
Red Team/Blue Team, Capture the Flag, and Treasure
Hunt:

Teaching Network Security Through Live Exercises

Abstract

Live exercises represent a valuable tool to teach the practical aspects of security and the dynam-
ics of network-based attack and defense techniques. However, these exercises are very difficult to
organize and execute. For this reason, there are very few courses that offer live exercise as an inte-
gral part of the class work. This paper describes a series of live exercises that have been used in a
graduate-level Computer Science course on network security. For each exercise, the setup, execution,
and lessons learned are discussed. The intended audience of this paper are instructors – especially
in colleges and universities – who want to start using this type of instructional tools but have no
experience and are unsure of the possible pitfalls in their implementation.
Keywords: Teaching Security, Live Exercises, Red Team/Blue Team, Capture The Flag.

1 Introduction

Teaching practical computer security is difficult [1, 3]. First of all, security permeates a wide range of
technologies. Addressing a comprehensive set of practical security techniques without getting lost in the
details of each technology requires careful selection of the topics and particular attention to the way the
topics are presented to the students.

Second, the instructor is faced with the difficult decision of choosing the right balance between
a completely theoretical approach and a completely practical one [2]. Usually, this choice is heavily
influenced by the educational curriculum. For example, if there is an existing course that covers the
foundational principles of security (e.g., the Bell-LaPadula model), then it is possible to use the course
as a prerequisite and focus on more technical issues.

Third, teaching practical security requires substantial effort on the part of both the instructor and
the educational institution within which the course is given. This makes it difficult to organize practical
security courses, particularly in higher education public institutions, like universities, where resources
are scarce.

In addition, if the class has a high-impact technical content (e.g., the class covers break-in tech-
niques), then there is a general concern that the class may get “out-of-hand” or that a particular institution
may be flagged as a “ hacker school.”

This paper describes the instructor’s experience in teaching a graduate-level course on “Network
Security and Intrusion Detection”. This course has been taught three times in the past two years. This



class differs from traditional courses in security in three ways: a strong practical and technical emphasis,
the support for hands-on experience, and the use of live exercises. These three aspects are discussed in
the following three sections.

1.1 Teaching How To Break In

The goal of the course is to describe in detail the techniques used to violate the security of computer
systems and the techniques used to both prevent and detect the attacks. The description of attack and
defense techniques is detailed to the point that the attacks and the defense techniques can be reproduced.
For example, the lack of boundary checks in software is not just covered from a theoretical, general
viewpoint: Buffer overflow attacks are examined in detail, showing exactly how to create the necessary
conditions for an attack to be successful and the tools needed to build and deliver the attack. The rationale
behind this approach can be summarized by the well-known saying: “The Devil is in the details.” That
is, only by understanding the low-level details of vulnerabilities and attacks is it possible to avoid the
introduction of similar flaws in software and to design protection and detection mechanisms that are
actually effective.

A possible argument against this approach is that students are taught “How to break in”. Some in-
structors (and some administrators) fear that by teaching how attacks are actually designed and delivered
will create a new generation of hackers that will wreak havoc and take control of the planet.

The obvious counter-argument is that locksmiths know how to break into a house or a car. Locksmiths
are not considered criminals and the best locksmiths are those who design the safes where we store our
most valuable items. In addition, even though the information about how to violate the security of a
system was once in the hands of a few knowledgeable and skilled programmers, nowadays the same
knowledge is accessible to the public through the Internet.

The key here is an ethical approach to security. It is the responsibility of the instructor to sensitize
the students to the ethical aspects of security and to inform them of the possible consequences of their
actions. Therefore, the class included a detailed, in-depth discussion of computer ethics, of the policies
that regulate the department, and the computer crime laws of the United Stated and Europe.

In the past two years, the students in the class didn’t create any serious problem to the department
or to third parties. The only exception was an experiment whose involuntary side effect caused the
disruption of routing in a nearby department for a few hours.

1.2 Hands-on Experience and the root Problem

The course’s practical approach could not be taught with a blackboard and a few slides. To achieve the
goals of the course it was necessary to allow the students to experiment with the security techniques
covered in class. The main problem is that most security experiments require privileged access to the
operating system — in UNIX lingo, root privileges.

Departments very seldom provide instructional labs where students (even graduate students) have
privileged access and can experiment with security tools and techniques. This is mainly because of the
possible dangers associated with such activities and because of the complexity that arises in managing
an infrastructure with these characteristics.

2



I was able to obtain the permission of the department to create an instructional network testbed
where students were allowed to experiment with various types of attacks and defense techniques without
disrupting the normal educational lab activity. For the first edition of the class I built a testbed network
composed of ten hosts (PCs and Sun Workstations) configured with a number of different operating
systems. The PCs were assembled from the pieces of hardware that were discarded during the upgrade
of other departmental instructional labs. The testbed (named “the playground” by the students) was
accessible remotely and secured by a firewall, so that only authorized users could use it. This network
proved to be an invaluable educational tool: For the first time the students were able to test security tools
and attacks in a “safe” environment. The feedback from the students in the class was overwhelmingly
positive, and for both the second and third instances of the class the department provided substantial
support to improve the testbed network.

Even though the creation, configuration, and maintenance of the testbed required a substantial amount
of additional effort from both the instructor and the teaching assistants, this experience proved that it is
actually possible to create an instructional tool where students are able to enjoy a hands-on experience
with security techniques.

1.3 Learning the Hard Way: Live Exercises

Even though the testbed network was an important instructional tool, it didn’t provide a realistic ex-
perience of the attack/defense process. Each tool and technique was experimented with in an isolated
way. Therefore, in the first edition of the course it was decided to create a live exercise that would give
the students a feel for the difficulties of both attacking and protecting computer networks. During this
exercise, which was conducted at the end of the class, the students were divided into two teams. Then
the teams had to perform a coordinated attack and defense process against each other, within a limited
time frame (around four hours). The enthusiastic response of the students convinced me to include this
type of exercise in every future edition of the course.

2 Motivation and Road-map

Live exercises are incredibly difficult to organize and there are many lessons that were learned from
conducting these activities. For each edition of the class, the lessons learned suggested a modification in
the organization and execution of the exercise. This paper describes in detail the structure and execution
of each exercise, explaining the rationale behind it and discussing the lessons learned. The intended
audience for this paper is higher-education instructors that may want to reproduce similar exercises, and
educators in general, which may use some of the experiences described in this paper to enrich their
classes.

The rest of this paper is structured as follows. In Section 3, a classic Red Team/Blue Team exercise
is described. Section 4, presents the evolution of the first exercise into a “capture the flag” contest.
The third exercise, presented in Section 5, is a network-based “scavenger hunt” which represents another
evolution of the exercise. Then Section 6 presents some related coursework. Finally, Section 7 concludes
the paper.

3



3 Red Team/Blue Team

This exercise was carried out during the first edition of the course. In this exercise, the class was divided
into two teams: the Red Team and the Blue Team. The Red Team was responsible for attacking and
compromising a set of hosts, while the Blue Team was responsible for detecting the attacks and, in a
limited form, for protecting the hosts.

The final goal of the Red Team was to obtain a file named secret.txt stored on each victim host.
There could be multiple copies of the file and decoy copies could be present too. The only files that had
to be retrieved were those whose contents started with the keyword SECRET.

The goal of the Blue Team was to detect the attacks coming from the Red Team. In addition, the
Blue Team could execute some counter-measures to slow down or confuse the attackers. In particular,
the Blue Team could freely decide where to store the secret file. The only requirement was that the file
be on a mounted filesystem.

Some rules were introduced in order to make the exercise more interesting. First of all, the Blue
Team could not filter or block any network traffic. Second, the Blue Team could not patch any vulnera-
bility: The Blue Team had to work with out-of-the-box operating systems. These rules were imposed to
prevent the Blue Team from completely patching and locking down the systems. Even though in real-life
situations network access to sensitive services is actually heavily filtered, in this case a network filter and
the patching of known vulnerabilities would have made the whole exercise uninteresting.

The Read Team also had some limitations. First, the Red Team could not use a priori knowledge
about the victim hosts. It was clear that some of the hosts in the class testbed would have been used as
victims. The students were invited to avoid any use of “testbed-specific” knowledge, e.g., the association
of a certain Ethernet address with a certain host in the testbed network. Second, the Red Team could not
disrupt services, bring down hosts, and delete files. This rule was introduced to avoid actions from the
Red Team that would have jeopardized the effectiveness of the detection tools of the Blue Team.

Participation in the Blue Team/Red Team exercise accounted for 20% of the final grade. The students
had to break into sub-teams with specific tasks. At the end of the exercise, each team had to submit a
report.

The report format was specified in detail so that the instructor could evaluate a number of parameters,
such as the ability to plan in advance both attack and defense, the ability to deploy protection/detection
mechanisms and to prepare automated attack scripts, the ability to cooperate with other sub-teams, and
the ability to maintain a log of the activities (both attacks and detections).

3.1 Setup

The setup for this exercise required the configuration of two sets of hosts, one set for each team. Both
teams needed root access to the hosts in order to set up attack and defense tools. The teams were told to
prepare and test their tools on the class testbed network and to be ready to move their tools to different
hosts right before the exercise. This was done to push student to develop portable software.

It was decided that the Blue Team hosts would be four of the hosts in the class testbed. The IP
addresses of the hosts where changed, to make identification of the hosts not completely trivial. In
addition, the operating systems on these hosts were re-installed to avoid the possibility of Trojan-ed

4



software left by components of the Red Team. The network was instrumented so that a complete dump
of the traffic could be collected.

The Red Team was given privileged access to a set of hosts located in an instructional lab, where
the exercise took place. These hosts were the main concern for the administrators, because the students
could use their privileged access to attack other hosts in the instructional lab and access the departmental
file server. It was decided that the advantage in terms of management overcame the risks, and that the
students could be trusted (at least for a four-hour period).

3.2 Execution

The exercise included a two-hour preparation, where the two teams set up their tools, and a two-hour
execution phase, where the actual competition took place.

The day of the exercise, an instructional lab was completely reserved for the exercise. The room was
divided into two zones, one for each of the teams.

The preparation phase was carried out without surprises. The testbed hosts were made accessible to
the members of the Blue Team who installed their tools and decided the location of the secret files. The
Red Team installed the attack tools on the hosts that were placed in the instructional lab.

When the actual attack phase started, the atmosphere in the lab heated up. The students were very
excited and there was a general feel that a competition had started. The competition was not just about
getting a good grade in the class. The students actually felt that they were part of a team, and they had a
sort of team pride.

The Blue Team had developed a number of network-based decoy tools, which were supposed to
confuse the adversaries. These tools were simple but very effective. They ranged from sniffers that
would respond to ICMP requests even when directed to non-existent hosts, to tools that would simulate
the existence of multiple hosts by “mirroring” the behavior of one. In addition, the Blue Team created
host monitoring software that acted as a form of host-based intrusion detection.

The Red Team also developed a number of tools. Most of them were filters to translate the outputs of
scanning tools into a format that was usable by tools developed by other teammates. The attack process
had been organized in detail: the attackers had an “attack pipeline” where the results from one team were
given as input to the following team in a continuous process.

During the execution of the attack a few incidents occurred. A couple of times the scanning activity
of the Red Team crashed a victim host. The hosts were then rebooted and restored. In a small number
of instances the monitoring systems developed by the Blue Team overloaded the monitored hosts to the
point that they were unresponsive and, in two instances, they had to be rebooted.

Apart from these events the exercise progressed smoothly. The Red Team was able to successfully
compromise all the hosts and access the secret files. Most of the attacks of the Red Team were success-
fully detected by the Blue Team. In addition, the decoys and the defense tools developed by the Blue
Team successfully slowed down the attackers.

3.3 Lessons Learned
� Having a team that is responsible for defending only and a team that is responsible for attacking

only has a number of disadvantages. First of all, the members of the defense team think they

5



are having “less fun” than the members of the attack team. In addition, they feel that protecting
and detecting requires much more work than attacking. This last observation was confirmed by
comparing the tools developed for the exercise. The Blue Team developed tools that were much
more sophisticated than the Red Team tools. This is mostly because of the restrictions imposed on
the defenders in terms of network filter configuration and OS patching.

� The development of original tools should be required, or at least rewarded more. The Red Team
members downloaded most of their attack tools from the network and concentrated most of their
efforts on coordinating the activities of different sub-teams. It would have been preferable to have
more of the Red Team’s effort devoted to developing new attack tools.

� It is necessary to specify a precise format for both the description of the attacks and the detection
logs. The reports from the students contained very imprecise descriptions of both. Often, basic in-
formation (e.g., correct timestamps and TCP ports involved) was missing. This made it impossible
to correctly match the descriptions of the attacks performed by the Red Team with the detections
reported by the Blue Team. In addition, no automated processing was possible.

� It is important to stress the importance of a process. Students tend to take shortcuts (e.g, an attempt
to run a known exploit blindly against the 255 address of a subnet) in order to win the competition.
Instead, it is important to foster the preparation and the execution of a well-defined process.

� It is important that the two teams work in different rooms. Having the two teams sharing the same
lab space causes a number of problems. First of all, some of the students’ energy is devoted to
checking if some members of the other team are trespassing. Second, noise and cheering from a
team may disturb or irritate the other team.

� The Blue Team and the Red Team need to be on different IP subnets. This makes management and
filtering simpler. In addition, by having attackers and defenders separated by intermediate routers
it is possible to create a more realistic setup.

4 Capture The Flag

This exercise was carried out as part of the second edition of the class. The goal was to modify the Red
Team/Blue Team exercise to take into account the lessons learned in the previous editions of the class.

The exercise was organized in a way similar to the Red Team/Blue Team exercise, with the difference
that there was an attempt to balance the attack and defense responsibilities between the two teams.

The class was divided into two teams: The Alpha Team and the Omega Team. Both Teams were
responsible for both attacking the other team and defending their own assets. More precisely, each team
was responsible for protecting a set of hosts and hiding a flag (the secret file described in Section 3) on
every hosts. The team’s goal was not to prevent the other team from breaking into the host. Instead, the
priority was to detect the attacks of the opponents. In addition, each team had to attack the other team’s
hosts and retrieve the flags for each of the attacked hosts.

6



The rules that were imposed to the two teams were similar to those described in the previous exercise:
the teams could not use a priori knowledge about the testbed network; the teams could not disrupt ser-
vices, bring down hosts, or delete files; they could not filter/block network traffic and/or patch vulnerable
software.

Participation in the “Capture The Flag” exercise accounted for 20% of the final grade.

4.1 Setup

The setup for this exercise was different with respect to the original Red Team/Blue Team exercise.
Two different instructional labs, one for each team, were reserved for the exercise. The labs were on
different IP subnets. Two sets of hosts different from the ones used for the class testbed were prepared
and configured in an identical way. In addition, it was decided to connect all the hosts to a hub and to
provide extra connection ports for the students’ personal laptops. This way they could pre-install some
of the attack/defense software prior to the exercise. A complete dump of the traffic directed to the victim
hosts was collected.

4.2 Execution

When the exercise started each team gathered in their assigned instructional lab. Then, each team was
given the hosts to be protected.

At the beginning of the exercise, the teams had two hours of “truce” to prepare their hosts for the
exercise (installation of attack/defense software, hiding of the flags, etc). The truce was actually enforced
by a set of rules in the router connecting the two instructional labs. The actual attack was carried out in
the following two hours.

This time the students were strongly encourage to develop their own tools. The result were im-
pressive: the students created complete honeypots using virtual machines (e.g., User Mode Linux and
VMware) and built very complex attack tools to improve the resilience to decoy techniques.

4.3 Lessons Learned
� It is important to push the students to be precise in identifying their targets. This is mainly to

prevent attacks from getting out of hand, but also to make them understand the subtleties of stealthy
attacks.

� Collecting data during the attack is an important activity. Extra effort should be devoted to collect
host audit trails. These are particularly valuable for use in future editions of the class (e.g., audit
trail analysis assignments) and as research data.

� The creation of unnecessary traffic during an exercise should be penalized. By penalizing the
excessive generation of traffic it is possible to prevent the students from launching massive denial-
of-service attacks against the opponents’ hosts and force them to use advanced techniques that use
the least amount of traffic.

� It would be beneficial if the students were required to proceed through a path that would force them
to progressively make their way to a complex network. The Red Team/Blue Team and Capture The

7



Task Description Max Duration

1 Determine the active hosts in subnet X.Y.Z. Also determine each host’s OS and the ser-
vices/applications that are remotely accessible. Scanning techniques that will evade detection
by the Snort system will receive additional bonus points

20 minutes

2 Get interactive access to the web server host by exploiting a web-based vulnerability. You must
be able to login into the host as a user account other than root.

30 minutes

3 Get root privileges on the web server host. 30 minutes
4 Determine the hosts that are located in the specified internal subnet. Also determine their OSs

and the services/applications that are remotely accessible. Scanning techniques that will evade
detection by the Snort system will receive additional bonus points.

20 minutes

5 Access the MySQL database on host SQL and obtain the content of the table Employees 20 minutes
6 Get interactive access to the MySQL server host. You have to be able to login with an account

that is not root.
20 minutes

7 Get root access to the MySQL server host. 20 minutes
8 Modify the database table Employees, setting the account number of each employee to an ac-

count number of your choosing.
10 minutes

9 Obtain access to the transaction service on host TRN. Schedule a paycheck payment that will
transfer the employee paychecks to your account.

30 minutes

Table 1: List of tasks used during the Scavenger Hunt exercise.

Flag exercises had a “flat” structure: the same techniques were applied iteratively to a number of
targets and there were no changes in the mission’s goals during the exercise.

5 Treasure Hunt

In this exercise, the Alpha and Omega teams competed in a treasure hunt. The treasure hunt goal was to
break into a simulated (yet realistic) payroll system and perform a money transfer transaction.

Each team had to perform a number of tasks (e.g., scan a network or break into a host). Each task
had to be completed in a limited amount of time (e.g., 30 minutes). The first team that achieved the task
got 5 points. If the other team completed the task within the specified time, it received 3 points. If the
time elapsed and the team was not able to complete the task, then a cheat-sheet was provided so that the
task could be completed, but no points were given. A task was disclosed only after the previous one was
completed by both teams. The list of tasks is presented in Table 1.

In this exercise, no detection task was required.1 The teams had to concentrate on attack techniques
only. The goal was to be prepared for the unknown and to be able to deal with unforeseen problems. In
addition, a considerable amount of stress was put on the production of truth files, that is files that contain
a complete specification of the attacks that were carried out. These files had to be produced in IDMEF [5]
format, for automated processing.

In preparation for the exercise it was suggested that each team build expertise in a list of topics:
network scanning techniques, attacks against SQL servers (both local and remote), NIS-based and NFS-

1An exercise similar to the one described in Section 4 was carried out previously, as a form of midterm.

8



Instructional
Lab 1

Instructional
Lab 2

SQL NFS TRN
Transaction ServerFile and NIS server Database Server

Internal Network 1

(PC/Linux) (Sparc/Solaris) (PC/Windows 2000)

OMEGA Team

ALPHA Team

Departmental
Router Web Server 1

Web Server 2

(PC/Linux)

(PC/Linux)

Firewall

(PC/Linux)

(PC/Linux) (Sparc/Solaris) (PC/Windows 2000)

SQL NFS TRN
Transaction ServerFile and NIS server Database Server

Internal Network 2

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

	
	
	








�
�
�

1 0

Figure 1: Treasure Hunt: Network setup

based attacks, buffer overflow attacks (both local and remote), privilege escalation techniques, password
cracking techniques, attacks against Apache web servers, attacks against CGI applications. This list was
provided to focus the energy of the teams on techniques that would be useful during the exercise.

It was made very clear that the ultimate goal of the exercise was to perform a multi-step attack that
was as realistic as possible. One of the lessons learned from previous exercises is that the data collected
during these exercise is valuable both from the instructional and the research viewpoints. The traces
collected in the previous exercises lacked an underlying “plan”. That is, it was desirable to have traces
of attacks that had a well-defined final goal. This is particularly useful for alert correlation purposes.
Therefore, an important by-product of this exercise was the Tcpdump data, BSM data, Windows event
logs, and Snare events collected on the networks and hosts used during the exercise. Combined with the
truth files produced by the students, these traces are an invaluable resource for researchers in the field of
intrusion detection and attack correlation.

5.1 Setup

In order to prevent the two teams from interfering with each other, two identical target networks were
setup. The topology of the networks used in the exercise is shown in Figure 1. In the following, we
describe a single target network.

The web server was placed on a DMZ network. The MySQL server (host SQL), the file server (host
NFS), and the transaction server (host TRN) were placed on a separate network, accessible only by the
web server host.

The web server was an Apache server, running as user apache, as per default installation. In
addition to a fake corporation site, a number of broken CGI scripts were installed on the web server. One
CGI script was vulnerable to a phf-style attack. Another CGI script contained information about how to

9



log into the MySQL database, namely a clear text password. A program for checking the syntax of perl
files was “erroneously” left around in the CGI directory. This program could be invoked through the web
server. The program allowed one to view the source code of all the CGI scripts installed on the server,
disclosing important information, such as embedded MySQL passwords.

The file server was configured to export the filesystem /home to the world. This is a security
mistake often present in protected networks where security is more relaxed. In addition, the host NFS
was configured to provide password files through NIS.

The MySQL server provided remote access to user dbuserwith password bsecret. Note that by
default MySQL allows local access to root without having to provide a password. The server mounted
the /home filesystem from the file server.

The transaction server had a service running on port 7979. The transaction application was developed
ad hoc for this exercise by the instructor. When connecting to port 7979, the user was dropped into a
simple shell application. Typing HELP would show a list of commands, one of which is PAYCHECK.
The team was supposed to invoke that function to transfer all the employee paychecks to the attacker’s
account. That function required a password. The encrypted (but very guessable) password was stored in
the password file distributed through NIS.

This setup required a considerable effort. I developed the web site, the code for the CGI scripts and
some applications, and the SQL schema for the database with the help of the teaching assistants and
some of my students. In addition, the networks had to be physically set up, and a whole set of services
were created and configured on each network.

The setup of the exercise and the testing of the network configuration required two days of work for
a team of four people.

5.2 Execution

The day of the exercise the two teams gathered in two separate (but nearby) instructional labs. The
execution of the exercise included a first hour where the teams would prepare their tools and then the
actual treasure hunt.

The students were extremely excited about this exercise. In this exercise there was no direct clash of
teams. Therefore, there was no fear that a team could do something illegal to jeopardize the mission of
the other team. By the same token, the exercise was structured as a race: the first to achieve a given task
would get the most points. This motivated the students to organize their subteams effectively.

The exercise progressed seamlessly up to task seven, where one of the team wasn’t able to complete
the task and had to use a cheat sheet. The same team also had significant problems in performing the
final task and needed to be helped (so that the exercise could finish). These difficulties were due to the
way the teams were created. The Alpha Team was composed of students whose last names were between
A and I, while the Omega Team was composed of students whose last names were between J and Z. This
division didn’t take into account the skills of the individual students, and by chance the most skillful
students ended in the Alpha Team.

10



5.3 Lessons Learned
� Setting up separate targets for the two teams and having them race against each other is a very

good way to foster competition without having to deal with the less pleasurable aspects of a direct
clash between the teams.

� Building balanced teams is important. It promotes a fair and interesting exercise, and at the same
time it supports the morale of the students by letting them know that there is not a “best” team.

� Collecting traces of all the actions performed by the students is important. This activity should
not be limited to network traffic, but it should also include host-based audit trails (e.g., Windows
events).

� It is important to educate the students to create good truth files. These are extremely useful to
identify the attacks within the logs.

� This type of exercise requires twice the effort needed to set up exercises like those described in
Section 3 and 4.

6 Related Work

The use of hands-on experience in labs is obviously not new. Testbed networks are often used to pro-
vide root-level access to students. A different approach is used by a class taught in Stanford [4] where
students can experiment with their techniques on isolated virtual machines. While this approach gives a
reasonably precise idea of the working of security attacks, it is different from the “real thing.” Only a
testbed network can provide a realistic environment.

Even though hands-on experience is advocated by many, there are few graduate and undergraduate
courses on computer security that offer live exercises as part of the course. For example, Georgia Teach
offers a class [7] where a team has to install a number of services on a Windows host and another team
has to perform attacks. In this case, each of the two phases, preparation and attack, lasts a couple of
weeks. As another example George Washington University offers a class [6] that includes the creation
of honeypots and some sort of team-based interaction.

In general, live exercise are difficult to organize and conduct, and, therefore, instructors generally
prefer other types of educational tools, which are less expensive in terms of time and hardware/software
resources. We believe that our experience, especially the adoption of the treasure hunt exercise is rather
unique.

7 Conclusions

Live exercises are an important instructional tool in teaching the practical aspects of network security.
They motivate the students to give their best because of the competitive nature of the exercise, and
because their success is heavily determined by the students’ creativity.

11



Live exercise are also extremely difficult to organize, manage, and execute. They require detailed
preparation, and since they are executed in a short time span, if something goes wrong it is difficult to
solve problems within such tight schedule.

This paper described the live exercises that have been designed and executed as part of a graduate
level course on network security and intrusion detection. The class has a successful history of attendance
(the maximum allowed is 40, but classes ranged between 50 and 90). The success of the class is also
determined by the use of live exercises. The student feedback was overwhelmingly positive. Some of the
of the students that took a previous edition of the class even came to observe the live exercises of other
editions.

This class has received some attention by other instructors. The class materials have always been
online and has been used in other courses (with permission of the instructor). In addition, the by-products
of the class attracted the interest of research groups. We are currently preparing a web site to distribute
the traces collected during the different exercises, in addition to the course material. We hope that this
effort will allow other courses to use our experience to build similar live exercises.

References

[1] M. Bishop. The State of INFOSEC Education in Academia: Present and Future Directions. In
Proceedings of the National Colloquium on Information System Security Education, pages 19–33,
April 1997. keynote address.

[2] M. Bishop. What Do We Mean By “Computer Security Education”? In Proceedings of the 22nd
National Information Systems Security Conference, October 1999.

[3] M. Bishop. Academia and Education in Information Security: Four Years Later. In Proceedings of
the Fourth National Colloquium on Information System Security Education, May 2000.

[4] D. Boneh. CS155: Computer and Network Security. Stanford University, 2002.

[5] D. Curry and H. Debar. Intrusion Detection Message Exchange Format: Extensible Markup Lan-
guage (XML) Document Type Definition. draft-ietf-idwg-idmef-xml-09.txt, Novem-
ber 2002.

[6] R. Daniel. ECE 297 - Special Topics. Network Security: Honeypots. The George Washington
University, School of Engineering and Applied Science, Department of Electrical and Computer
Engineering, 2002.

[7] A.L.M. Dos Santos. CS6265 Information Security Lab. Department of Computer Science, College
of Computing, Georgia Tech, 2002.

12


