we will have to work with near orthogonal states.

Central Idea: Encode $x \in \{0,1\}^N$ into m qubit state $|\phi_x\rangle$ (with m much smaller than N). Do this in a way such that $|\langle \phi_x | \phi_y \rangle|^2 \le \frac{1}{2}$ if $x \ne y$. Third party decides if $|\phi_x\rangle = |\phi_y\rangle$ or not.

Simple Example

Let x and y be from a set of 6 possibilities. Let $|\phi_x\rangle$ and $|\phi_y\rangle$ be qubits from the set of 6 states $\{|0\rangle, |1\rangle, (|0\rangle+|1\rangle)/\sqrt{2}, (|0\rangle-|1\rangle)/\sqrt{2}, (|0\rangle+i|1\rangle)/\sqrt{2}, (|0\rangle-i|1\rangle)/\sqrt{2}\}$

For all qubit states with x≠y we have $|\langle \phi_x | \phi_y \rangle|^2 \le \frac{1}{2}$. The third party receives two unknown states $|\phi_x\rangle$ and $|\phi_y\rangle$ that are either the same or very different.

How to distinguish between these two possibilities?

A Quantum State Equality Tester for unknown states can be implemented with a Controlled Swap Test...

Controlled Swap Test

- Given two unknown quantum states $|\psi\rangle$ and $|\phi\rangle,$ are they the same or not?
- You can test this using the Controlled Swap Test" C-SWAP: $|0,x,y\rangle \mapsto |0,x,y\rangle$ C-SWAP: $|1,x,y\rangle \mapsto |1,y,x\rangle$ in the circuit...... $|\phi\rangle$ $|\psi\rangle$ $|\psi\rangle$
- Observing a "0" indicates that |ψ⟩ and |φ⟩ are close to each other, observing a "1" that they are far apart.
- What are the exact probabilities?

Probabilities of C-SWAP

→ |0⟩?

• The evolution of the system is $|0\rangle - H - \gamma - H$

$$\begin{split} |0, \varphi, \psi\rangle &\mapsto \frac{1}{\sqrt{2}} \left(|0, \varphi, \psi\rangle + |1, \varphi, \psi\rangle \right) & |\varphi\rangle \xrightarrow{\qquad s \\ |\psi\rangle} \xrightarrow{\qquad p \\ } \\ &\mapsto \frac{1}{\sqrt{2}} \left(|0, \varphi, \psi\rangle + |1, \psi, \varphi\rangle \right) & |\psi\rangle \xrightarrow{\qquad p \\ } \\ &\mapsto \frac{1}{2} \left(|0, \varphi, \psi\rangle + |1, \varphi, \psi\rangle + |0, \psi, \varphi\rangle - |1, \psi, \varphi\rangle \right) \\ &= |0\rangle \otimes \frac{1}{2} \left(|\varphi, \psi\rangle + |\psi, \varphi\rangle \right) + |1\rangle \otimes \frac{1}{2} \left(|\varphi, \psi\rangle - |\psi, \varphi\rangle \right) \end{split}$$

The probability of observing a "0" is therefore

$$\begin{aligned} \mathsf{Prob}("0") &= \frac{1}{4} \left(\left\langle \phi, \psi \right| + \left\langle \psi, \phi \right| \right) \left(\left| \phi, \psi \right\rangle + \left| \psi, \phi \right\rangle \right) \\ &= \frac{1}{4} \left(2 + \left\langle \psi, \phi \right| \phi, \psi \right\rangle + \left\langle \phi, \psi \right| \psi, \phi \right\rangle \right) \\ &= \frac{1}{2} + \frac{1}{2} \left| \left\langle \psi \right| \phi \right\rangle \right|^2 \end{aligned}$$

Equality Testing

 The previous calculations show that if |⟨φ,ψ⟩|² ≈ 1, then the probability of observing a "0" is ≈ 1.

- If $|\langle \phi, \psi \rangle|^2 \approx 0$, then the probability of "0" is $\approx \frac{1}{2}$.
- By repeating the experiment a number of times (using fresh copies of |ψ⟩ and |φ⟩), we can –with near certainty– distinguish between the cases |ψ⟩ = |φ⟩ and |⟨φ,ψ⟩|² ≤ ½.

42FA71C00A562BB31AFF

More on Q-Fingerprinting

Using methods from error correction it is possible to encode N bits of information into M \approx c log N qubits such that $|\langle \phi_x | \phi_y \rangle|^2 \leq \frac{1}{2}$ if $x \neq y$.

Even if we have to send many copies of the the fingerprint, it will still be more efficient than sending the N classical bits of the original strings x and y.

Added advantage: because we send such a highly compressed quantum state, it is impossible to infer the string x from the fingerprint $|\phi_x\rangle$.

Communication & Entanglement

- Holevo's bound tells us that we can encode only one bit of information into one qubit. This bound assumes that the qubit is unentangled.
- Things change if we allow the communication of qubits that are entangled with qubits of the receiver.

• What happens if A and B share a prior entangled pair of qubits $|EPR\rangle = (|0_A, 0_B\rangle + |1_A, 1_B\rangle)/\sqrt{2}$ before Alice is to send (quantum) information to Bob?

Superdense Quantum Coding

- Let A and B share an EPR pair of qubits. Alice wants to transmit classical information to Bob.
- Using Superdense coding, A can send two bits of information to B, using only one qubit.
- Approach: Depending on A's input {1,2,3,4} she applies to her side of the EPR pair, one of 4 transformations { I, X, Y, Z}, and sends her EPR qubit to Bob.
- From the changed EPR pair, Bob decodes which transformation A has applied. This can be done reliably and will transfer 2 bits of information from A to B.

How to Do It?

- Look back at Question 1, Exercises 2 (Week 3)
- The four transformations give us four entangled states that are mutually orthogonal...

Question 1. (The Effect of Pauli Gates). Consider the following 2 qubit circuit:

where the ?-gate can be one of the Pauli matrices $\{I, X, Y, Z\}$. Calculate what the output of this quantum circuit will be depending on the choice for the ?-gate.

Durssion 2. (Creating Correlated Quantum States). Describe

 $(I) \mapsto \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$ $(X) \mapsto \frac{1}{\sqrt{2}} (|10\rangle + |01\rangle)$ $(Y) \mapsto \frac{1}{\sqrt{2}} (i|10\rangle - i|01\rangle)$ $(Z) \mapsto \frac{1}{\sqrt{2}} (|00\rangle - |11\rangle)$

With a CNOT and a Hadamard, Bob can map those states to the outputs |00>, |01>, -i|11> |and |10>.

More on Superdense Coding

- One can prove that the 2 bits / 1 qubit ratio is optimal: it is not possible to send (say) 3 bits of information using 1 qubit and lots of entanglement.
- Superdense coding is not possible classically.
- Experimental implementation of superdense coding: [Zeilinger et al.,1996, Innsbruck, Austria]

• Can we do the inverse: Send quantum information using classical communication between A and B?

Alice wants to send her unknown quantum information to Bob.

A and B do not have a quantum channel: only classical communication is allowed.

Alice cannot tell Bob what the values α , β are, nor can she measure $|q\rangle$ to see what they are.

Towards Teleportation

Question 2. (Towards Teleportation) (See Handout III if you have problems answering this question.) Consider the following three qubit circuit that has as input an unknown qubit $|q\rangle$ and two zero states:

The first two qubits are on Alice's side The 3rd one is Bob's

After H/CNOT, they share an EPR pair.

(a) With $|q\rangle = \alpha |0\rangle + \beta |1\rangle$, what is the output state before the measurements?

Alice performs a CNOT and a Hadamard to her 2 qubits and measures them in the 0/1 basis.

What can she expect to observe?

Output?

(a) With $|q\rangle = \alpha |0\rangle + \beta |1\rangle$, what is the oftput state before the measurements?

$$\begin{aligned} |q\rangle \otimes |EPR\rangle &= (\alpha|0\rangle + \beta|1\rangle) \otimes \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \\ &= \frac{1}{\sqrt{2}} (\alpha|0,00\rangle + \alpha|0,11\rangle + \beta|1,00\rangle + \beta|1,11\rangle) \\ &\mapsto \frac{1}{\sqrt{2}} (\alpha|0,00\rangle + \alpha|0,11\rangle + \beta|1,10\rangle + \beta|1,01\rangle) \\ &\mapsto \frac{1}{2} (\alpha|0,00\rangle + \alpha|1,00\rangle + \alpha|0,11\rangle + \alpha|1,11\rangle + \\ &\beta|0,10\rangle - \beta|1,10\rangle + \beta|0,01\rangle - \beta|1,01\rangle) \end{aligned}$$
Regardless of the values α,β the probability of measuring $\{00,01,10,11\}$ is one-quarter.
$$\begin{aligned} &= \frac{1}{2} |00\rangle \otimes (\alpha|0\rangle + \beta|1\rangle) + \\ &= \frac{1}{2} |01\rangle \otimes (\alpha|0\rangle - \beta|1\rangle) + \\ &= \frac{1}{2} |10\rangle \otimes (\alpha|0\rangle - \beta|1\rangle) + \\ &= \frac{1}{2} |11\rangle \otimes (\alpha|1\rangle - \beta|0\rangle) \end{aligned}$$

Effect of A's Measurement

 $= \frac{1}{2} |00\rangle \otimes (\alpha |0\rangle + \beta |1\rangle) + \frac{1}{2} |01\rangle \otimes (\alpha |1\rangle + \beta |0\rangle) + \frac{1}{2} |10\rangle \otimes (\alpha |0\rangle - \beta |1\rangle) + \frac{1}{2} |11\rangle \otimes (\alpha |1\rangle - \beta |0\rangle)$

When A measures the two bits $\in \{00,01,10,11\}$ the qubit of B collapses to 1 of the 4 versions of q.

Depending on the two leftmost qubits (A's side), the third qubit (B's side) is 1-out of-4 permutations of the original qubit $|q\rangle$.

```
Outcome "00": \rightarrow \alpha |0\rangle + \beta |1\rangle

Outcome "01": \rightarrow \alpha |1\rangle + \beta |0\rangle

Outcome "10": \rightarrow \alpha |0\rangle - \beta |1\rangle

Outcome "11": \rightarrow \alpha |1\rangle - \beta |0\rangle
```

When A tells B which one of the 4 outcomes she has observed, Bob knows what to do to correct his qubit to the original $|q\rangle$.

Bob's Correction

When A tells B which one of the 4 outcomes she has observed, Bob knows what to do to correct his qubit to the original $|q\rangle$...

If first bit is a "1", Bob applies a Z gate $|b\rangle \mapsto (-1)^{b}|b\rangle$. If 2nd bit is a "1", Bob applies a NOT $|b\rangle \mapsto |b\oplus 1\rangle$

The outcome will always be $\alpha |0\rangle + \beta |1\rangle = |q\rangle$

Bob has (re)created the unknown qubit q that was on Alice's side. During the process Alice has 'lost' her copy of the qubit (otherwise we would have copied q).

What Just Happened?

- Teleportation requires one EPR pair and two classical bits to transfer one qubit from A to B.
- Superdense coding requires one EPR pair and one quantum bit to transfer two classical bits of information.
- The qubit did not get copied: Alice's measurement destroyed it on her side.
- The outcome of Alice's measurement is completely random and independent of the α,β values of |q⟩.
 A and B learn nothing about the unknown qubit.

Alice's Measurement

- Initially, Bob's part of the EPR pair has nothing to do with the qubit q on Alice's side.
- After she has performed her measurement, this appears to have changed: Now Bob's EPR-half is (almost) identical to q (except for some 'corrections').
- Does Alice's measurement instantaneously change
 B's qubit in a way that can be used for communication?
- Answer: No (of course). Until Bob has received the two bits of information from Alice, his qubit remains as random as it was before the measurement.

So What does Happen?

- What exactly happens when one half of an EPR pair gets measured is a deep question in physics.
- Example, take $|EPR\rangle = (|00\rangle + |11\rangle)/\sqrt{2}$ between A and B.
- If B measures his part, he will see 0/1 with 50%/50%. We say that this is caused by of the unavoidable randomness of quantum physics.
- But if A has measured her qubit beforehand, then she knows with 100% that Bob will observe the same value.
- When is the outcome of a measurement determined?

Classical Correlations

- Compare a classically correlated state: Two distributed bits with are promised to be equal, but are otherwise random ("00" or "11")
- Again, Bob does not know what value he will see. But when Alice knows her value, she can predict Bob's value with 100% accuracy.
- In this situation we would say that the randomness on Bob's side is due to his **ignorance**: The outcome is predetermined, but he is just unaware of it.
- In quantum mechanics, on the other hand, the outcome does not seem to be predetermined...

Complete Description?

- The question is: When we say that two qubits are in the state $|EPR\rangle = (|00\rangle + |11\rangle)/\sqrt{2}$, is that all there is to know?
- From it, we cannot predict what the outcomes of our measurements will be, so some information seems to be missing in our description (ignorance).
- Are there "hidden variables" that we could include in our description of the quantum state that would predict the outcomes of (future) measurements?
- Answer: This is not the case.

Hidden Variables

In a hidden variable theory, the particles A and B have determined beforehand what the outcomes will be when (later on) they are measured.

Several kinds of measurements are possible so each particle would have a list of answers for the various kinds of measurements:

Measurement:	Outcome:	Such lists cannot management
"0"?	"Yes"	the statistics that we see in
"+"?	"No"	mechanics in the laboratory.

Party A will change the phase of her qubit according to $|0\rangle\mapsto|0\rangle$ and $|1\rangle\mapsto e^{i\alpha}|1\rangle$. Same for B,C with angles β,γ . After that they perform a Hadamard gate and measure their qubits in the standard 0/1 basis...

Midterm Flashback

- What happens was the last question on the Midterm.
- If the sum $\alpha+\beta+\gamma = 0 \mod 2\pi$ then the parity of the outcome bits will be even. If $\alpha+\beta+\gamma = \pi \mod 2\pi$, then the parity of the three bits will be odd.
- You can use this to implement a distributed even/odd deciding algorithm that minimizes the communication between the three parties A,B and C.
- It is impossible to implement this algorithm using a "hidden variables technique"...