
Mnemosyne: Designing and Implementing
Network Short-Term Memory

Giovanni Vigna Andrew Mitchell

Reliable Software Group
University California, Santa Barbara�

vigna,chemdog3 � @cs.ucsb.edu

Abstract

Network traffic logs play an important role in inci-
dent analysis. With the increasing throughput of network
links, maintaining a complete log of all network activ-
ity has become a task that requires an enormous amount
of resources. We propose an approach to network mon-
itoring that mitigates the resource consumption problem
while still providing effective support to evidence collec-
tion and incident analysis. The approach relies on a tool,
called MNEMOSYNE, that maintains a sliding window con-
taining the traffic that has been recently seen on a net-
work link. MNEMOSYNE provides improved logging fea-
tures, such as multiple streams, support for cross-stream
queries, and dynamic remote reconfiguration. By integrat-
ing MNEMOSYNE with real-time intrusion detection capa-
bility, it is possible to provide incident analysis function-
ality and effective evidence collection, without having to
maintain complete traffic logs. This paper describes the
MNEMOSYNE tool, its architecture, and presents the results
of the quantitative evaluation of its performance.
Keywords: Network Security, Intrusion Detection, Network
Forensics, Incident Analysis

1. Introduction

Incident analysis plays an important role in the every-
day operation of computer networks. The goal of incident
analysis is to understand what went wrong, gather evidence
supporting the hypotheses, and, eventually, solve the prob-
lem that led to a security violation in the first place.

Incident analysis uses as input data the logs collected on
affected hosts, routers, and network links. Collecting reli-
able and complete data about the activities that occur in a
system is an issue by itself. Most operating systems offer
some form of auditing that provides a log of the operations
performed by different users. These logs can be limited to
the security-relevant events in the system (e.g., failed login

attempts) or they can be a complete report on every system
call invoked by every process. For network activity, routers
and firewalls also provide event logs. These logs can con-
tain simple information, such as the opening and closing of
network connections, or they can include a complete record
of every packet that appeared on the wire.

A complete log of all traffic that has been transmitted
over a network link is an invaluable resource during inci-
dent response. These logs represent the “memory” of the
network, in terms of what happened and when. Once these
logs are backed up and stored, they become the “long-term
memory” of the network. Collecting and managing this in-
formation can be a daunting task, especially in the case of
high-speed network links. Keeping up with a simple 100
Mbps link may require a substantial amount of resources
and therefore most installations do not keep complete logs
of network traffic. As a consequence, in most incident cases
the relevant network traffic is lost forever and cannot be
used as the basis for security analysis.

A possible alternative approach to complete network log-
ging is to maintain a log that is limited to the network traffic
that appeared recently on a network link. More precisely,
the proposed approach relies on one or more packet capture
applications that are responsible for collecting and main-
taining one or more sliding windows of the traffic that has
been sent on the network. A set of these applications can be
seen as the “short-term memory” of the network.

Short-term memory information is available only for a
limited amount of time. Therefore, this approach is partic-
ularly useful when combined with real-time intrusion de-
tection and incident analysis. The basic idea is that when
an attack is detected, e.g., by means of an intrusion detec-
tion system, a response application starts an incident anal-
ysis procedure. A first set of the traffic repositories is re-
configured to maintain a more persistent log of the traffic
associated with the attack and, at the same time, the data
stored so far is moved to permanent storage, so that it will
not be lost. Preliminary analysis of the data contained in a
repository may trigger queries to other repositories and may
reconfigure the whole network memory infrastructure.

The packet capture applications supporting this approach
cannot be simple logging applications. First of all, they
must be able to maintain different traffic windows with dif-
ferent characteristics, such as window length, filters, and
type of stored information. Second, they must be dynami-
cally reconfigurable so that their behavior can be modified
according to the current incident analysis process. Third,
they must support queries on the collected data that are per-
formed by applications during the incident response and
analysis process.

Currently, there is no packet capture application that pro-
vides satisfactory support for the proposed incident analy-
sis approach. Therefore, we have designed and developed a
new packet capture application, called MNEMOSYNE, that
effectively implements the concept of network “short-term
memory”. MNEMOSYNE is able to maintain multiple win-
dows of network traffic with different characteristics, can
be remotely reconfigured at run-time, and supports network
traffic queries on the collected information.

This paper describes the design, implementation, and
quantitative evaluation of the tool. More precisely, in
Section 2 related work is surveyed. A reference model
for packet capture applications is described in Section 3.
Section 4 describes the design and implementation of
MNEMOSYNE. Section 5 provides a quantitative evalua-
tion of the tool, while Section 6 presents conclusions and
outlines future work.

2. Packet Capture Applications

Packet capture is the act of acquiring network packets
from a network interface. The interface is set in “promiscu-
ous mode”, allowing the application to capture all the traffic
transferred over the local network link. Many applications
support selective filtering of the traffic. This allows the user
to select a specific subset of “interesting” packets, for ex-
ample the traffic between two hosts, or the traffic involving
a certain TCP port.

Different applications allow one to do different things
with the received traffic. Common capabilities include
pretty-printing of each packet to the console, saving all or a
portion of each packet to a file, running intrusion detection
software for malicious traffic, or generating usage statistics
on the traffic in general.

An important aspect of packet capture applications is
their ability to support queries. A query operates on the
collected traffic and extracts a subset thereof that contains
the relevant information. Queries are usually expressed in
the same language that is used to specify filters.

One of the most well-known packet capture applications
is tcpdump [4, 7] which is based on the libpcap packet cap-
ture library [3]. tcpdump reads packets from a network de-
vice and can be configured to use a selective filter specified
using a filter expression language. tcpdump allows one to

print the packets in a variety of formats to the console, or to
save the packets to a file. The characteristics of the applica-
tion are determined at invocation time and may not change
during its execution. For example, it is not possible to ask
an active tcpdump application to save a larger portion of the
network packets or to save a different group of packets to a
new file without stopping the current tcpdump instance and
restarting a new one. In addition, tcpdump does not support
queries natively. The common way to perform a query is to
run another instance of tcpdump on a log file generated by
a first instance. Using only tcpdump, queries across several
log files are impossible to perform.

A natural improvement over one-stream packet capture
is packet classification; that is the process of capturing mul-
tiple streams of traffic simultaneously.

One example of this type of application is tcpflow [8],
which, like tcpdump, is based on libpcap. tcpflow operates
on a single device and manages several streams. The ap-
plication as a whole can be configured with a packet filter
expressed in the tcpdump filter expression language. All
packets are sorted by source and destination IP addresses,
and then further classified by TCP port numbers and written
to separate log files. The storage and selection characteris-
tics (IP addresses and TCP ports) are predetermined, and
may not be changed during execution. In addition, queries
can not be performed without external help.

Another example of a packet classification application
is Ethereal [1]. Ethereal operates on a single device and
manages a single stream which can be associated with a
global filtering expression. The filter associated with the
input stream can be configured at execution time, and the
capturing of the packets can be stopped and restarted dur-
ing the execution of the application. There is a collection of
pseudo-streams, called display streams, that allow the user
to have subsets of the packets in the input stream presented
in different colors. While a useful user interface feature,
display streams are not saved to separate log files and can-
not act as a query facility. Ethereal provides some basic
support for capturing a sliding window of traffic. This fea-
ture, called “ring-buffer capture”, uses a rotating queue of
files that are used to store packets. The current graphic view
of the stream is created from the files in the queue.

The product EtherPeek NX [10] is a prototypical exam-
ple of a commercial packet classification application. Ether-
Peek NX operates on a single device and manages many
streams that can be individually configured with filtering
expressions expressed using a proprietary format. Each
stream can be associated with an analysis module that per-
forms operations such as generating an alarm, diagnosing
common network problems, or storing traffic into a user-
defined file. The storage characteristics of the traffic are de-
termined at execution, but can be changed through the user
interface. The filtering characteristics of existing streams
can not be changed at run-time, though there is a mechanism

2

to create additional streams at run-time. Simple queries are
supported via the user-interface, but the application does not
allow one to use an arbitrary filtering expression.

The program MNEMOSYNE is a packet capture applica-
tion that overcomes the limitations of existing mainstream
traffic dump applications. Even though MNEMOSYNE has
been designed as a tool to support incident analysis, it can
be used for a number of different tasks, including simple in-
trusion detection and statistical analysis of traffic. The most
important characteristics of MNEMOSYNE are described be-
low. The MNEMOSYNE tool is built on a library, called
libpclap, that extends the functionality of the well-known
libpcap library.

Higher configurability. MNEMOSYNE supports multiple
streams and the filtering expression for each stream is
a complete BPF expression. Streams can be organized
and interconnected in arbitrary ways. The output of a
stream can be used as input by other streams.

Higher flexibility. MNEMOSYNE storage parameters can
be modified dynamically and remotely. MNEMOSYNE

implements a control and configuration protocol that
allows a system administrator to create new filters,
change storage policies, etc.

Windowing. MNEMOSYNE in its typical configuration is
able to maintain a sliding window of the captured traf-
fic. The windowing parameters can be set dynamically
according to time, size, or persistency.

Cross-stream queries. In addition to maintaining many
streams at the same time, MNEMOSYNE allows one
to perform queries across all the streams. This means
that packets that appear in more than one stream are
not duplicated in the query result.

3. A Model For Packet Capture Applications

This section introduces a reference model for packet cap-
ture applications. The reference model is used to describe in
precise terms the characterizing components of packet cap-
ture applications. In addition, the model has been used in
the design procedure and supports the evaluation and com-
parison of existing tools.

Packet capture applications retrieve packets from one
or more sources. Examples are network interface cards
(NICs), dial-up adapters, and also files generated by packet
capture applications. In this model, any object that can be
used as a source of network traffic is an event source. A
packet capture application is characterized by a set of event
sources ���������	�
������������������ .

An event source is represented as a sequence of meaning-
ful occurrences, called events. Most events represent net-
work packets. Although, a file-based event source may pro-
vide End-Of-File and Bad-Read events, and a kernel-based

event source may provide a Kernel-Drop-Packet event. All
events are identified by two integers, � and � that specify
the event source that generated the event and the position
of the event in the corresponding sequence. More precisely,
the event source ��� containing � events, is the ordered set
��� ��� ��� ��� ����������� �� � . The set of all events, ! , is thus defined
by !"�$#&%'��% .

The entire sequence of events in an event source is not
always needed. Typically, only a subset of the events gen-
erated by an event source, based on a certain selection cri-
terion, is needed. For example, FTP traffic may be the only
traffic of interest. A filter is the encapsulation of this se-
lection process. Essentially, a filter decides the membership
of an event to a specific group. As a membership function,
a filter can be viewed as a collection of events that it will
accept. We allow filters enough power to select any subset
of ! ; in this way, the set of all filters (, is now ()�)*,+-!/. .
We define the function 021313��4�576�!98:(9;<=��5?>�@��A�
B�02�DC��A� ,
where 021313��4E53+D�F��BG.,�H5?>�@��I<J�/K�B .

Packet capture applications select events through filters
and perform some operations with the matching events.
Common and useful actions include writing the event to a
file, pretty-printing the event to the console, or executing
a query. The actions to be undertaken are contained in a
callback. There are many situations where system-specific
information and the state of the application influence the ac-
tion to be performed. The encapsulation of this information
is called the context. We call the set of all callbacks L , and
loosely define it to be the set of all functions that take an
event and a context as input.

More formally, we define the context as the grouping of
a history M , an environment N , and a memory O . Also,
we define the set P , which is the set of all possible con-
texts. The history M is an ordered set containing all the
events that have been accepted by a filter. The environment
N is a collection of attribute-value pairs used to represent
information about the context. The environment includes
information such as network statistics and system proper-
ties. The memory O is a subset of M containing the events
that are available to the application. That is, the memory O
contains the events currently stored in RAM, saved on disk,
or that are otherwise accessible. Only the events in O are
accessible by the callback via the context.

A stream is the coupling of a filter, a callback, and a con-
text. The stream represents an autonomous processing unit.
It contains all the relevant information to properly select
events that are sent to it and handle them accordingly. The
set of all streams is Q . For a stream RS�UTVB���1	�
WYX , we de-
fine the functions Z2��5 B�[?�\5]��>^62Q_;<J(, Z`��5 1302�-�Da30F1��b62Q_;<
L , and Z`��5 13c�dG5]��e�576�Qf;<gP , where Z2��5 B�[?�\5]��>`+DRh.i�jB ,
Z2��5 1302�-�ka�021��G+kRh.7�l1 , and Z2��5 13c�dG5]��eE53+kRh.m�9W . Streams
take events as inputs, filter them, and execute callbacks
when a match is found. Matching events are propagated
to the outputs. These events can be used as inputs by other

3

streams.
A packet capture application is a system that intercon-

nects event sources and streams in a meaningful way. We
consider an application to be a directed graph � , which con-
tains two types of vertexes. The first group of vertexes, W�� ,
represents the set of available event sources. The subgraph
� � formed out of the vertexes of W � is an independent set,
that is, there are no edges between vertexes in W�� . The sec-
ond group of vertexes, W�� , represents the streams defined
by the application. There are no restrictions on edges in the
subgraph ��� , which is formed by the vertexes in W�� . No
edges from ��� to � � are allowed, though the edges from
� � to ��� can be arbitrary.

When an application is started, an event � is selected
from an event source ��% in ��� that has an event available.
A copy of this event is sent on all outgoing edges from that
vertex. When a stream vertex, ���
	 , receives the event � , the
accept function is called as 021313��4E53+D�F�]Z`��5 B�[?�\5]��>`+�� �
	 .�. . If
the function maps to B�02�kC�� , no additional processing oc-
curs. Otherwise, the callback 1/� Z`��5 1302�-�ka�021��G+�� ��	 . is in-
voked with � and f�HZ`��5 13c�dG5]��e�53+�����	�. as parameters, that
is 1 +D�A��7. . Then, a copy of the event is sent on all outgoing
edges of ���
	 . The application must guarantee that every
edge maintains FIFO ordering, but no additional ordering
at a higher level is required, though it may be provided.

There is more expressiveness and flexibility in this appli-
cation model than what is required to describe most prac-
tical uses for packet capture applications. For example, a
simple application like tcpdump contains only two vertexes.
One is an event source, usually the default Ethernet NIC or
a file, and the other is a stream, whose filter is specified as a
command line parameter. The graph contains a single edge
from the vertex � � � to the vertex ��� � . The choice of callback
is limited to display the event on the console or writing the
event to a file.

Consider as another example the application tcpflow.
Like tcpdump, tcpflow has only one event source ��� � . Un-
like tcpdump, ��� is organized as a tree. The vertex � � � is
connected to the root of the tree in ��� . The tree satisfies the
following property: at every level of the tree the traffic is
partitioned. This means that a single event will take at most
one accepting path from the root to a leaf. Every leaf stream
has a callback that writes the event to a file.

4. MNEMOSYNE

MNEMOSYNE is designed to closely reflect the concepts
introduced by the reference model. A MNEMOSYNE ap-
plication is built by connecting streams and event sources.
Reconfigurability is supported in several ways. First, the
interconnections between streams and event sources can be
changed at runtime in any way allowed for by the model.
Second, MNEMOSYNE supports the creation and deletion of
nodes in the graph ��� . That is, new streams can be added

dynamically. Third, the filter, callback, or context of any
stream can be changed at runtime.

The event sources contained in the MNEMOSYNE graph
� � are made available by the event tap. The event tap sup-
ports the creation of event sources from any physical device
or capture file on the local machine. The current version
does not support creation of event sources from files con-
currently with physical devices. Either all event sources are
files or they are all physical devices. The event tap compo-
nent is provided by the libpclap library.

The classifier component is the manager and factory for
the stream components. The stream component directly
represents the vertexes of the graph � � . The classifier pro-
vides for the creation of streams that contain a filter, a con-
text, and a callback. The context does not contain the his-
tory M , though the memory O has an implementation. The
memory O is entirely contained in RAM. The usage of
RAM can be configured by a variety of parameters. Fur-
thermore, the memory behaves as a sliding window over
the parameters of interest. Many statistics are available in-
side of the environment N . Some examples of the avail-
able statistics include number of packets, overall size of the
packets stored in RAM, and timing information. The libp-
clap library provides the implementation of the classifier.

The memory O contained in a stream component is
managed by the storage unit. The storage unit is a memory
and file management system. Specifically, a storage unit is
responsible managing the RAM that contexts may use to
store network packets. A stream can select a set of param-
eters that determine how the memory associated with the
stream’s context is managed. Example parameters are RAM
usage, number of packets, and age of the oldest packet. The
storage unit uses a shared data space to store the network
packets referenced in the memory of the streams. More pre-
cisely, the memory of a stream is actually a collection of ref-
erences to packets inside a Flyweight pattern 1 This solution
allows a set of streams that share a packet to require a single
copy of the data. In addition to reducing the RAM require-
ment in many circumstances, the flyweight pattern yields a
simple solution to eliminating duplicates from cross-stream
queries.

Dynamic reconfiguration of a MNEMOSYNE instance is
performed by means of control messages. Messages con-
form to the AMP protocol [5]. AMP messages can be used
to create/destroy streams, change stream organization, mod-
ify stream parameters, and perform queries.

Consider, as an example, a MNEMOSYNE tool that has
been started with an initial configuration that includes an
AMP stream and a windowed stream � . The window con-
tains two boundaries from 0 to 2 minutes of traffic and from
0 to 500 MB of traffic. Equivalently, this is the last 2 min-

1If instances of a class that contain the same information can be used
interchangeably, the Flyweight pattern allows a program to avoid the ex-
pense of multiple instantiation by sharing a single instance [2].

4

Event Tap

Storage Unit

Classifier

Shared−RAM

Reference

Event Source

Filter Callback

Stream

Figure 1. MNEMOSYNE Components

utes of traffic or the last 500 MB of traffic whatever is the
less. Suppose that an intrusion is detected on host � on
the same link. The real-time intrusion detection system re-
alizes that the attack was perpetrated using a telnet connec-
tion from host ! . Therefore, the intrusion detection system
sends an AMP configuration message to the MNEMOSYNE

active on the same link so that all the traffic regarding hosts
! or � is now kept in a separate stream � with a longer
lifetime, say 2 hours. A configuration message is used to
initialize the stream with a query that extracts the existing
data from the original stream � . In addition, stream � is
marked as persistent so that no data will be lost.

AMP messages can be encapsulated in different, lower-
level protocol data units (PDUs), such as ICMP messages,
UDP datagrams, and TCP segments. AMP messages are
delivered to a MNEMOSYNE application by injecting the
messages into the traffic flow that is currently analyzed by
the tool. The message processing is performed by a dedi-
cated stream, called the AMP stream. The AMP stream fil-
ter selects the AMP messages out of the normal background
traffic. The AMP stream callback is responsible for pars-
ing the AMP message structure and perform the requested
operations. By using the mechanism above to select and
process control message it is possible to control remotely
a MNEMOSYNE application even when it is executing on a
host that does not have an associated IP address. In addi-
tion, by using the stream mechanism to select and process
AMP messages it is possible to change the protocol used for
message delivery at runtime.

5. Evaluation

To evaluate the performance of the approach, the
MNEMOSYNE tool was installed on a network testbed. The
configuration for the testbed includes two machines to per-
form the tests. One is required to run the software under
evaluation and perform the measurements, while the other
is responsible for generating the network traffic load.

The software to be tested was run on an Intel Pentium II
processor clocked at 400MHz with 128MB RAM running
RedHat Linux release 7.1 (Seawolf). The host has a 3COM
3C905B-TX Fast EtherLink XL card connected to the other
machine through a hub.

The network traffic was generated on an Intel Pentium
4 processor clocked at 1.3GHz with 256MB RAM running
RedHat Linux release 7.1 (Seawolf). The host has a builtin
LAN port with the same driver as the other machine.

The generated traffic load contained simulated web traf-
fic (23 percent of packet count and bandwidth), simulated
user traffic (19 percent of packet count and bandwidth), sim-
ulated system traffic (48 percent of packet count and 47 per-
cent of bandwidth), and simulated miscellaneous traffic (10
percent of packet count and 11 percent of bandwidth).

Traffic produced by the MIT Lincoln Laboratory for the
DARPA 1998 Off-line Intrusion Detection Evaluation was
used in a separate test.

The AMP protocol messages were injected into the net-
work traffic using the MAC address of a “ghost” card, an
unused IP address from the pool of addresses assigned to
the testbed, and a specific pair of UDP ports. These fea-
tures uniquely identified where the AMP packets were in
the network traffic.

Given this configuration of the network, we decided
to compare the performance of tcpdump, Ethereal, and

5

MNEMOSYNE. Each program was configured to simulate
the behavior of tcpdump, the behavior of MNEMOSYNE

with a 60 and 300 second window, and the behavior
MNEMOSYNE with a 20 MB window. These tests will be
detailed in the following sections.

5.1. MNEMOSYNE Simulating tcpdump

The typical usage of tcpdump is to run a single instance
on a single machine capturing a single stream of traffic. The
stream of traffic contains a filter that accepts all packets, and
a callback that directly stores the packet into a file. Queries
and analysis of the stream are performed by a second tcp-
dump instance, which is run after the first instance has com-
pleted capturing the traffic. One can control the maximum
number of bytes that tcpdump obtains for a single packet.
We used tcpdump version 3.6.2 invoked with a snapshot
length of ������� bytes.

Configuring MNEMOSYNE to reproduce the same
functionality as tcpdump required several modifications.
MNEMOSYNE was bootstrapped with a single stream that
contained a filter and a callback. The filter accepts all pack-
ets. The callback stores packets to a file. The AMP stream
was removed, which deactivated all of the dynamic con-
figuration capabilities. The windowing functionality was
disabled by configuring the storage unit to prevent packets
from accumulating in RAM. The default maximum number
of bytes of a captured packet in MNEMOSYNE is ��������� , so
no modification was necessary for that aspect of the capture
process.

The test host was rebooted before each experiment. No
program besides the performance analysis software and the
program in question were executed during the test. A single
iteration of the test consisted of the generator host trans-
mitting both sets of traffic over the link between it and the
software test host. After 10 iterations, the results were com-
bined and averaged. The CPU usage from this test is pre-
sented in Figure 2. The RAM usage by both was negligible.

The CPU usage spike at the beginning of tcpdump’s ex-
ecution is attributed to the accumulation of state associated
with various traffic flows, such as relative sequence num-
bers for TCP streams. The accumulation and processing of
state accounts for a significant portion of the difference in
performance between MNEMOSYNE ’s and tcpdump’s exe-
cution. This version of tcpdump did not provide a way to
disable accumulation of state.

At 375 seconds into the test, the performance of tcpdump
was slightly better than MNEMOSYNE. After an additional
15 seconds, the programs returned to their previous posi-
tions. For the majority of the test, MNEMOSYNE consumed
half the CPU time as tcpdump.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 200 400 600 800 1000

%
 C

P
U

 U
sa

ge

Time (s)

TCPDump
Mnemosyne

Figure 2. Performance evaluation of
MNEMOSYNE simulating tcpdump behavior.

5.2. Ethereal Simulating tcpdump

The Ethereal program directly features the ability to sim-
ulate the relevant behavior of tcpdump. The GUI was used
to begin a capture with the same properties as the previous
test. The results of running Ethereal this way is shown with
MNEMOSYNE in Figure 3.

The performance of both programs is very similar. Ethe-
real is less variant in usage during the first half of the test,
while MNEMOSYNE is less variant during the second half
of the test. Neither program utilized any significant portion
of the CPU, nor consumed any significant amount of RAM.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

%
 C

P
U

 U
sa

ge

Time (s)

Ethereal
Mnemosyne

Figure 3. Performance evaluation of Ethereal
simulating tcpdump behavior

5.3. tcpdump Simulating MNEMOSYNE

A typical MNEMOSYNE configuration is to run a single
instance of the tool on a single machine, simultaneously

6

capturing several streams of traffic. Each stream of traf-
fic has a different filter, a different window, and a differ-
ent callback. In this experiment, the chosen filters are the
four filters that differentiate the four types of traffic from
the first test set. Queries and analysis are performed across
all streams.

There are five queries to be performed by this test. The
first query, which was sent after 3 minutes, contained a filter
that selects web traffic. The second query contained a filter
that accepts all packets larger than ����� bytes. The second
query was sent after 6 minutes. The third query contained a
filter that accepts only traffic from a specific host, and was
sent after 9 minutes. After 12 minutes, the fourth query was
sent. The query contained a filter that accepts all traffic. The
last query, whose filter rejects all packets, was sent after 15
minutes.

A single instance of tcpdump is incapable of providing
a window of traffic. Providing windows of traffic was ac-
complished by running several overlapping instances of tcp-
dump. Two different methods of providing this window
were examined. The first method provides a single file for
assembling responses to queries at the expense of managing
several processes and files. The second method attempts to
provide a reduced program load at the expense of requir-
ing additional processing assemble query responses from
several files. The collection of tcpdump instances is inca-
pable of providing multiple simultaneous streams of traffic.
Providing multiple simultaneous streams requires several
groups of tcpdump instances to be run in parallel with each
other. There would need to be one group for each stream of
traffic.

5.3.1 Fast Single File Query

The idea is to provide storage for traffic within a time win-
dow of size with a granularity of size Z . Once every Z
sized increment there would be a new complete file of size
 that could be used for processing queries. To make this
file available, the instance of tcpdump that created the file
would have been started size previous to the current mo-
ment, and would have been stopped at precisely the current
moment. With d � ���Z instances of tcpdump, each equally
spaced Z apart, the entire window is covered by the avail-
able completed file. A query is implemented in this system
by executing a separate tcpdump instance with the query’s
filter on that file.

A window size of f� ���FC���1�C and Z ����C���1 was chosen
to begin the experiment. A script was used to coordinate the
execution of the different tcpdump instances. Almost im-
mediately, the software test host became unresponsive and
dropped a significant portion of the packets. It also was
unable to reliably run the performance evaluation software.
The parameters for the script were changed to Z � �AC���1�C
to reduce the load placed on the host. In this configuration,
it was possible to run the performance evaluation software

without dropping packets.
Next, MNEMOSYNE was configured with � ���FC���1�C

and Z_����C���1�C . It is impossible and unnecessary to con-
figure MNEMOSYNE with a granularity of Z � �C���1�C . The
Z ����C���1�C configuration provides a better time resolution,
and could only run slower than the larger granularity.

Processing queries within MNEMOSYNE took on aver-
age � � ���	�AC���1�C , and was bounded between �E� �����AC���1�C and
� �
�����C���1�C . The tcpdump query processing took on aver-
age �`� ����FC���1�C , and was bounded between �� �	��FC���1�C and
� �
����� C���1�C .

1000

10000

100000

1e+06

0 200 400 600 800 1000

M
em

or
y

(b
yt

es
)

Lo
ga

rit
hm

ic
 S

ca
le

Time (s)

TCPDump
Mnemosyne

Figure 4. Memory usage of fast query tcpdump
simulating MNEMOSYNE with 60 second win-
dow

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

%
 C

P
U

 U
sa

ge

Time (s)

34% TCPDump Fast Query
Mnemosyne

Figure 5. Performance evaluation of fast
query tcpdump simulating MNEMOSYNE with 60
second window

The RAM usage of both MNEMOSYNE and the collec-
tion of tcpdump instances is depicted in the graph in Fig-
ure 4. This graph is in a logarithmic scale, and it is quite
clear that MNEMOSYNE uses a few orders of magnitude less

7

RAM. The CPU usage is shown in the graph in Figure 5.
MNEMOSYNE, after initialization, never rises above 1 per-
cent CPU usage. The collection has a spike initially where
half of the filters are accepting traffic. After � ���AC���1�C , the
spike falls off, where it rises again at ���AC���1�C . This is the
location of the highest throughput of traffic. The spike caps
at 34 percent of CPU usage, which is quite heavy in com-
parison to MNEMOSYNE’s 0.2 percent usage in the same
location.

For further comparison, the window size was expanded
to � �����FC���1�C for MNEMOSYNE, and remained at �
���AC���1�C for tcpdump. The RAM usage of this instance of
MNEMOSYNE and the collection of tcpdump instances is
depicted in the graph in Figure 7. This graph is also in a
logarithmic scale. It is evident that with this larger window
MNEMOSYNE outperforms tcpdump, although the relative
performance factor has been reduced from � ��� to � . The
CPU usage is depicted in the graph in Figure 6. Besides
an initial 3 percent usage in the first minute, MNEMOSYNE

never uses more than 1 percent during the entire experiment.

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

%
 C

P
U

 U
sa

ge

Time (s)

34% TCPDump Fast Query
Mnemosyne

Figure 6. Performance evaluation of fast
query tcpdump simulating MNEMOSYNE with
300 second window

5.3.2 Slow Multiple File Query

In this experiment the sliding window of size with a gran-
ularity of size Z is implemented in tcpdump using a smaller
process load. Once every Z sized increment there would
be a collection of small files that could be accessed to re-
construct the entire window. To generate the files, three
instances of tcpdump are started and killed in round-robin
fashion. Every Z size step, the next instance is killed and
restarted. Each individual instance creates a sub-window of
size ��Z in a file. The file of each instance overlaps by Z with
the previous file and by Z with the following file. A query
is implemented by executing a program that finds the files

1000

10000

100000

1e+06

0 200 400 600 800 1000

M
em

or
y

(b
yt

es
)

Lo
ga

rit
hm

ic
 S

ca
le

Time (s)

TCPDump
Mnemosyne

Figure 7. Memory usage of fast query tcpdump
simulating MNEMOSYNE with 300 second win-
dow

that composes the entire window, and merges them together
after applying the query’s filter.

More specifically, a query is implemented as a merge-
phase of an external merge-sort with special care taken to
avoid duplicate packets. Each file contains a sorted collec-
tion of packets, but the files might not contain disjoint sets
as in the case of adjacent sub-windows. When two files are
being combined, the candidate packets are checked against
each other for duplication, which causes the duplicate to
be removed. When the final sorted duplicate-free file is
formed, a linear walk is performed through the stored pack-
ets. A program was written to implement the merging and
duplicate removal in optimal time � +\d'. .

To begin this phase of the experiment, a window size
of � ���AC���1�C and ZY� ��C���1 was chosen. The RAM
usage is depicted in the graph in Figure 8. The RAM us-
age by the collection of tcpdump instances was essentially
constant. After �����AC���1�C , MNEMOSYNE briefly exceeds the
memory usage of the tcpdump collection, only to exceed the
usage again at �����AC���1�C . The difference in memory usage is
strongly offset by the file system usage by the tcpdump in-
stances at � � ����Z`C .

Processing the queries within MNEMOSYNE took an av-
erage of � � ���	�AC���1�C , and was bounded between �E� �����AC���1�C
and �E� �����AC���1�C . tcpdump queries took an average of
���A� � ��� C���1�C , and was bounded between �� �	��FC���1�C and
���`� �����C���1�C .

The CPU usage of both MNEMOSYNE and the collection
of tcpdump instances is depicted in the graph in Figure 9.
The collection performed more admirably this time settling
on an average CPU usage of 2 percent. Even though this is
5 times as much usage as MNEMOSYNE, the more impor-
tant difference is the variability of the usage. MNEMOSYNE

rarely changes its CPU usage, where as the collection of tcp-
dump instances spikes occasionally to percentages around

8

20 and 30. During the spikes, the tcpdump would drop pack-
ets.

1000

2000

3000

4000

5000

6000

7000

8000

0 200 400 600 800 1000

M
em

or
y

(b
yt

es
)

Time (s)

TCPDump
Mnemosyne

Figure 8. Memory usage of slow query tcp-
dump simulating MNEMOSYNE with 60 second
window

0

0.5

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800 1000

%
 C

P
U

 U
sa

ge

Time (s)

18%

12%

38%
37%

20%

TCPDump Slow Query
Mnemosyne

Figure 9. Performance evaluation of slow
query tcpdump simulating MNEMOSYNE with 60
second window

To further this experiment, the window size was ex-
panded to � �����FC���1�C for both programs. The RAM
usage of this instance of MNEMOSYNE and the collection
of tcpdump instances is depicted in the graph in Figure 11.
With this larger window size, MNEMOSYNE uses almost
6 times more RAM than what was used by the collection
of tcpdump instances. The collection of tcpdump instances
uses � � ����Z`C of file system space, whereas MNEMOSYNE

uses no file system space.
Processing the queries within the collection took an av-

erage of � E� � � �FC���1�C , and was bounded between �`� �� �AC���1�C
and ��� �
� ���AC���1�C . MNEMOSYNE queries took an average
of � � ��� ��C���1�C , and was bounded between � � � �	��C���1�C and

� �
� ���AC���1�C .
The CPU usage of both programs is shown in the graph

in Figure 10. The collection of tcpdump instances has us-
ages about 12 times that of MNEMOSYNE. The tcpdump
instances are further burdened by the usage spikes that have
percentages around 30 and 40. These spikes are the pri-
mary cause of the dropped packets in the collection pro-
gram. MNEMOSYNE did not drop packets during execution,
nor did the CPU usage ever rises to any significant percent-
age.

0

2

4

6

8

10

0 200 400 600 800 1000

%
 C

P
U

 U
sa

ge

Time (s)

50%

20%

30%

25%

43%
36% 37%

TCPDump Slow Query
Mnemosyne

Figure 10. Performance evaluation of slow
query tcpdump simulating MNEMOSYNE with
300 second window

0

5000

10000

15000

20000

25000

30000

0 200 400 600 800 1000

M
em

or
y

(b
yt

es
)

Time (s)

TCPDump
Mnemosyne

Figure 11. Memory usage of slow query tcp-
dump simulating MNEMOSYNE with 300 second
window

5.4. Ethereal simulating MNEMOSYNE

Configuring Ethereal for this test was very similar to
configuring tcpdump. Ethereal provides a rudimentary form

9

of sliding window via a ring-buffer. The ring-buffer is a
queue of files, where each file is filled to a specific num-
ber of bytes before cycling through to the next file. The
contents of a previously held file are deleted at each step.
Ethereal was configured to have 10 files in the ring-buffer,
each of size 2MB. Essentially, Ethereal provided a window
with the following properties: f� ���FO�� , and Z � �O�� .
Queries were handled in a manner identical to tcpdump.

Configuration for MNEMOSYNE differs from before in
the following way: the window was changed to have the
properties f� ���FO�� , and Z ����� .

The graph in Figure 12 depicts Ethereal with the query
functionality disabled in the first test, and enabled in the
second test. This is depicted with MNEMOSYNE running
in the configuration described above. When the query
functionality in Ethereal was disabled, the performances
of MNEMOSYNE and Ethereal were close, with Ethereal
performing slightly better. When the query functionality
was enabled, the performance of MNEMOSYNE was con-
sistently 3 times better than that of Ethereal. The time to
process a query for Ethereal was identical to tcpdump.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800 1000

%
 C

P
U

 U
sa

ge

Time (s)

Ethereal w/Query
Mnemosyne

Ethereal w/o Query

Figure 12. Performance evaluation of Ethereal
simulating MNEMOSYNE behavior

6. Conclusions

MNEMOSYNE is a tool that maintains multiple streams
of network traffic and allows one to re-configure type
and parameter of the storage procedure. In addition,
MNEMOSYNE supports cross-stream queries.

This paper described the design, implementation, and
evaluation of the first prototype of the tool. Future work
includes further testing, adding new functionality, and inte-
gration with other security tools.

A first added functionality will be the possibility for
repositories to maintain a “degraded” version of the network
traffic that drops outside a window (for example, by main-

taining packet headers and throwing away payloads, or, by
simply keeping track of the ports and addresses that have
been used). The “aged” information is less complete but it
is still a useful source of information that can serve as the
basis for response and attacker tracking.

A second addition to the tool will be simple intrusion
detection functionality aimed at mitigating the possibility
of a denial of service attack against the repositories.

Integration of MNEMOSYNE with real-time intrusion de-
tection is the next step in our research. We plan to integrate
MNEMOSYNE repositories with real-time intrusion detec-
tion systems like NetSTAT [9] and Snort [6]. In addition,
MNEMOSYNE will be integrated in an ongoing project at
Dartmouth College for the creation of a storyboard system
in support to incident handling. Withing the proposed sys-
tem the security analysis is performed by ad hoc mobile
programs that are injected in the network and move from
repository to repository tracing back the “history” of a net-
work attack. By using analysis tools based on mobile code
it will be possible to achieve a high-level of configurability
and customizability.

Acknowledgments

This research received partial support from ISTS, Dart-
mouth College, contract number 5-36285.

References

[1] The Ethereal Network Analyzer. http://www.
ethereal.com/, 2002.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison-Wesley, 1995.

[3] S. McCanne and V. Jacobson. The BSD Packet Filter:
A New Architecture for User-level Packet Capture. In
Proceedings of the 1993 Winter USENIX Conference, San
Diego, CA, January 1993.

[4] S. McCanne, C. Leres, and V. Jacobson. Tcpdump 3.4. Doc-
umentation, 1998.

[5] A. L. Mitchell. Mnemosyne - Short-Term Memory for Net-
works. Technical report, Dept. of Computer Science, UCSB,
2002.

[6] M. Roesch. Snort - Lightweight Intrusion Detection for Net-
works. In Proceedings of the USENIX LISA ’99 Conference,
November 1999.

[7] Tcpdump and Libpcap Documentation.
http://www.tcpdump.org, Jan 2002.

[8] tcpflow - - TCP Flow Recorder. http://www.
circlemud.org/\simjelson/software/
tcpflow/, June 2001.

[9] G. Vigna and R. Kemmerer. NetSTAT: A Network-based
Intrusion Detection System. Journal of Computer Security,
7(1):37–71, 1999.

[10] Network Analysis Software, Training and Certification
- WildPackets. http://www.wildpackets.com/,
2002.

10

