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Administrative

 The Final Examination will be:
Monday June 6, 12:00-15:00, PHELPS 1401

 New Exercises are posted
Try to answer Question 2 before Thursday.




- Last Week / This Week

» Last week we looked at quantum money and quantum
cryptography, which uses the qubit states 0,1,+,—.

o This week we will extend this idea to describe
“quantum fingerprinting”.

» Also this week: superdense quantum coding and
guantum teleportation of quantum states.




Fingerprinting

Assume two parties A and B that each have data in the
form of a (long) string x and y[{0,1}V.

A and B want to check if they have the same data,
without revealing a priori to the other their strings.

They do this by sending (publicly) information about their
strings (X and y) to a trusted third party C, who decides.

Sending the whole strings is not allowed because the
strings are too long / risk of eavesdropping.

A and B want to have a way of fingerprinting their strings.



Quantum Fingerprinting

“*Quantum Fingerprinting” refers to a way of mapping the
strings x,y[{0,1}" to quantum states |¢,) and |9,), that live
In a ‘much smaller than 2N'-dimensional Hilbert space,
such that from g and ¢ we can tell decide whether x=y.

The set { |@,) : x[{0,1}N} cannot be mutually orthogonal.
Instead we will have to work with near orthogonal states.

Central Idea: Encode x[{0,1}N into m qubit state |@,)
(with m much smaller than N).

Do this in a way such that (@,|@)[* < Y2 if x#y.

Third party decides if |@,) = |¢,) or not.



- Simple Example

Let x and y be from a set of 6 possibilities.
Let |@,) and |p,) be qubits from the set of 6 states
{10), 12, (I0HLYN2, (0-I1)N2, (I0)HIL)N2, (0-il1)N2}

For all qubit states with x#y we have [(@,|¢)|* = Y.
The third party receives two unknown states |¢,) and |o,)
that are either the same or very different.

How to distinguish between these two possibilities?

A Quantum State Equality Tester for unknown states can
be implemented with a Controlled Swap Test...




Controlled Swap Test

Given two unknown guantum states |p) and |¢),
are they the same or not?

You can test this using the Controlled Swap Test”
C-SWAP:|0,x,y) — [0,X,y)

C-SWAP:|1,x,y)  |Lyx) 10 —HF—o—H}— [0)?
In the circuit................ ?) \?V
W) A

Observing a “0” indicates that |g) and |¢@) are close
to each other, observing a “1” that they are far apart.

What are the exact probabilities?



E— Probabilities of C-SWAP

* The evolution of the system is 0)

0,0,4) = E(0,0,0) +|Loy) o)

. |0y?

> 00O

- L(0.0u)+1ye) ¥
— 2(0.0.w) +|10,W) +|0,W,0) - [1,))
=10)03(e.w) +|w.e) +|) O3 (o.w) - |w,9))
The probability of observing a “0” is therefore
Prob("0") = +({(@.w| + (v, @ )(¢.w) +|w,9))
12+(p,0|o,9) +(0,y|y,0))
1
2

=1+ 3(wlo)




Equality Testing

* The previous calculations [0) —H

. |0y?

show that if [{(@,p)|°= 1, )
then the probability of

observing a “0” is = 1. W)

W) = |@) and [(@,w)|? < Y.

>SS 0RO

If |Kp,w)|?= 0, then the probability of “0” is = V.

By repeating the experiment a number of times

(using fresh copies of |y) and |)), we can —with
near certainty— distinguish between the cases



—  More on Q-Fingerprinting

Using methods from error correction it is possible
to encode N bits of information into M = ¢ log N qubits

such that (@, |@,)[* = Y2 if x#y.

Even if we have to send many copies of the the
fingerprint, it will still be more efficient than sending
the N classical bits of the original strings x and y.

Added advantage: because we send such a highly
compressed quantum state, it is impossible to infer
the string x from the fingerprint |, ).




- Communication & Entanglement

e Holevo’s bound tells us that we can encode only one bit

of information into one qubit.
This bound assumes that the qubit is unentangled.

e Things change if we allow the communication of qubits
that are entangled with qubits of the receiver.

« What happens if A and B share a prior entangled
pair of qubits [EPR ) = (|0,,05)+|1,,1:))/V2 before
Alice is to send (quantum) information to Bob?



Superdense Quantum Coding

Let A and B share an EPR pair of qubits.
Alice wants to transmit classical information to Bob.

Using Superdense coding, A can send two bits
of information to B, using only one qubit.

Approach: Depending on A’s input {1,2,3,4} she applies
to her side of the EPR pair, one of 4 transformations
{1, X,Y, Z}, and sends her EPR qubit to Bob.

From the changed EPR pair, Bob decodes which
transformation A has applied. This can be done reliably
and will transfer 2 bits of information from A to B.



- How to Do It?

e Look back at Question 1,
Exercises 2 (Week 3)

e The four transformation
give us four entang|
states that are ually
orthogonal...

(X) >
(Y)— +£(i|10) -i/01))
(2) ~ +(|00) - |12))

Question 1. (The Effect of Pauli Gates). Consider the follow-

ing 2 qubit circuit:
0)
0)

1
= (

on 2. (Creating Correlated Quantum States). Describe

00) +|11))
10) +|01))

« With a CNOT and a Hadamard, Bob can map those
states to the outputs |00), |01), —i|11) |and |10).



— More on Superdense Coding

 One can prove that the 2 bits / 1 qubit ratio is optimal:
It is not possible to send (say) 3 bits of information
using 1 qubit and lots of entanglement.

o Superdense coding is not possible classically.

« Experimental implementation of superdense coding:
[Zeilinger et al., 1996, Innsbruck, Austria]

« Can we do the inverse: Send gquantum information
using classical communication between A and B?




- What Is Teleportation?

Alice = »

Bob

Alice wants to send her unknown quantum information to Bob.

A and B do not have a guantum channel:
only classical communication is allowed.

Alice cannot tell Bob what the values a,[3 are,
nor can she measure |qg) to see what they are.



Towards Teleportation

Question 2. (Towards Teleportation) (See Handout III if you

have problems answering this question.) Consider the follow- . .

ing three qubit circuit that has as input an unknown qubit |g) The first two q u bItS

and two zero states: are on Alice’s Side
9) l "L The 3" one is Bob’s

|0) H % A
. 13 ———— ____After H/ICNOT, they

share an EPR pair.
(a) With |g) = a|0) + B |1}, what is the output state before the
measurements?

Alice performs a CNOT and a Hadamard to her 2
gubits and measures them in the 0/1 basis.

What can she expect to observe?



) l H A
0) H A

0 & Output?

(a) With |¢) = a|0) + |1}, ihat is fe ofjtput state before the

q) O|EPRA= (a]0) +§|1)) 0 -£-(|00) +|11))
-(0]0,00) +0011) +B|100) +B|111))
_(a|0,00) +a|0,11) +§|1,10) + B|101))

(0/0,00) +0|1,00) +0{0,11) + 0 111) +

B/0,10) - B|110) +[|0,01) - B|101))

100) O (a|0) +B|1)) +

01) O (o|1) +B|0)) +

10) 0 (0|0) —B|1) +

11) O (a|1) - §|0))

8

-

N |~

Regardlessof | =1

2
the values a,3 .
the probability 2
of measuring 1
{00,01,10,11} .
IS one-quarter. 2




Effect of A’'s Measurement

= %‘OO> - (O“O> + B‘ 1>) T Depending on the two

1 01> [] (q‘ 1> + B‘0>) + leftmost qubits (A’s §ide),
1110 the third qubit (B’s side)
3110)0(al0) =BL)+ s 1-out of-4 permutations
1

2

11> [] (u‘1> - B‘O>) of the original qubit |g).
When A measures the Outcome “00”: — a]0)+B|1)
two bits [1{00,01,10,11} Outcome “01™: — a|1)+B|0)
the qubit of B collapses Outcome “10”: — a]|0)—]1)
to 1 of the 4 versions of Q. Outcome “11": — a|1)—B|0)

When A tells B which one of the 4 outcomes she has observed,
Bob knows what to do to correct his qubit to the original |q).



Bob's Correction

*00":
“01™:
“10™:
“11”:

0)+
1)+
0)—
1)—

w W w W

1)
0)
1)
0)

When A tells B which one of the
4 outcomes she has observed,
Bob knows what to do to correct
his qubit to the original |g)...

If first bit is a “1”, Bob applies a Z gate  |b) = (=1)°|b).

If 2nd bit is a “1”, Bob applies a NOT

|b) - |b1)

The outcome will always be a|0)+B|1) = |q)

Bob has (re)created the unknown qubit g that was on
Alice’s side. During the process Alice has ‘lost’ her
copy of the qubit (otherwise we would have copied q).




Teleportation

Alice |
Shared EPR pair Bob
unknown qubit
a) = a0)+B]1).
» »

Alice applies a CNOT
and a Hadamard to
g and her EPR half.

Bob receives the two
bits and acts on his
side of the EPR, In

a way that recreates
the unknown qubit

@) = a|0)+B[1).

She measures the bits In
the 0/1 basis and sends
the information to Bob.



What Just Happened?

Teleportation requires one EPR pair and two classical
bits to transfer one qubit from A to B.

Superdense coding requires one EPR pair and one
guantum bit to transfer two classical bits of information.

The qubit did not get copied: Alice’s measurement
destroyed it on her side.

The outcome of Alice’s measurement is completely
random and independent of the a, values of |g).
A and B learn nothing about the unknown qubit.




Alice’s Measurement

Initially, Bob’s part of the EPR pair has nothing to
do with the qubit g on Alice’s side.

After she has performed her measurement, this
appears to have changed: Now Bob’s EPR-half is
(almost) identical to g (except for some ‘corrections’).

Does Alice’s measurement instantaneously change
B’s qubit in a way that can be used for communication?

Answer: No (of course). Until Bob has received the
two bits of information from Alice, his qubit remains
as random as it was before the measurement.




So What does Happen?

What exactly happens when one half of an EPR pair gets
measured is a deep question in physics.

Example, take |EPR)=(]00)+|11))/N2 between A and B.

If B measures his part, he will see 0/1 with 50%/50%.
We say that this is caused by of the unavoidable
randomness of quantum physics.

But if A has measured her qubit beforehand, then she
knows with 100% that Bob will observe the same value.

When is the outcome of a measurement determined?




Classical Correlations

Compare a classically correlated state:
Two distributed bits with are promised to be equal, but
are otherwise random (“00” or “11”)

Again, Bob does not know what value he will see.
But when Alice knows her value, she can predict
Bob’s value with 100% accuracy.

In this situation we would say that the randomness on
Bob’s side is due to his ignorance : The outcome is
predetermined, but he is just unaware of it.

In quantum mechanics, on the other hand, the outcome
does not seem to be predetermined...




Complete Description?

The question is: When we say that two qubits are in the
state |EPR)=(]00)+|11))/N2, is that all there is to know?

From it, we cannot predict what the outcomes of our
measurements will be, so some information seems to
be missing in our description (ignorance).

Are there “hidden variables” that we could include in
our description of the guantum state that would predict
the outcomes of (future) measurements?

Answer: This is not the case.




Hidden Variables
.M/\f‘ .

In a hidden variable theory, the particles A and B
have determined beforehand what the outcomes
will be when (later on) they are measured.

Several kinds of measurements are possible
so each particle would have a list of answers
for the various kinds of measurements:

Measurement: Qutcome:
HO”? HYeS”
H+11? HNO”




—  Three Party Entanglement

o\/\/\/\/'o

Greenberger, Horne and Zeilinger
described a three qubit state that
IS entangled over three parties
A,B,C: |GHZ)=(|000)+|111})/2

Party A will change the phase of her qubit according to
|0)~]0) and |1)~e9|1). Same for B,C with angles B,y.
After that they perform a Hadamard gate and measure
their qubits in the standard O/1 basis...



Midterm Flashback

What happens was the last question on the Midterm.

If the sum a+B+y = 0 mod 21T then the parity of the
outcome bits will be even. If a+p+y = 1T mod 2T,
then the parity of the three bits will be odd.

You can use this to implement a distributed even/odd
deciding algorithm that minimizes the communication
between the three parties A,B and C.

It is Impossible to implement this algorithm using
“*hidden variables technique”...

a




