
Exploiting OS-level Mechanisms to Implement Mobile Code Security

Viktoria Felmetsger and Giovanni Vigna

Reliable Software Group

Department of Computer Science

University of California, Santa Barbara

rusvika,vigna@cs.ucsb.edu

Abstract

Mobile code systems provide an infrastructure that

supports autonomous mobile components, called mobile

agents. The infrastructure implements services for the

transfer, execution, and protection of mobile agents. Se-

curity services are usually provided by implementing new

security mechanisms that are explicitly tailored to mobile

components. Unfortunately, developing sound, reliable se-

curity mechanisms is a non-trivial task, and a history of vul-

nerable and/or incomplete implementations of these mech-

anisms led to the idea that mobile code systems are inher-

ently insecure, too complex, and very difficult to deploy. To

overcome these problems, we developed a mobile code sys-

tem that relies as much as possible on the security mecha-

nisms already provided by the underlying operating system.

By doing this, it is possible to develop, with reduced effort,

security services that rely on well-known, well-understood,

and well-tested security mechanisms. Also, by describing

the security of the mobile code system in terms of the OS se-

curity mechanisms, system administrators can better evalu-

ate the security implications of deploying the system. This

paper describes the design and implementation of our sys-

tem and compares its performance to several existing mo-

bile code systems.

Keywords: Mobile Agent Security, Mobile Code, OS Secu-

rity.

1. Introduction

Mobile code systems provide a distributed infrastructure

that supports the execution of mobile components. Differ-

ent forms of code mobility have been identified [5]. The

most common form of code mobility is code on demand,

which is the downloading of executable content in a client

environment as the result of a client request to a server. A

well-known example of this approach is the download of

Java applets or JavaScript code in a Web browser. A differ-

ent form of code mobility is represented by the upload of

code to a server, where this code is executed. This form of

mobility, also known as remote evaluation [15], allows the

client to execute a computation close to the resources lo-

cated at the server’s side, so that network interaction can be

reduced. Common examples are represented by the use of

SQL to perform queries on a remote database or the upload

of PostScript code to a remote printer. A third form of code

mobility is represented by mobile agents. In this case, mo-

bile components can explicitly relocate themselves across

the network, usually preserving their execution state (or part

thereof) across migrations. Examples of systems support-

ing this type of mobility are Telescript [20], D’Agents [6],

Aglets [8], and JADE [3].

The mobile agent paradigm represents the most power-

ful form of code mobility because it provides support for

multi-hop migration and autonomous execution [5]. Unfor-

tunately, while other forms of code mobility are in wide-

spread use, mobile agents have not been received well by

the Internet community. This has been mostly because of

the security issues associated with code that moves across

the network, executing on many different hosts [17]. The

complexity associated with enforcing a secure environment

for these systems has prevented network service providers

from deploying mobile agent technology. There is a need

for mobile agent systems whose security design can be eas-

ily understood and evaluated. We believe that this is an im-

portant pre-requisite for the wide-spread acceptance of this

type of systems.

Many of the security issues in mobile agent systems have

been studied in different contexts by both the distributed

systems and the computer security communities for a long

time. The results achieved could be used and extended to

secure mobile agent systems. Unfortunately, these results

have seldom been used as a basis for the design and imple-

mentation of secure mobile agent systems. In most cases,

these systems are proof-of-concept prototypes whose focus

is on mobility mechanisms, and, as a consequence, security

is left as future work. Other systems provide some basic se-

curity mechanisms and primitive support for the definition

of security policies, but the provided mechanisms are far

from being a sound, comprehensive security solution [4].

Also, the developers of mobile agent systems often feel

that they need to re-implement well-known security mecha-

nisms because they assume that mobile agents require spe-

cialized security mechanisms. In many cases, this approach

leads the developers to “re-inventing the wheel,” sometimes

in insecure ways.

To address these issues, we followed a novel approach

and developed a mobile agent system, called “Distributed

Agents on the Go” (DAGO), which uses as much as pos-

sible the security mechanisms and tools already provided

by modern operating systems. The goal of this effort is to

demonstrate that the existing OS-level security mechanisms

can be relied upon to implement a secure mobile code in-

frastructure. Note that the proposed system, just as many

other existing mobile agent systems, does not solve the

problem of protecting mobile agents from malicious hosts.

The design of the DAGO system provides two main ad-

vantages. First, by using well-tested security mechanisms

it is possible to increase the assurance in the overall secu-

rity of the system; second, because the OS security mech-

anisms are well-known and well-understood, the implica-

tions of the deploying a mobile code system in an existing

environment can be better understood, from both the admin-

istrator and the developer points of view.

This paper presents the design and implementation of the

DAGO system prototype and the evaluation of its perfor-

mance with respect to existing mobile code systems. Even

though performance is not a key criteria of the design, the

evaluation is used as evidence to support the claim that a

system that relies on operating system-level mechanisms

can be a viable solution.

The rest of this paper is structured as follows. Section 2

discusses related work. Section 3 presents the design of the

DAGO system. Section 4 discusses the security features

of our design and elaborates on how they can be extended.

Section 5 compares the performance of the DAGO system

with respect to mainstream mobile agent systems. Finally,

Section 6 draws conclusions and outlines future work.

2. Related Work

Mobile agents, as autonomously migrating software en-

tities, present great challenges to the design and implemen-

tation of security mechanisms. In a mobile code infras-

tructure, the hosting system should not only be able to effi-

ciently accommodate the incoming agents, but, at the same

time, it must ensure that its own privacy and integrity can-

not be compromised by malicious actions performed by the

code under execution. Thus, every mobile agent system

must implement a number of security mechanisms to en-

force the overall integrity, confidentiality, and availability

of the system.

The security issues introduced by mobile agents have

been mostly addressed by duplicating the authentication

and access control mechanisms employed by modern oper-

ating systems. While both authentication and authorization

mechanisms have been extensively explored, in general, lit-

tle attention has been given to the implementation of com-

prehensive accounting and auditing mechanisms.

For example, the Aglets Software Development Kit [1]

(Aglets SDK) is a Java-based mobile agent system devel-

oped by IBM Tokyo Research Laboratory in Japan. In the

Aglets SDK, mobile agents are called aglets. Aglets are im-

plemented as threads in a Java Virtual Machine (JVM). An

aglet’s execution environment is implemented by a com-

ponent, called Tahiti server, which supports agent execu-

tion, provides mechanisms for agent mobility, and imple-

ments the security mechanisms. The Aglets agent system

provides a simple authentication subsystem based on host

identifiers, and no accounting, resource control, or audit-

ing mechanisms are provided. The Aglets system defines

a policy description language to define access control lists

(ACLs) for resources such as files, sockets, and runtime ob-

jects. For details about available permissions, see [9].

Another example of a mobile agent system is the Java

Agent Development Framework (JADE) [2] developed by

Telecom Italia Lab. JADE is implemented in Java, and the

agent execution environment is implemented by a JVM in-

stance, where each agent is a single Java thread [11].

According to the JADE developers, the initial security

model of JADE was purely based on the Java Security API,

and only later a set of additional security mechanisms be-

came available as add-ons [11]. The new authentication

and authorizations mechanisms are based on the concept of

principals, resources, and permissions. Principals are peo-

ple, departments, or other entities whose identity is authen-

ticated using a username/password combination. Once au-

thentication is complete, a principal is given a certificate

and a set of access permissions, which she can delegate to

her agents. Every JADE agent is associated with a particu-

lar principal and has to present its identity certificate to the

system in order to access its resources, which include lo-

cal files, network sockets, environment variables, etc. Per-

missions are implemented as objects that contain resource

identifiers and a set of actions allowed on the resources. To

enforce the security policies, JADE uses a Policy File which

contains all the permissions for the principals. The migra-

tion of agents is protected by using the Secure Socket Layer

protocol [10]. No accounting or auditing system is pro-

vided. A detailed description of JADE’s security policies

can be found in [19].

Both Aglets and JADE implement their security systems

by replicating, within the runtime, the already existing se-

~agent ~agent/home/agentX ~agent/home/agentY ...

OS Security Mechanisms

System Tools and Resources

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

agent

agent
agentX agentY

agentlogin

agentlogin

Mobile

Agent

Figure 1. Architecture of the DAGO system.

curity mechanisms provided by the operating system. The

fact that most of the supported security policies must be

set up manually by the user makes it relatively difficult

and error-prone to setup a complex policy (for example, a

system-wide file access policy). Furthermore, both Aglets

and JADE do not have support for either accounting or au-

diting in their design, while these mechanisms are provided

by most OSes and could be easily leveraged by a mobile

agent system.

3. System Architecture

The goal of the DAGO system is to build a computational

environment that allows for the execution of incoming mo-

bile agents, supports their further relocation, and, in addi-

tion, provides a mechanisms to protect the hosting system

against possible attacks from the mobile agents. The idea

that drove the design of the system is to rely almost exclu-

sively on existing and well-tested OS-level security mecha-

nisms, in particular those provided by the UNIX family of

operating systems.

UNIX-based systems have a well-known permission-

based security model that supports access control and sepa-

ration of privileges within the system. We will show that by

employing these existing OS-level security mechanisms, it

is possible to create a secure mobile agent system that can

be easily understood and configured.

In the DAGO system, a mobile agent is viewed as an

ordinary system’s user who logs in to the host and uses some

of the system’s resources for its own needs. Consequently,

every incoming mobile agent is given an individual account

and a unique user identifier (UID) for the duration of its

execution on a host. This approach allows the hosting OS

to apply to mobile agents the same set of rules and policies

that are applied by the OS to all of its users.

3.1. The Agent Shell

Each host that participates in the DAGO system has a

statically created account, called agent, which is used for

creation and deletion of temporary accounts for incoming

mobile agents. The agent account has a custom execution

shell, called agentlogin, which is invoked each time some-

body tried to log in as the user agent. The task of agentlogin

is to accept all incoming mobile agents and to provide them

with a secure execution environment.

Many of the tasks carried out by the agentlogin shell re-

quire administrative privileges. One of the obvious ways

to extend the privileges on the agent account is to make the

agentlogin a set-UID (SUID) program belonging to the user

root. Even though a SUID program may introduce new se-

curity holes in the system, this is a necessary and reason-

able tradeoff to overcome the limitations of the ordinary ac-

counts on UNIX-based systems. Moreover, a careful imple-

mentation of the agentlogin shell can significantly reduce

the security risks.

The agentlogin program is designed as a non-interactive

shell that is invoked to handle an incoming mobile agent.

More precisely, the very first task of the agentlogin pro-

gram is to dynamically create a new user account on the host

system and to assign this account to the newly arrived mo-

bile agent. The agentlogin program has a predefined range

of UIDs which can be assigned to mobile agents. When

an agent arrives, agentlogin consults the /etc/passwd file to

check if any of the UIDs in the assigned range are unused

and can be assigned to the mobile agent. If none of the

UIDs in the range is available, the program simply refuses

to execute the agent and exits. Otherwise, agentlogin cre-

ates a new account with a username of agentX, where X is

the UID chosen for the arrived agent. To set up an account

and to ensure that agentX’s UID is unique in the system for

the time of its execution, agentlogin updates the /etc/passwd

file to include the agentX account and creates a home direc-

tory for that user. Then, it copies the code of the agent to

agentX.X.exe

−− create agentX account

−− exec(scp)

−− create agentX.X.exe

−− delete

−− fork()

−− wait for exit status

accountagentX

−− send (scp)

)

−− drop privileges

−− chroot()

−− exec(

Other

agent.data

DAGO

agentX.X.exe

agentX

systems

agent

agentlogin

agent.code

somefile.tar

agent.code

agent.data

agent.result

agent.result

agent.contact

agent.contact

agent.tar

Figure 2. Execution model of the DAGO system.

agentX’s home directory and forks a new process to ex-

ecute the agent’s code. The child process first changes its

UID to the UID of agentX and then invokes the appropriate

interpreter. By dropping its privileges, the agentlogin pro-

gram makes sure that all mobile code will be executed with

the (limited) privileges of the agentX user.

Therefore, all mobile agents accommodated by the

agentlogin program are executed within their own user ac-

counts, and, as a result, have to comply with all the security

policies enforced by the hosting OS. When agentX’s execu-

tion completes, agentlogin examines the exit status of the

process and, based on its value, proceeds with further ac-

tions. For example, a specific exit code is used to denote

that the agent has requested to relocate itself. As another

example, a specific exit code is used to request the results

of the agent’s execution to be sent (by email) to a specific

address. Once agentlogin completes all the requested tasks,

it deletes the agentX account, together with all its files and

running processes.

3.2. Agent Transfer

One of the fundamental services provided by a mobile

agent system to the mobile agents is the support for their

mobility. Since the mobile code can be easily tempered

with when in transit between two hosts, it is the respon-

sibility of the mobile agent system to provide a secure com-

munication mechanism. Due to the lack of the OS-level

mechanisms for the secure transfer of information between

hosts in the UNIX-based systems, we employed the Secure

Copy command (scp), a widely-available remote file copy-

ing command that runs on top of the Secure Shell protocol

(SSH) [14], as a relocation engine in the DAGO system.

The use of scp command provides the DAGO system with

the full benefit of the Secure Shell protocol (e.g., traffic en-

cryption and host authentication) and makes communica-

tion mechanisms easy to understand and deploy.

For example, suppose that user tony wants to submit an

agent from his account on host pizzaworld to the agent ac-

count on host mandolino. Then, tony packs all the files re-

quired for his agent’s execution into an archive file, for ex-

ample agent.tar, and executes the following command on

the host pizzaworld:

scp agent.tar agent@mandolino:

When this command is executed, the scp client con-

tacts the sshd daemon on the host mandolino, performs

two-way authentication and then invokes the agent’s shell,

which is the agentlogin program. When invoked, agentlo-

gin receives the following string passed as an array of argu-

ments:

agentlogin -c "scp -t ."

This means that agentlogin is expected to execute the

“scp -t .” command in order to complete the transfer

of the file and that the file will be stored in the home direc-

tory of the agent account. At this point, agentlogin modifies

the arguments to be passed to the local scp command, so

that the destination path is set to be the home directory of

agentX and then invokes the local scp command. When

scp completes, the mobile agent’s code is contained in the

home directory of agentX and the agenlogin can proceed

with its execution.

When migration is requested by the mobile agent, the

agentlogin program uses scp in batch mode to submit an

agent to the remote machine. For that purpose, agentlogin

uses the configuration file config in the .ssh directory of the

agent account and executes the following command:

scp -F /home/agent/.ssh/config

agent.tar agent@destination:

The file config contains the directives to the ssh client

which specify the type of authentication to be used. Some

of the SSH authentication methods that can be employed by

the DAGO system are discussed in 4.1.

In summary, the use of scp as a submission and reloca-

tion tool almost does not require any additional setup and

provides the DAGO system with: secure encrypted com-

munication between agent-enabled hosts, initial invocation

of the agentlogin program, and automated relocation of an

agent to another host. Also, since the scp command on

a destination host is invoked by the agentlogin shell, the

actual arguments supplied to this program are parsed and

possibly redefined by agentlogin, which guarantees that the

agent’s file is copied to the proper location.

3.3. Agent Execution

In the DAGO system, an agent is transfered between

hosts in the form of a tar archive, which contains the files

agent.data, agent.code, agent.contact, and agent.result.

The agent.code file contains the code to be executed on

every host visited by the agent. In the current implemen-

tation, the code is a Bourne Shell script. Since the state

of the agent (e.g., the value of a variable indicating the

next host to visit) might be changing over the agent’s life-

time, the file agent.data stores the current state of the agent

and is used to the build agent’s executable file on a host.

The file agent.contact is optional and provides an email ad-

dress to be contacted in case of execution errors. The file

agent.result is used by the agent to store the results of its

execution. This file’s contents are sent by email to the agent

owner when the agent terminates with a specific exit code.

The agentlogin shell copies the tar archive to the newly

created agentX home directory and properly updates the

archive’s permissions. Then, agentlogin adds a number of

procedures to the agent’s code. These procedures allow an

agent to execute commands supported by the DAGO sys-

tem. For example, when agentX wants to migrate to another

host, all it needs to do is to call the procedure go(), pass-

ing as a parameter its new destination. Similar procedures

are included to help agentX to update its data. Thus, the

agentlogin program, in addition to providing the execution

environment to the agent, also extends the interpreter with

additional commands.

Unfortunately, even though the interpreter that executes

an agent runs with the UID of agentX, a process may try

to escalate its privileges by exploiting vulnerabilities in

certain programs installed on the host OS. To limit the

agent’s access to system’s resources, agentlogin executes

the chroot() system call on the agentX account and

puts the agent in a restricted file system. The use of the

chroot() system call confines the execution of untrusted

agents to a limited portion of the file system (called “jail”)

while still allowing them a certain freedom of action. By

making a careful selection of UNIX utilities available in-

side the jail, it is possible to set up a flexible and secure

execution environment.

Once the agent finishes its execution, the control goes

back to the agentlogin shell, which is responsible for final

packaging and relocation of the agent. In our present imple-

mentation, an agent communicates with agentlogin program

by using exit codes. These exit codes are produced as the

result of invoking the custom procedures that are inserted

into the agent’s code during the initial setup. The final task

of agentlogin is to terminate all agentX’s processes and re-

move the agentX account from the system.

4. System Security

In this section we discuss how, by employing various

UNIX system tools and built-in features, different levels of

security that can be achieved in the DAGO system. Sec-

tion 4.1 elaborates on the degrees of authentication possible

in the system when scp is used as a mobility mechanism.

Section 4.2 shows additional ways to create more secure

agent execution environments by employing various UNIX

tools. Section 4.3 shows how network access control is im-

plemented in the DAGO system. Finally, section 4.4 de-

scribes how UNIX logging, auditing, and accounting mech-

anisms can be used in a multi-agent environment.

4.1. Mobile Agents Authentication

One of the major security issues when executing mobile

code is to determine the level of trust that can be given to

the code, based on the identity of the principal associated

with the code. Unfortunately, many possible identities may

be associated with the same agent. For example, an agent

may be associated with the agent’s developer, the agent’s

code signer, the agent dispatcher, or the host from which

the agent was received. Moreover, even an authenticated

agent might have been “brainwashed” when executed on a

malicious or compromised host, and, therefore, cannot be

trusted completely. Because of this, instead of trying to de-

termine the identity of an agent and the level of its trustwor-

thiness, we created an environment in which the execution

of an arbitrary agent will not be able to compromise the

security of the host. Nevertheless, the use of the authentica-

tion mechanisms provided by the scp adds valuable verifi-

cation of the agent’s origin.

Depending of the desired authentication level, differ-

ent SSH authentication methods can be used. For ex-

ample, every SSH server has a host key, which uniquely

identifies the server host. Each client keep its own

database of known host keys in the /etc/ssh known hosts

and ˜/.ssh/known hosts files. It is possible to use the

StrictHostKeyChecking option to block connections from

hosts whose keys are not in the files mentioned above. By

doing this, it is possible to limit the set of hosts that will be

involved in agent execution.

Another possible option is to leave a number of strict

authentication methods enabled and use the trusted-host au-

thentication scheme for known installations of the DAGO

systems. This form of authentication is quite weak and as-

sumes full trust between the hosts that are a part of the in-

frastructure. This setting will require an administrator to

create and update ˜agent/.rhosts and ˜agent/.shost files on

each computer with an agent account.

In our implementation, we use a pure public-key authen-

tication scheme, which verifies a client’s identity based on

public-key cryptography, and which, generally speaking, is

the most secure authentication option in SSH. In this case,

a client has to provide a public key to the server and, if this

key is found in the authorized keys file on the server, the

client has to prove that it has access to the corresponding

private key.

Thus, even though authentication might not be com-

pletely relied upon when executing mobile code, there still

are a number of ways to enforce a reasonable level of au-

thentication and trust in the DAGO system, through the use

of common OS-level security tools and mechanisms.

4.2. System Resources Usage Control

The goal of a mobile agent system is to provide incoming

agents with an execution environment, which allows mobile

code to perform its tasks, and, at same time, is able to con-

trol actions of the code being executed. The UNIX family of

OSes has a number of built-in tools which can be employed

by a mobile agent system to apply additional restrictions on

incoming agents.

In the DAGO system, the creation of an account for a

mobile agent is intended to be a means to compartmentalize

agents, and, therefore, no logins are desired or allowed for

such accounts. We chose to use /bin/nologin as the default

user shell for the agentX accounts. Another possible option

would be to execute a mobile agent inside a restricted shell

and to make this restricted shell the only shell available in-

side the chroot() jail. The use of a restricted-mode shell

puts even stronger limitations on the agentX account since it

disallows the modification of certain environment variables

and account configuration files. Thus, it restricts agentXs

from running any commands that are not in the directories

contained in the PATH environment variable.

The fact that in our design a mobile agent is in the form

of a bash script allows us to apply even further restrictions

on the usage of system resources by the executed code.

Bash shell has a build-in command, called ulimit, which

controls the amount of system resources used by the current

shell and all processes created by it. For instance, impor-

tant limits as the maximum size of files created by a user,

the maximum amount of CPU time, the maximum amount

of both virtual and physical memory available to the shell

can be set with the ulimit command. It is important to

note that, if the original limits are set by root, non-privileged

users will not be able to increase their values by subsequent

calls to ulimit.

To enforce limits on the amount of resource used by mo-

bile agents, we created a new bashrc mobile file belong-

ing to root, which is passed as the –rcfile option to the

bash shell used to execute the agent. This file, in addi-

tion to usual information contained in /etc/bashrc file, con-

tains calls to ulimit with chosen limits. For example, the

bashrc mobile file can contain the following information:

Source global definitions

if [-f /etc/bashrc]; then

. /etc/bashrc

fi

ulimit -Ht 60 # max CPU time in seconds

ulimit -Hv 10240 # max virtual memory

available to the shell

Even though ulimit is a built-in command of the

bash shell, similar commands exist for other types of

agents implementations (e.g., Tcl). Moreover, UNIX of-

fers additional ways in which execution of mobile agents

can be controlled by the execution environment. For in-

stance, enabling of the quota system for agentX accounts

will limit the disk space available to each mobile agent; the

invocation of setpriority() command by agentlogin

will set the upper limit on agentX’s processes scheduling

priority. Thus, depending of the desired degree of control,

various OS-level mechanisms can be applied to the hosted

mobile agents.

4.3. Network Access

Controlling how mobile agents access the network is im-

portant issue to consider in the design of a secure mobile

agent system. In general, mobile agents come to a host to

use its local resources and, therefore, should be prohibited

from the use of network completely. However, in certain

cases, a limited amount of network access should be al-

lowed. For example, suppose that we want to give access

to an SQL database to locally executed agents. In this situa-

tion, we have to allow mobile agents to open connections to

some local ports, but we still want to disallow for any other

network access.

In the DAGO system, we used the iptables Linux kernel

module to implement a fine-grained network access control

mechanism for mobile agents. Iptables is an administrative

tool that allows to specify packet filtering rules on a host.

The default table, called filter supports three built-in rule

chains: INPUT, FORWARD, and OUTPUT. Here, we are

mostly concerned with the OUTPUT chain. Every packet

originating on the local host will be matched against the

rules in this chain. Rules for OUTPUT can be specified

based on the group or user IDs of the sending processes.

Consider the following set of commands:

iptables -N agentTEST

iptables -A OUTPUT

-m owner --gid-owner 500

-j agentTEST

iptables -A agentTEST

-p TCP

-i lo

-m multiport --dport 4444

-j ACCEPT

This will create new chain agentTEST with default pol-

icy to reject a packet. When a packet is originated from

a process with GID 500, it will be matched to the rules in

agentTEST chain. If it is not a packet from the loopback

device to TCP port 4444, the packet will be rejected.

Since in the DAGO system every mobile agent has been

assigned a UID and a GID, every packet coming from an

agent can be easily filtered with iptables. Note that, instead

of the –gid-owner option in the above example, it is possible

to use the –uid-owner option to filter packets based on the

UID of the agent. By doing this, it is possible to set differ-

ent filtering rules for different agents. Filtering rules can be

inserted in iptables by the system administrator prior to en-

abling the agent account or can be created by the agentlogin

shell on the fly.

4.4. Auditing and Logging

UNIX, as a multi-user system, provides a number of log-

ging, auditing, and accounting mechanisms to monitor the

actions of its users and the status of its resources. These

mechanisms can be easily leveraged, and, if necessary, ex-

tended to a multi-agent environment. In addition to provid-

ing basic logging facilities, such as syslog, UNIX systems

support much more sophisticated tools for auditing system

activities and process accounting. These tools can be eas-

ily customized to different levels and relied upon to detect

various types of system misuse.

A number of UNIX auditing tools work at the system

call level and can be configured based on different types

of events, such as opening and closing of files, reads and

writes, programs executed, and so on. They also allow one

to specify groups of system objects to be monitored for cer-

tain activities. UNIX accounting tools can track system us-

age by recording the statistics about CPU and memory us-

age, I/O operations, running time, and other forms of sys-

tem resource usage along with the UIDs of the processes

involved.

In addition to the standard tools provided by the OS,

there is a variety of widely available tools which can pro-

vide even a greater degree of customization and security as-

surance. For instance, SNARE (System iNtrusion Analysis

and Reporting Environment) [12], developed by InterSect

Alliance, is a dynamically loadable kernel module that can

be used as a stand-alone auditing system or as a distributed

tool. SNARE can be configured to monitor events associ-

ated with certain groups of users, filter the monitored events

with specific “search expressions”, and submit reports in

different formats and time frames. The type of events mon-

itored by SNARE can be either defined by a category (for

example, system calls) or by an identifier (such as “denied

access”).

Another example of an auditing tool that could be used in

multi-agent environments is Sun Microsystems’ Basic Se-

curity Module (BSM), available for Solaris OS [16]. BSM

supports the auditing of actions performed by individual

users as well as the kernel. BSM also provides tools to man-

age, filter, and analyze audit records.

Clearly, auditing and accounting tools, such as SNARE

and BSM, can be efficiently applied to our OS-based agent

system. First of all, the types of events to be monitored in

association with agent execution are very similar to those

audited for the system’s users. Second, mobile agents

can be easily grouped and differentiated within the system.

Thus, the described design of the DAGO system in which

every mobile agent is a user with a unique UID and its own

account makes it possible to rely completely on OS auditing

mechanism to perform intrusion detection as well as to pro-

vide timely response (for example, termination of a misbe-

having agent and all its processes) when suspicious activity

is detected. On the other hand, in many mobile agent sys-

tems implemented on the top of virtual machines, multiple

agents are executed as threads within a single process. In

this scenario, tracing of unauthorized activities and termi-

nation of malicious agents might be a much more difficult

task to accomplish [13]. OS-level auditing and accounting

mechanisms, which assume a one-to-one mapping between

a running process and an execution unit, cannot be directly

used in such systems and have to be either extended or re-

implemented in order to provide a reasonable level of attack

detection [18].

5. Evaluation

In order to evaluate the performance of the DAGO sys-

tem, we designed a simple test case application and imple-

Execution Time Migration Time Total Execution

Spaghetti Maccheroni Penne Spaghetti Maccheroni Penne Time

14266 22548 16797 460 589 503 108356

14228 19580 17194 408 563 508 103986

14222 17365 16882 448 544 518 99921

14314 15087 16830 456 546 553 95450

14215 15004 16873 444 558 559 94937

14202 15357 17229 455 536 563 95443

14246 15414 16866 456 558 542 95245

14273 15330 16876 456 547 559 95247

14248 15352 16874 455 550 555 95257

14248 15431 17240 451 513 548 95653

Table 1. Execution results for the Aglets system (in milliseconds).

Execution Time Migration Time Total Execution

Spaghetti Maccheroni Penne Spaghetti Maccheroni Penne Time

15403 22578 14873 447 709 882 112775

16130 20520 15538 420 420 378 108496

16199 16687 11977 427 427 378 96368

16225 13989 12308 422 422 383 91265

16258 13514 12469 397 393 348 89240

16488 13479 14475 470 470 904 96021

16351 13477 15178 439 439 358 94831

16460 13588 11647 427 427 355 89313

16467 13477 11856 386 386 347 88109

16540 13362 12129 388 388 387 88977

Table 2. Execution results for the JADE system (in milliseconds).

mented it for the Aglets, JADE, and DAGO systems. The

goal of this test was not to determine which system is more

efficient, but rather to evaluate if the performance of a mo-

bile agent system that uses OS-level security mechanisms

is comparable with the performance of other well-known

mobile agent systems.

The evaluation was carried on a testbed consisting of

three PCs named spaghetti, maccheroni, and penne, run-

ning Linux (kernel version 2.4.22) with Java SDK 1.4.2. All

hosts have Intel Pentium 4 processors, with CPUs clocked

at 1.80 GHz on spaghetti, and CPUs clocked at 1.50 GHz

on both maccheroni and penne. The spaghetti machine has

1024 MB of RAM, while maccheroni and penne have 256

MB and 640 MB of RAM, respectively.

Our test application is composed of agents that verify the

integrity of a set of files. The agents are initialized with a list

of pre-computed MD5 checksums of the files. During ex-

ecution, the agents migrate from host to host and compute,

on each host, the current checksum values for the given set

of files. The results are then compared with the ones given

to the agent at startup time, and possible discrepancies in

the checksums are reported. This application implements

an agent-based integrity checking service, similar, for ex-

ample, to Tripwire [7]. We chose this application because

it requires a substantial amount of both I/O and CPU re-

sources.

To perform the evaluation, three agent-based applica-

tions were developed: a first one in the form of a bash script

that uses the DAGO system to move between hosts; a sec-

ond one in the form of a Java aglet that uses the Aglets SDK

(v2.0.2); and a third one in the form of a Java agent for the

JADE system that uses the JADE version 3.1. A simplified

version of the mobile agent implementation for the DAGO

system is shown in the figure 3. All three agent-based appli-

cations were designed to be functionally identical, and, as

much as possible, structurally similar. However, the version

of the application implemented for the DAGO system used

traffic encryption and public-key authentication, while both

the Aglets-based and the JADE-based implementations did

not use any form of traffic encryption or strong authentica-

Execution Time Migration Time Total Execution

Spaghetti Maccheroni Penne Spaghetti Maccheroni Penne Time

11556 18619 16668 1224 1279 1224 90639

11539 17722 15754 1191 1166 2213 92324

11578 18621 16655 1257 1211 1178 91160

11645 18675 15723 1184 1192 2175 90470

11541 17561 15727 1252 1174 2224 91090

10554 17797 15745 1185 2216 2205 90644

11551 17527 15859 1179 1224 2207 90477

11575 18753 16659 1197 1204 1232 92153

11528 17733 15646 1222 2208 1222 90524

11644 18749 16792 1211 1244 1213 90623

Table 3. Execution results for the DAGO system (in milliseconds).

#!/bin/bash

numHostsVisited=3

destination=" "

fileList=(...) # list of file names to be checked

md5Sums=(...) # corresponding MD5 checksums

for the files in the list

calculate and compare MD5 checksums

checkSums () {...}

determine the next host to go to

set value of destination variable

nextHostToVisit () {...}

checkSums

nextHostToVisit

if ["$numHostsVisited" -lt 6]

then

let "i = $numHostsVisited + 1"

update agent’s state

new value will be stored

in agent.data by agentlogin

setdata "numHostsVisited" "$i"

move to another host

go "$destination"

fi

Figure 3. Example of the agent’s executable
file.

tion. The three applications were given a set of 2098 binary

files that had to be verified on each host. The tests were ex-

ecuted ten times. For each run of the tests, the agent visited

each of the three hosts twice.

The results of the execution of the tests are shown in Ta-

ble 1 for the Aglets-based application, in Table 2 for the

JADE-based application, and in Table 3 for the application

based on the DAGO system. In all the tables, the first three

columns show the time that an agent spent on each host. The

next three columns show the time that it took an agent to mi-

grate from one host to another. The same itinerary was used

for every execution of the test applications. More precisely,

agents always traveled from spaghetti to maccheroni, then

to penne, and then back to spaghetti two times. Thus, the

migration times are labeled with the name of the destination

host (e.g., the migration time column labeled with penne

represents the time required to move from maccheroni to

penne). The last column shows the total execution time of

an agent, which visited each of three hosts twice.

In addition to the above data, the amount of bytes trans-

fered over the network during the execution of each applica-

tion was collected. The total amount of data transfered was

1,229,619 bytes for Aglets-based application and 1,279,636

bytes for the JADE-based application. The amount of data

transfered during the execution of the agent based on the

DAGO system (including all ssh communications during

authentication) was 1,402,037 bytes.

The test cases presented here are not meant to be a com-

plete and sound comparison of the three systems because

the described agent applications were implemented using

different programming languages and cannot be compared

directly. Nonetheless, the results support the claim that a

mobile agent system based on OS-level mechanisms have

the potential to provide an execution environment in which

mobile agents can be executed with a performance compa-

rable to existing mainstream systems.

6. Conclusions and Future Work

Mobile agent systems provide support for the execution

of mobile components, called mobile agents, which migrate

between hosts to perform their tasks. Most mobile agent

systems implement agent-specific security services to ad-

dress the security issues associated with the execution of

mobile code. By doing this, the existing security services,

provided by the underlying operating systems, are dupli-

cated, often in an insecure way.

We designed and implemented a mobile agent system

that uses, as much as possible, the security tools and mech-

anisms that are widely available on existing operating sys-

tems. In particular, we implemented a UNIX-based proto-

type that uses Secure Shell for traffic encryption and authen-

tication, and existing UNIX security mechanisms for access

control.

The use of OS-based security mechanisms has several

advantages. First of all, the security mechanisms provided

by the operating system have been thoroughly tested by

the security community. Therefore, it is unlikely that the

mechanisms can be bypassed by malicious mobile code.

Second, OS-level security tools and mechanisms are well-

understood by the administrators of computer networks.

Therefore, it is easier for them to evaluate the security im-

pact of the deployment of a mobile code infrastructure that

relies on these mechanisms, and, therefore, the introduction

of mobile agent systems may become more wide-spread.

Third, by relying on existing security mechanisms, it is pos-

sible to maintain the size of the code that implements agent

mobility small, making it possible to thoroughly evaluate

its security (e.g., by manual security audits). Finally, by

using OS-level security mechanisms, the DAGO system is

in large part language-independent. By modifying a small

portion of the code of the agentlogin shell, it is possible to

include support for other scripting languages (such as Tcl,

Perl, and Python) and even binary applications, in the case

of architecturally homogeneous networks.

We also evaluated the performance of the first prototype

of the DAGO system with respect to two mainstream mo-

bile agent systems, namely Aglets and JADE. The results

show that the performance of our system is comparable to

the existing mobile agent systems.

Future work will extend the system to support a number

of scripting languages. Also, we plan to use OS-level au-

diting mechanisms to develop an intrusion detection system

that monitors the execution of mobile code. In addition, we

will explore how new OS-level mechanisms may be intro-

duced to better support mobile agents. In particular, we plan

to study how the OS kernel can be extended to support the

migration of UNIX processes. If implemented, this mech-

anism would allow generic applications to move from host

to host seamlessly.

References

[1] IBM Aglet Workbench. Site. http://www.trl.ibm.

co.jp/aglets/.

[2] Java Agent Development Framework. Site. http://

jade.cselt.it.

[3] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa. JADE.

White Paper, Sept. 2003.

[4] S. Fischmeister, G. Vigna, and R. Kemmerer. Evaluat-

ing the Security Of Three Java-Based Mobile Agent Sys-

tems. In G. Picco, editor, Proceedings of the 5
th Inter-

national Conference on Mobile Agents (MA ’01), volume

2240 of LNCS, pages 31–41, Atlanta, GA, December 2001.

Springer-Verlag.

[5] A. Fuggetta, G. Picco, and G. Vigna. Understanding Code

Mobility. IEEE Transactions on Software Engineering,

24(5):342–361, May 1998.

[6] R. Gray, D. Kotz, G. Cybenko, and D. Rus. D’Agents:

Security in a multiple-language, mobile-agent system. In

G. Vigna, editor, Mobile Agents and Security, volume 1419

of Lecture Notes in Computer Science, pages 154–187.

Springer-Verlag, 1998.

[7] G. H. Kim and E. H. Spafford. The Design and Implementa-

tion of Tripwire: A File System Integrity Checker. Technical

report, Purdue University, Nov. 1993.

[8] D. Lange and M. Oshima. Programming and Deploying

Java Mobile Agents with Aglets. Addison-Wesley, 1998.

[9] M. Oshima, G. Karjoth, and K. Ono. Aglets Specification

1.1 Draft. Whitepaper Draft 0.65, Sept. 8 1998.

[10] A. Poggi, G. Rimassa, and M. Tomaiuolo. Multi-User and

Security Support for Multi-Agent Systems. In Proc. of WOA

2001 Workshop, Modena, Italy, Sept. 2001.

[11] G. Rimassa. Runtime Support for Distributed Multi-Agent

Systems. PhD thesis, University of Parma, Jan. 2003.

[12] SNARE - System iNtrusion Analysis and Reporting Envi-

ronment. http://www.intersectalliance.com/

projects/Snare.

[13] S. Soman, C. Krintz, and G. Vigna. Detecting Malicious

Java Code Using Virtual Machine Auditing. In V. Paxson,

editor, Proceedings of 12
th USENIX Security Symposium,

pages 153–167, Washington, DC, August 2003. USENIX.

[14] SSH Protocol Architecture. http://

www.ietf.org/internet-drafts/

draft-ietf-secsh-architecture-17.txt,

2004.

[15] J. Stamos and D. Gifford. Implementing Remote Evaluation.

IEEE Transactions on Software Engineering, 16(7):710–

722, July 1990.

[16] Sun Microsystems, Inc. Installing, Administering, and Us-

ing the Basic Security Module. 2550 Garcia Ave., Mountain

View, CA 94043, December 1991.

[17] G. Vigna. Mobile Agents: Ten Reasons For Failure. In Pro-

ceedings of the IEEE International Conference on Mobile

Data Management (MDM ’04), pages 298–299, Berkeley,

CA, January 2004. Position Paper.

[18] G. Vigna, B. Cassell, and D. Fayram. An Intrusion Detection

System for Aglets. In N. Suri, editor, Proceedings of the 6
th

International Conference on Mobile Agents (MA ’02), vol-

ume 2535 of LNCS, pages 64–77, Barcelona, Spain, October

2002. Springer-Verlag.

[19] G. Vitaglione. JADE Tutorial - Security Administrator

Guide. Telecom Italia Lab, 2002.

[20] J. White. Telescript Technology: Mobile Agents. In

J. Bradshaw, editor, Software Agents. AAAI Press/MIT

Press, 1996.

