
Polymorphic Worm Detection

Using Structural Information of Executables

Christopher Kruegel1, Engin Kirda1,
Darren Mutz2, William Robertson2, and Giovanni Vigna2

1 Technical University of Vienna
chris@auto.tuwien.ac.at

engin@infosys.tuwien.ac.at

2 Reliable Software Group
University of California, Santa Barbara

{dhm,wkr,vigna}@cs.ucsb.edu

Abstract. Network worms are malicious programs that spread auto-
matically across networks by exploiting vulnerabilities that affect a large
number of hosts. Because of the speed at which worms spread to large
computer populations, countermeasures based on human reaction time
are not feasible. Therefore, recent research has focused on devising new
techniques to detect and contain network worms without the need of
human supervision. In particular, a number of approaches have been
proposed to automatically derive signatures to detect network worms
by analyzing a number of worm-related network streams. Most of these
techniques, however, assume that the worm code does not change during
the infection process. Unfortunately, worms can be polymorphic. That
is, they can mutate as they spread across the network. To detect these
types of worms, it is necessary to devise new techniques that are able to
identify similarities between different mutations of a worm.
This paper presents a novel technique based on the structural analy-
sis of binary code that allows one to identify structural similarities be-
tween different worm mutations. The approach is based on the analysis
of a worm’s control flow graph and introduces an original graph coloring
technique that supports a more precise characterization of the worm’s
structure. The technique has been used as a basis to implement a worm
detection system that is resilient to many of the mechanisms used to
evade approaches based on instruction sequences only.

Keywords: Network worms, Polymorphic code, Structural analysis, In-
trusion detection.

1 Introduction

In recent years, Internet worms have proliferated because of hardware and soft-
ware mono-cultures, which make it possible to exploit a single vulnerability to
compromise a large number of hosts [25].

Most Internet worms follow a scan/compromise/replicate pattern of behavior,
where a worm instance first identifies possible victims, then exploits one or more
vulnerabilities to compromise a host, and finally replicates there. These actions
are performed through network connections and, therefore, network intrusion
detection systems (NIDSs) have been proposed by the security community as
mechanisms for detecting and responding to worm activity [16, 18].

However, as worms became more sophisticated and efficient in spreading
across networks, it became clear that countermeasures based on human reac-
tion time were not feasible [23]. In response, the research community focused
on devising a number of techniques to automatically detect and contain worm
outbreaks.

In particular, the need for the timely generation of worm detection signa-
tures motivated the development of systems that analyze the contents of net-
work streams to automatically derive worm signatures. These systems, such as
Earlybird [19] and Autograph [6], implement a content sifting approach, which
is based on two observations. The first observation is that some portion of the
binary representation of a worm is invariant; the second one is that the spreading
dynamics of a worm is different from the behavior of a benign Internet appli-
cation. That is, these worm detection systems rely on the fact that it is rare
to observe the same byte string recurring within network streams exchanged
between many sources and many destinations. The experimental evaluation of
these systems showed that these assumptions hold for existing Internet worms.

A limitation of the systems based on content sifting is the fact that strings
of a significant length that belong to different network streams are required
to match (for example, byte strings with a length of 40 bytes are used in [19]).
Unfortunately, the next generation of Internet worms is likely to be polymorphic.
Polymorphic worms are able to change their binary representation as part of the
spreading process. This can be achieved by using self-encryption mechanisms
or semantics-preserving code manipulation techniques. As a consequence, copies
of a polymorphic worm might no longer share a common invariant substring of
sufficient length and the existing systems will not recognize the network streams
containing the worm copies as the manifestation of a worm outbreak.

Although polymorphic worms have not yet appeared in the wild, toolkits to
support code polymorphism are readily available [5, 11] and polymorphic worms
have been developed for research purposes [7]. Hence, the technological barriers
to developing these types of Internet worms are extremely low and it is only a
matter of time before polymorphic worms appear in the wild.

To detect this threat, novel techniques are needed that are able to identify
different variations of the same polymorphic worm [15]. This paper presents a
technique that uses the structural properties of a worm’s executable to iden-
tify different mutations of the same worm. The technique is resilient to code
modifications that make existing approaches based on content sifting ineffective.

The contributions of this paper are as follows:

– We describe a novel fingerprinting technique based on control flow informa-
tion that allows us to detect structural similarities between variations of a
polymorphic worm.

– We introduce an improvement of the fingerprinting technique that is based
on a novel coloring scheme of the control flow graph.

– We present an evaluation of a prototype system to detect polymorphic worms
that implements our novel fingerprinting techniques.

This paper is structured as follows. Section 2 discusses related work. Section 3
presents the design goals and assumptions of our fingerprinting technique and
provides a high-level overview of the approach. In Section 4, we describe how
the structure of executables is extracted and represented as control flow graphs.
In Section 5, we discuss how fingerprints are generated from control flow graphs,
and we present an improvement of our scheme that is based on graph coloring. In
Section 6, a summary of the actual worm detection approach is given. Section 7
evaluates our techniques, and in Section 8, we point out limitations of the current
prototype. Finally, Section 9 briefly concludes.

2 Related Work

Worms are a common phenomenon in today’s Internet, and despite significant
research effort over the last years, no general and effective countermeasures have
been devised so far. One reason is the tremendous spreading speed of worms,
which leaves a very short reaction time to the defender [22, 23]. Another reason is
the distributed nature of the problem, which mandates that defense mechanisms
are deployed almost without gap on an Internet-wide scale [14].

Research on countermeasures against worms has focused on both the detec-
tion and the containment of worms. A number of approaches have been proposed
that aim to detect worms based on network traffic anomalies. One key obser-
vation was that scanning worms, which attempt to locate potential victims by
sending probing packets to random targets, exhibit a behavior that is quite differ-
ent from most legitimate applications. Most prominently, this behavior manifests
itself as a large number of (often failed) connection attempts [24, 26].

Other detection techniques based on traffic anomalies check for a large num-
ber of connections without previous DNS requests [27] or a large number of
received “ICMP unreachable messages” [3]. In addition, there are techniques to
identify worms by monitoring traffic sent to dark spaces, which are unused IP
address ranges [2], or honeypots [4].

Once malicious traffic flows are identified, a worm has to be contained to
prevent further spreading [14]. One technique is based on rate limits for outgo-
ing connections [28]. The idea is that the spread of a worm can be stalled when
each host is only allowed to connect to a few new destinations each minute. An-
other approach is the use of signature-based network intrusion detection systems

(such as Snort [18]) that block traffic that contains known worm signatures. Un-
fortunately, the spreading speed of worms makes it very challenging to load the
appropriate signature in a timely manner. To address this problem, techniques
have been proposed to automatically extract signatures from network traffic.

The first system to automatically extract signatures from network traffic was
Honeycomb [8], which looks for common substrings in traffic sent to a honeypot.
Earlybird [19] and Autograph [6] extend Honeycomb and remove the assumption
that all analyzed traffic is malicious. Instead, these systems can identify recurring
byte strings in general network flows. Our work on polymorphic worm detection
is based on these systems. To address the problem of polymorphic worms, which
encode themselves differently each time a copy is sent over the network, we
propose a novel fingerprinting technique that replaces the string matching with
a technique that compares the structural aspects of binary code. This makes the
fingerprinting more robust to modifications introduced by polymorphic code and
allows us to identify similarities in network flows.

Newsome et al. [15] were the first to point out the problem of string fin-
gerprints in the case of polymorphic worms. Their solution, called Polygraph,
proposes capturing multiple invariant byte strings common to all observations
of a simulated polymorphic worm. The authors show that certain contiguous
byte strings, such as protocol framing strings and the high order bytes of buffer
overflow return addresses, usually remain constant across all instances of a poly-
morphic worm and can therefore be used to generate a worm signature. Our
system shares a common goal with Polygraph in that both approaches identify
polymorphic worms in network flows. However, we use a different and com-
plementary approach to reach this goal. While Polygraph focuses on multiple
invariant byte strings required for a successful exploit, we analyze structural
similarities between polymorphic variations of malicious code. This allows our
system to detect polymorphic worms that do not contain invariant strings at all.
Of course, it is also possible that Polygraph detects worms that our approach
misses.

3 Fingerprinting Worms

In this paper, our premise is that at least some parts of a worm contain exe-
cutable machine code. While it is possible that certain regions of the code are
encrypted, others have to be directly executable by the processor of the victim
machine (e.g., there will be a decryption routine to decrypt the rest of the worm).
Our assumption is justified by the fact that most contemporary worms contain
executable regions. For example, in the 2004 “Top 10” list of worms published by
anti-virus vendors [21], all entries contain executable code. Note, however, that
worms that do not use executable code (e.g., worms written in non-compiled
scripting languages) will not be detected by our system.

Based on our assumption, we analyze network flows for the presence of ex-
ecutable code. If a network flow contains no executable code, we discard it im-
mediately. Otherwise, we derive a set of fingerprints for the executable regions.
Section 4 provides details on how we identify executable regions and describes

the mechanisms we employ to distinguish between likely code and sequences of
random data.

When an interesting region with executable code is identified inside a network
flow, we generate fingerprints for this region. Our fingerprints are related to the
byte strings that are extracted from a network stream by the content sifting
approach. To detect polymorphic code, however, we generate fingerprints at
a higher level of abstraction that cannot be evaded by simple modifications
to the malicious code. In particular, we desire the following properties for our
fingerprinting technique:

– Uniqueness. Different executable regions should map to different finger-
prints. If identical fingerprints are derived for unrelated executables, the sys-
tem cannot distinguish between flows that should be correlated (e.g., because
they contain variations of the same worm) and those that should not. If the
uniqueness property is not fulfilled, the system is prone to producing false
positives.

– Robustness to insertion and deletion. When code is added to an exe-
cutable region, either by prepending it, appending it, or interleaving it with
the original executable (i.e., insertion), the fingerprints for the original exe-
cutable region should not change. Furthermore, when parts of a region are
removed (i.e., deletion), the remaining fragment should still be identified as
part of the original executable. Robustness against insertion and deletion is
necessary to counter straightforward evasion attempts in which an attacker
inserts code before or after the actual malicious code fragment.

– Robustness to modification. The fingerprinting mechanism has to be ro-
bust against certain code modifications. That is, even when a code sequence
is modified by operations such as junk insertion, register renaming, code
transposition, or instruction substitution, the resulting fingerprint should
remain the same. This property is necessary to identify different variations
of a single polymorphic worm.

The byte strings generated by the content sifting approach fulfill the unique-
ness property, are robust to appending and prepending of padding, and are
robust to removal, provided that the result of the deletion operation is at least
as long as the analyzed strings. The approach, however, is very sensitive to mod-
ifications of the code; even minimal changes can break the byte strings and allow
the attacker to evade detection.

Our key observation is that the internal structure of an executable is more
characteristic than its representation as a stream of bytes. That is, a represen-
tation that takes into account control flow decision points and the sequence in
which particular parts of the code are invoked can better capture the nature of
an executable and its functionality. Thus, it is more difficult for an attacker to
automatically generate variations of an executable that differ in their structure
than variations that map to different sequences of bytes.

For our purpose, the structure of an executable is described by its control
flow graph (CFG). The nodes of the control flow graph are basic blocks. An edge

from a block u to a block v represents a possible flow of control from u to v.
A basic block describes a sequence of instructions without any jumps or jump
targets in the middle.

Given two regions of executable code that belong to two different network
streams, we use their CFGs to determine if these two regions represent two
instances of a polymorphic worm. This analysis, however, cannot be based on
simply comparing the entire CFG of the regions because an attacker could triv-
ially evade this technique, e.g., by adding some random code to the end of the
worm body before sending a copy. Therefore, we have developed a technique that
is capable of identifying common substructures of two control flow graphs. We
identify common substructures in control flow graphs by checking for isomor-
phic connected subgraphs of size k (called k-subgraphs) contained in all CFGs.
Two subgraphs, which contain the same number of vertices k, are said to be
isomorphic if they are connected in the same way. When checking whether two
subgraphs are isomorphic, we only look at the edges between the nodes under
analysis. Thus, incoming and outgoing edges to other nodes are ignored.

Two code regions are related if they share common k-subgraphs. Consider
the example of the two control flow graphs in Figure 1. While these two graphs
appear different at a first glance, closer examination reveals that they share a
number of common 4-subgraphs. For example, nodes A to D form connected
subgraphs that are isomorphic. Note that the number of the incoming edges is
different for the A nodes in both graphs. However, only edges from and to nodes
that are part of the subgraph are considered for the isomorphism test.

�

��

�

�

��

�

Fig. 1. Two control flow graphs with an example of a common 4-subgraph.

Different subgraphs have to map to different fingerprints to satisfy the unique-
ness property. The approach is robust to insertion and deletion because two
CFGs are related as long as they share sufficiently large, isomorphic subgraphs.
In addition, while it is quite trivial for an attacker to modify the string represen-
tation of an executable to generate many variations automatically, the situation
is different for the CFG representation. Register renaming and instruction sub-
stitution (assuming that the instruction is not a control flow instruction) have no
influence on the CFG. Also, the reordering of instructions within a basic block
and the reordering of the layout of basic blocks in the executable result in the
same control flow graph. This makes the CFG representation more robust to

code modifications in comparison to the content sifting technique. Of course, an
adversary can attempt to evade our system by introducing code modifications
that change the CFG of the worm. Such and other limitations of our approach
are discussed in Section 8.

To refine the specification of the control flow graph, we also take into ac-
count information derived from each basic block, or, to be more precise, from
the instructions in each block. This allows us to distinguish between blocks
that contain significantly different instructions. For example, the system should
handle a block that contains a system call invocation differently from one that
does not. To represent information about basic blocks, a color is assigned to each
node in the control flow graph. This color is derived from the instructions in each
block. The block coloring technique is used when identifying common substruc-
tures, that is, two subgraphs (with k nodes) are isomorphic only if the vertices
are connected in the same way and the color of each vertex pair matches. Using
graph coloring, the characterization of an executable region can be significantly
improved. This reduces the amount of graphs that are incorrectly considered
related and lowers the false positive rate.

4 Control Flow Graph Extraction

The initial task of our system is to construct a control flow graph from a network
stream. This requires two steps. In the first step, we perform a linear disassembly
of the byte stream to extract the machine instructions. In the second step, based
on this sequence of instructions, we use standard techniques to create a control
flow graph.

One problem is that it is not known a priori where executable code regions
are located within a network stream or whether the stream contains executable
code at all. Thus, it is not immediately clear which parts of a stream should be
disassembled. The problem is exacerbated by the fact that for many instruction
set architectures, and in particular for the Intel x86 instruction set, most bit
combinations map to valid instructions. As a result, it is highly probable that
even a stream of random bytes could be disassembled into a valid instruction
sequence. This makes it very difficult to reliably distinguish between valid code
areas and random bytes (or ASCII text) by checking only for the presence or
absence of valid instructions.

We address this problem by disassembling the entire byte stream first and
deferring the identification of “meaningful” code regions after the construction
of the CFG. This approach is motivated by the observation that the structure
(i.e., the CFG) of actual code differs significantly from the structure of random
instruction sequences. The CFG of actual code contains large clusters of closely
connected basic blocks, while the CFG of a random sequence usually contains
mostly single, isolated blocks or small clusters. The reason is that the disassembly
of non-code byte streams results in a number of invalid basic blocks that can be
removed from the CFG, causing it to break into many small fragments. A basic
block is considered invalid (i) if it contains one or more invalid instructions,

(ii) if it is on a path to an invalid block, or (iii) if it ends in a control transfer
instruction that jumps into the middle of another instruction.

As mentioned previously, we analyze connected components with at least k

nodes (i.e., k-subgraphs) to identify common subgraphs. Because random in-
struction sequences usually produce subgraphs that have less than k nodes, the
vast majority of non-code regions are automatically excluded from further anal-
ysis. Thus, we do not require an explicit and a priori division of the network
stream into different regions nor an oracle that can determine if a stream contains
a worm or not, as is required by the approach described in [15]. In Section 7, we
provide experimental data that supports the observation that code and non-code
regions can be differentiated based on the shape of the control flows.

Another problem that arises when disassembling a network stream is that
there are many different processor types that use completely different formats
to encode instructions. In our current system, we focus on executable code for
Intel x86 only. This is motivated by the fact that the vast majority of vulner-
able machines on the Internet (which are the potential targets for a worm) are
equipped with Intel x86 compatible processors.

As we perform linear disassembly from the start (i.e., the first byte) of a
stream, it is possible that the start of the first valid instruction in that stream is
“missed”. As we mentioned before, it is probable that non-code regions can be
disassembled. If the last invalid instruction in the non-code region overlaps with
the first valid instruction, the sequence of actual, valid instructions in the stream
and the output of the disassembler will be different (i.e., de-synchronized). An
example of a missed first instruction is presented in Figure 2. In this example,
an invalid instruction with a length of three bytes starts one byte before the first
valid instruction, which is missed by two bytes.

� � � � � � � � � �

� 	
 � � 	 � � 	 �

� � � � � � �
 � � � � � � � 	
 �

� � � � � � � � � � � � 	 � � � � �

� �
 � � � 	
 � � � � � 	
 � 	 �
 �

� � � � � �
 � � � � � � � 	

Fig. 2. Linear disassembler misses the start of the first valid instruction.

We cannot expect that network flows contain code that corresponds to a valid
executable (e.g., in the ELF or Windows PE format), and, in general, it is not
possible, to identify the first valid instruction in a stream. Fortunately, two Intel
x86 instruction sequences that start at slightly different addresses (i.e., shifted
by a few bytes) synchronize quickly, usually after a few (between one and three)
instructions. This phenomenon, called self-synchronizing disassembly, is caused
by the fact that Intel x86 instructions have a variable length and are usually
very short. Therefore, when the linear disassembler starts at an address that

does not correspond to a valid instruction, it can be expected to re-synchronize
with the sequence of valid instructions very quickly [10]. In the example shown
in Figure 2, the synchronization occurs after the first missed instruction (shown
in gray). After the synchronization point, both the disassembler output and the
actual instruction stream are identical.

Another problem that may affect the disassembly of a network stream is that
the stream could contain a malicious binary that is obfuscated with the aim of
confusing a linear disassembler [10]. In this case, we would have to replace our
linear disassembler component with one that can handle obfuscated binaries (for
example, the disassembler that we describe in [9]).

5 K-Subgraphs and Graph Coloring

Given a control flow graph extracted from a network stream, the next task is
to generate connected subgraphs of this CFG that have exactly k nodes (k-
subgraphs).

The generation of k-subgraphs from the CFG is one of the main contributors
to the run-time cost of the analysis. Thus, we are interested in a very efficient
algorithm even if this implies that not all subgraphs are constructed. A similar
decision was made by the authors in [19], who decided to calculate fingerprints
only for a certain subset of all strings. The rationale behind their decision is
similar to ours. We assume that the number of subgraphs (or substrings, in their
case) that are shared by two worm samples is sufficiently large that at least
one is generated by the analysis. The validity of this thesis is confirmed by our
experimental detection results, which are presented in Section 7.

To produce k-subgraphs, our subgraph generation algorithm is invoked for
each basic block, one after another. The algorithm starts from the selected basic
block A and performs a depth-first traversal of the graph. Using this depth-first
traversal, a spanning tree is generated. That is, we remove edges from the graph
so that there is at most one path from the node A to all the other blocks in
the CFG. In practice, the depth-first traversal can be terminated after a depth
of k because the size of the subgraph is limited to k nodes. A spanning tree
is needed because multiple paths between two nodes lead to the generation of
many redundant k-subgraphs in which the same set of nodes is connected via
different edges. While it would be possible to detect and remove duplicates later,
the overhead to create and test these graphs is very high.

Once the spanning tree is built, we generate all possible k-node subtrees with
the selected basic block A as the root node. Note that all identified subgraphs
are used in their entirety, also including non-spanning-tree links. Consider the
graph shown in Figure 3. In this example, k is 4 and node A is the root node. In
the first step, the spanning tree is generated. Then, the subtrees {A, B, D, E},
{A, B, C, D}, and {A, B, C, E} are identified. The removal of the edge from
C to E causes the omission of the redundant subgraph {A, B, C, E}.

�

��

��

� � � � � � 	
 	 � � � � � �

�

��

��

� � � � � � � � � � �

�

��

��

�

��

��

�

��

��

� � � � � � � � � � � � � �

Fig. 3. Example for the operation of the subgraph generation process.

5.1 Graph fingerprinting

In order to quickly determine which k-subgraphs appear in network streams, it
is useful to be able to map each subgraph to a number (a fingerprint) so that two
fingerprints are equal only if the corresponding subgraphs are isomorphic. This
problem is known as canonical graph labeling [1]. The solution to this problem
requires that a graph is first transformed into its canonical representation. Then,
the graph is associated with a number that uniquely identifies the graph. Since
isomorphic graphs are transformed into an identical canonical representation,
they will also be assigned the same number.

The problem of finding the canonical form of a graph is as difficult as the
graph isomorphism problem. There is no known polynomial algorithm for graph
isomorphism testing; nevertheless, the problem has also not been shown to be
NP-complete [20]. For many practical cases, however, the graph isomorphism test
can be performed efficiently and there exist polynomial solutions. In particular,
this is true for small graphs such as the ones that we have to process. We use
the Nauty library [12, 13], which is generally considered to provide the fastest
isomorphism testing routines, to generate the canonical representation of our
k-subgraphs. Nauty can handle vertex-colored directed graphs and is well suited
to our needs.

When the graph is in its canonical form, we use its adjacency matrix to
assign a unique number to it. The adjacency matrix of a graph is a matrix with
rows and columns labeled by graph vertices, with a 1 or 0 in position (vi, vj)
according to whether there is an edge from vi to vj or not. As our subgraphs
contain a fixed number of vertices k, the size of the adjacency matrix is fixed as
well (consisting of k2 bits). To derive a fingerprint from the adjacency matrix,
we simply concatenate its rows and read the result as a single k2-bit value. This
value is unique for each distinct graph since each bit of the fingerprint represents
exactly one possible edge. Consider the example in Figure 4 that shows a graph

and its adjacency matrix. By concatenating the rows of the matrix, a single
16-bit fingerprint can be derived.

�

��

�

� � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � 	
 � 	 � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � �
 � � � � � �� � � � �
 � � � � � � � �

Fig. 4. Deriving a fingerprint from a subgraph with 4 nodes.

5.2 Graph coloring

One limitation of a technique that only uses structural information to iden-
tify similarities between executables is that the machine instructions that are
contained in basic blocks are completely ignored. The idea of graph coloring
addresses this shortcoming.

We devised a graph coloring technique that uses the instructions in a basic
block to select a color for the corresponding node in the control flow graph. When
using colored nodes, the notion of common substructures has to be extended to
take into account color. That is, two subgraphs are considered isomorphic only
if the vertices in both graphs are connected in the same way and have the same
color. Including colors into the fingerprinting process requires that the canonical
labeling procedure accounts for nodes of different colors. Fortunately, the Nauty

routines directly provide the necessary functionality for this task. In addition,
the calculation of fingerprints must be extended to account for colors. This is
done by first appending the (numerical representation of the) color of a node to
its corresponding row in the adjacency matrix. Then, as before, all matrix rows
are concatenated to obtain the fingerprint. No further modifications are required
to support colored graphs.

It is important that colors provide only a rough indication of the instruc-
tions in a basic block; they must not be too fine-grained. Otherwise, an attacker
can easily evade detection by producing structurally similar executables with
instructions that result in different colorings. For example, if the color of a basic
block changes when an add instruction is replaced by a semantically equivalent
sub (subtraction) instruction, the system could be evaded by worms that use
simple instruction substitution.

In our current system, we use 14-bit color values. Each bit corresponds to a
certain class of instructions. When one or more instructions of a certain class
appear in a basic block, the corresponding bit of the basic block’s color value is
set to 1. If no instruction of a certain class is present, the corresponding bit is 0.

Class Description Class Description

Data Transfer mov instructions String x86 string operations

Arithmetic incl. shift and rotate Flags access of x86 flag register

Logic incl. bit/byte operations LEA load effective address

Test test and compare Float floating point operations

Stack push and pop Syscall interrupt and system call

Branch conditional control flow Jump unconditional control flow

Call function invocation Halt stop instruction execution

Table 1. Color classes.

Table 1 lists the 14 color classes that are used in our system. Note that it is
no longer possible to substitute an add with a sub instruction, as both are part of
the data transfer instruction class. However, in some cases, it might be possible
to replace one instruction by an instruction in another class. For example, the
value of register %eax can be set to 0 both by a mov 0, %eax instruction (which
is in the data transfer class) or by a xor %eax, %eax instruction (which is a
logic instruction). While instruction substitution attacks cannot be completely
prevented when using color classes, they are made much more difficult for an
attacker. The reason is that there are less possibilities for finding semantically
equivalent instructions from different classes. Furthermore, the possible varia-
tions in color that can be generated with instructions from different classes is
much less than the possible variations on the instruction level. In certain cases,
it is even impossible to replace an instruction with a semantically equivalent one
(e.g., when invoking a software interrupt).

6 Worm Detection

Our algorithm to detect worms is very similar to the Earlybird approach pre-
sented in [19]. In the Earlybird system, the content of each network flow is
processed, and all substrings of a certain length are extracted. Each substring
is used as an index into a table, called prevalence table, that keeps track of how
often that particular string has been seen in the past. In addition, for each string
entry in the prevalence table, a list of unique source-destination IP address pairs
is maintained. This list is searched and updated whenever a new substring is
entered. The basic idea is that sorting this table with respect to the substring
count and the size of the address lists will produce the set of likely worm traffic
samples. That is, frequently occurring substrings that appear in network traffic
between many hosts are an indication of worm-related activity. Moreover, these
substrings can be used directly as worm signatures.

The key difference between our system and previous work is the mechanism
used to index the prevalence table [17]. While Earlybird uses simple substrings,
we use the fingerprints that are extracted from control flow graphs. That is, we
identify worms by checking for frequently occurring executable regions that have
the same structure (i.e., the same fingerprint).

This is accomplished by maintaining a set of network streams Si for each
given fingerprint fi. Every set Si contains the distinct source-destination IP
address pairs for streams that contained fi. A fingerprint is identified as corre-
sponding to worm code when the following conditions on Si are satisfied:

1. m, the number of distinct source-destination pairs contained in Si, meets or
exceeds a predefined threshold M .

2. The number of distinct internal hosts appearing in Si is at least 2.
3. The number of distinct external hosts appearing in Si is at least 2.

The last two conditions are required to prevent false positives that would
otherwise occur when several clients inside the network download a certain exe-
cutable file from an external server, or when external clients download a binary
from an internal server. In both cases, the traffic patterns are different from
the ones generated by a worm, for which one would expect connections between
multiple hosts from both the inside and outside networks.

7 Evaluation

7.1 Identifying code regions

The first goal of the evaluation of the prototype system was to demonstrate that
the system is capable of distinguishing between code and non-code regions of
network streams. To accomplish this, the tool was executed over several datasets.
The first dataset was composed of the ELF executables from the /bin and
/usr/bin directories of a Gentoo Linux x86 installation. The second dataset
was a collection of around 5 Gigabytes of media files (i.e., compressed audio and
video files). The third dataset was 1 Gigabyte of random output from OpenBSD
3.6’s ARC4 random number generator. The final dataset was a 1.5 Gigabyte
selection of texts from the Project Gutenberg electronic book archive. These
datasets were selected to reflect the types of data that might commonly be
encountered by the tool during the processing of real network traffic. For each of
the datasets, the total number of fingerprints, total Kilobytes of data processed,
and the number of fingerprints per Kilobyte of data were calculated. For this
and all following experiments, we use a value of 10 for k. The results are shown
in Table 2.

Dataset Total Fingerprints Total KB Fingerprints/KB

Executables 18,882,894 146,750 128.673495

Media 209,348 4,917,802 0.042569

Random 43,267 1,024,000 0.042253

Text 54 1,503,997 0.000036

Table 2. Fingerprint statistics for various datasets.

By comparing the number of fingerprints per Kilobyte of data for each of the
datasets, it is clear that the tool can distinguish valid code regions from other
types of network data. As asserted in Section 4, disassemblies that contain invalid
instruction sequences within basic blocks or a lack of sufficiently connected basic
blocks produce many subgraphs with less than 10 nodes. Since a fingerprint is
only produced for a subgraph with at least 10 nodes, one expects the rate of
fingerprints per Kilobyte of data to be quite small, as we see for the media,
random, and text datasets. On the other hand, disassemblies that produce large,
strongly-connected graphs (such as those seen from valid executables) result in
a large rate of fingerprints per Kilobyte, as we see from the executables dataset.

7.2 Fingerprint function behavior

As mentioned in Section 3, the fingerprints generated by the prototype system
must ideally be “unique” so that different subgraphs will not map to the same
fingerprint. To evaluate the extent to which the system adheres to this property,
the following experiment was conducted to determine the rate of fingerprint col-
lisions from non-identical subgraphs. The prototype was first run over a set of 61
ELF executables from the Linux coreutils package that had been compiled with
debugging information intact, including the symbol table. The fingerprints and
corresponding subgraphs produced during the run were extracted and recorded.
An analyzer then processed the subgraphs, correlating each node’s address with
the symbol table of the corresponding executable to determine the function from
which the subgraph was extracted. Finally, for those fingerprints that were pro-
duced by subgraphs from multiple executables, the analyzer compared the list
of functions the subgraphs had been extracted from. The idea was to determine
whether the fingerprint collision was a result of shared code or rather was a
violation of the fingerprint uniqueness property. Here, we assume that if all sub-
graphs were extracted from functions that have the same name, they are the
result of the same code. The results of this experiment are shown in Table 3.

Fingerprints Total Collisions Collision Rate Mismatched Coll. Mismatch Rate

83,033 17,320 20.86% 84 0.10%

Table 3. Fingerprint collisions for coreutils dataset.

From the table, we can see that for the coreutils package, there is a rather
large fingerprint collision rate, equal to about 21%. This, however, was an ex-
pected result; the coreutils package was chosen as the dataset for this experiment
in part because all executables in the package are statically linked with a library
containing utility functions, called libfetish. Since static linking implies that
code sections are copied directly into executables that reference those sections,
a high degree of code sharing is present in this dataset, resulting in the observed
fingerprint collision rate.

The mismatched collisions column records the number of fingerprint collisions
between subgraphs that could not be traced to a common function. In these cases,
we must conclude that the fingerprint uniqueness property has been violated,
and that two different subgraphs have been fingerprinted to the same value. The
number of such collisions in this experiment, however, was very small; the entire
run produced a mismatched collision rate of about 0.1%.

As a result of this experiment, we conclude that the prototype system pro-
duces fingerprints that generally map to unique subgraphs with an acceptably
small collision rate. Additionally, this experiment also demonstrates that the
tool can reliably detect common subgraphs resulting from shared code across
multiple analysis targets.

7.3 Analysis of false positive rates

In order to evaluate the degree to which the system is prone to generating false
detections, we evaluated it on a dataset consisting of 35.7 Gigabyte of network
traffic collected over 9 days on the local network of the Distributed Systems
Group at the Technical University of Vienna. This evaluation set contained
661,528 total network streams and was verified to be free of known attacks.
The data consists to a large extent of HTTP (about 45%) and SMTP (about
35%) traffic. The rest is made up of a wide variety of application traffic including
SSH, IMAP, DNS, NTP, FTP, and SMB traffic.

M 3 4 5 6 7 8 9 10 11

Fingerprints 12,661 7,841 7,215 3,647 3,441 3,019 2,515 1,219 1,174

M 12 13 14 15 16 17 18 19 20

Fingerprints 1,134 944 623 150 44 43 43 24 23

M 21 22 23 24 25

Fingerprints 22 22 22 22 22

Table 4. Incorrectly labeled fingerprints as a function of M . 1,400,174 total fingerprints
were encountered in the evaluation set.

In this section, we explore the degree to which false positives can be mitigated
by appropriately selecting the detection parameter M . Recall that M determines
the number of unique source-destination pairs that a network stream set Si must
contain before the corresponding fingerprint fi is considered to belong to a worm.
Also recall that we require that a certain fingerprint must occur in network
streams between two or more internal and external hosts, respectively, before
being considered as a worm candidate. False positives occur when legitimate
network usage is identified as worm activity by the system. For example, if
a particular fingerprint appears in too many (benign) network flows between
multiple sources and destinations, the system will identify the aggregate behavior
as a worm attack. While intuitively it can be seen that larger values of M reduce

the number false positives, they simultaneously delay the detection of a real worm
outbreak.

Table 4 gives the number of fingerprints identified by the system as suspi-
cious for various values of M . For comparison, 1,400,174 total fingerprints were
observed in the evaluation set. This experiment indicates that increasing M be-
yond 20 achieves diminishing returns in the reduction of false positives (for this
traffic trace). The remainder of this section discusses the root causes of the false
detections for the 23 erroneously labeled fingerprint values for M = 20.

The 23 stream sets associated with the false positive fingerprints contained a
total of 8,452 HTTP network flows. Closer inspection of these showed that the
bulk of the false alarms were the result of binary resources on the site that were
(a) frequently accessed by outside users and (b) replicated between two internal
web servers. These accounted for 8,325 flows (98.5% of the total) and consisted
of:

– 5544 flows (65.6%): An image appearing on most of the pages of a Java
programming language tutorial.

– 2148 flows (25.4%): The image of the research group logo, which appears on
many local pages.

– 490 flows (5.8%): A single Microsoft PowerPoint presentation.
– 227 flows (2.7%): Multiple PowerPoint presentations that were found to con-

tain common embedded images.

The remaining 43 flows accounted for 0.5% of the total and consisted of
external binary files that were accessed by local users and had fingerprints that,
by random chance, collided with the 23 flagged fingerprints.

The problem of false positives caused by heavily accessed, locally hosted files
could be addressed by creating a white list of fingerprints, gathered manually or
through the use of an automated web crawler. For example, if we had prepared
a white list for the 23 fingerprints that occurred in the small number of image
files and the single PowerPoint presentation, we would not have reported a single
false positive during the test period of 9 days.

7.4 Detection capabilities

In this section, we analyze the capabilities of our system to detect polymor-
phic worms. Polymorphism exists in two flavors. On one hand, an attacker can
attempt to camouflage the nature of the malicious code using encryption. In
this case, many different worm variations can be generated by encrypting the
payload with different keys. However, the attacker has to prepend a decryption
routine before the payload. This decryption routine becomes the focus of de-
fense systems that attempt to identify encrypted malware. The other flavor of
polymorphism (often referred to as metamorphism) includes techniques that aim
to modify the malicious code itself. These techniques include the renaming of
registers, the transposition of code blocks, and the substitution of instructions.
Of course, both techniques can be combined to disguise the decryption routine
of an encrypted worm using metamorphic techniques.

In our first experiment, we analyzed malicious code that was disguised by
ADMmutate [11], a well-known polymorphic engine. ADMmutate operates by
first encrypting the malicious payload, and then prepending a metamorphic de-
cryption routine. To evaluate our system, we used ADMmutate to generate 100
encrypted instances of a worm, which produced a different decryption routine for
each run. Then, we used our system to identify common substructures between
these instances.

Our system could not identify a single fingerprint that was common to all
100 instances. However, there were 66 instances that shared one fingerprint, and
31 instances that shared another fingerprint. Only 3 instances did not share a
single common fingerprint at all. A closer analysis of the generated encryption
routines revealed that the structure was identical between all instances. However,
ADMmutate heavily relies on instruction substitution to change the appearance
of the decryption routine. In some cases, data transfer instructions were present
in a basic block, but not in the corresponding block of other instances. These
differences resulted in a different coloring of the nodes of the control flow graphs,
leading to the generation of different fingerprints. This experiment brings to at-
tention the possible negative impact of colored nodes on the detection. However,
it also demonstrates that the worm would have been detected quickly since a
vast majority of worm instances (97 out of 100) contain one of only two different
fingerprints.

The aim of our second experiment was to analyze the structural similarities
between different members of a worm family. Strictly speaking, members of a
worm family are not polymorphic per se, but the experiment provides evidence
of how much structural similarity is retained between variations of a certain
worm. This is important to understand how resilient our system is to a surge of
worm variations during an outbreak.

Family Variant Tests Matches Match Rate

FIZZER 1 1 100.00%

FRETHEM 1 1 100.00%

KLEZ 6 6 100.00%

KORGO 136 9 0.07%

LOVGATE 300 300 100.00%

MYWIFE 3 1 0.33%

NIMDA 1 1 100.00%

OPASERV 171 11 0.064%

All 1,991 338 16.97%

Table 5. Malware variant detection within families.

For this experiment, the prototype was run against 342 samples of malware
variants from 93 distinct families. The fingerprints generated for each of the
malware variants were extracted and recorded. An analyzer then performed a
pairwise comparison between each member of each family, searching for common

fingerprints. If a common fingerprint was found, a match between the family
variants was recorded. Table 5 summarizes some of the more interesting results
of this experiment.

From the results, one can see that certain malware variants retain significant
structural similarity within their family. Notably, all 25 LOVGATE variants share
common structural characteristics with one another. There are, however, many
cases in which the structural characteristics between variants differs greatly;
manual inspection using IDA Pro verified that our system was correct in not
reporting common fingerprints as the CFGs were actually very different. While
one might consider this disappointing, recall instead that it is rather difficult for
an attacker to implement a worm that substantially and repeatedly mutates its
structure after each propagation while retaining its intended functionality. Thus,
the experiment should demonstrate that the prototype is capable of detecting
similarity between real-world examples of malware when it is present.

8 Limitations
One limitation of the current prototype is that it operates off-line. Our exper-
iments were performed on files that were captured from the network and later
analyzed. As future work, we plan to implement the necessary infrastructure to
operate the system on-line.

Related to this problem is that our analysis is more complex, and, thus,
more costly than approaches that are based on substrings [6, 19]. Not only is it
necessary to parse the network stream into instructions, we also have to build the
control flow graph, generate subgraphs, and perform canonical graph labeling.
While many network flows do not contain executables, thus allowing us to abort
the analysis process at an early stage, performance improvements are necessary
to be able to deploy the system on-line on fast network links. Currently, our
system can analyze about 1 Megabyte of data per second. Most of the processing
time is spent disassembling the byte stream and generating the CFG.

A key advantage of our approach over the Earlybird [19] and Autograph [6]
systems is that our system is more robust to polymorphic modifications of a
malicious executable. This is due to the fact that we analyze the structure of an
executable instead of its byte stream representation. However, an attacker could
attempt to modify the structure of the malicious code to evade detection. While
one-time changes to the structure of a binary are quite possible, the automatic
generation of semantically equivalent code pieces that do not share common sub-
structures is likely more challenging. Another possibility to erode the similarities
between worm instances is to insert conditional branches into the code that are
never taken. This can be done at a low cost for the attacker, but it might not be
straightforward to generate such conditional branches that cannot be identified
by a more advanced static analysis. A possibly more promising attack venue for
a worm author is to attack the coloring scheme. By finding instructions from
different classes, worm variations can be obtained that are considered different
by our system. The experimental results for ADMmutate in the previous section
have demonstrated that the system can be forced to calculate different finger-
prints for the decryption routine. However, the results have also shown that,

despite appearing completely different on a byte string level, the total number
of fingerprints is very low. In this case, detection is delayed, but because of the
small number of variations, the worm will eventually be automatically identified.

Finally, our technique cannot detect malicious code that consists of less than
k blocks. That is, if the executable has a very small footprint we cannot extract
sufficient structural information to generate a fingerprint. We chose 10 for k in
our experiments, a value that seems reasonable considering that the Slammer
worm, which is only 376 bytes long and fits into a single UDP packet, has a CFG
with 16 nodes. For comparison, CodeRed is about 4 Kilobytes long and has a
CFG with 127 nodes.

9 Conclusions

Worms are automated threats that can compromise a large number of hosts in a
very small amount of time, making human-based countermeasures futile. In the
past few years, worms have evolved into sophisticated malware that supports
optimized identification of potential victims and advanced attack techniques.
Polymorphic worms represent the next step in the evolution of this type of
malicious software. Such worms change their binary representation as part of
the spreading process, making detection and containment techniques based on
the identification of common substrings ineffective.

This paper presented a novel technique to reliably identify polymorphic
worms. The technique relies on structural analysis and graph coloring techniques
to characterize the high-level structure of a worm executable. By abstracting
from the concrete implementation of a worm, our technique supports the iden-
tification of different mutations of a polymorphic worm.

Our approach has been used as the basis for the implementation of a system
that is resilient to a number of code transformation techniques. This system has
been evaluated with respect to a large number of benign files and network flows
to demonstrate its low rate of false positives. Also, we have provided evidence
that the system represents a promising step towards the reliable detection of
previously unknown, polymorphic worms.

References

1. L. Babai annd E. Luks. Canonical Labeling of Graphs. In 15th ACM Symposium
on Theory of Computing, 1983.

2. M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D. Watson. The Internet Motion
Sensor: A Distributed Blackhole Monitoring System. In Network and Distributed
Systems Symposium (NDSS), 2005.

3. V. Berk, R. Gray, and G. Bakos. Using Sensor Networks and Data Fusion for Early
Detection. In SPIE Aerosense Conference, 2003.

4. D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levin, and Henry O. Honey-
Stat: Local Worm Detection Using Honeypots. In 7th International Symposium on
Recent Advances in Intrusion Detection (RAID), 2004.

5. T. DeTristan, T. Ulenspiegel, Y. Malcom, and M. von Underduk. Polymorphic
Shellcode Engine Using Spectrum Analysis. http://www.phrack.org/show.php?

p=61&a=9.

6. H.-A. Kim and B. Karp. Autograph: Toward Automated, Distributed Worm Sig-
nature Detection. In 13th Usenix Security Symposium, 2004.

7. O. Kolesnikov and W. Lee. Advanced Polymorphic Worms: Evading IDS by Blend-
ing in with Normal Traffic. Technical report, Georgia Tech, 2004.

8. C. Kreibich and J. Crowcroft. Honeycomb - Creating Intrusion Detection Signa-
tures Using Honeypots. In 2nd Workshop on Hot Topics in Networks, 2003.

9. C. Kruegel, F. Valeur, W. Robertson, and G. Vigna. Static Analysis of Obfuscated
Binaries. In 13th Usenix Security Symposium, 2004.

10. C. Linn and S. Debray. Obfuscation of Executable Code to Improve Resistance
to Static Disassembly. In ACM Conference on Computer and Communications
Security (CCS), 2003.

11. S. Macaulay. ADMmutate: Polymorphic Shellcode Engine. http://www.ktwo.ca/
security.html.

12. B. McKay. Nauty: No AUTomorphisms, Yes? http://cs.anu.edu.au/∼bdm/

nauty/.
13. B. McKay. Practical graph isomorphism. Congressus Numerantium, 30, 1981.
14. D. Moore, C. Shannon, G. Voelker, and S. Savage. Internet Quarantine: Require-

ments for Containing Self-Propagating Code. In IEEE Infocom Conference, 2003.
15. J. Newsome, B. Karp, and D. Song. Polygraph: Automatically Generating Sig-

natures for Polymorphic Worms. In IEEE Symposium on Security and Privacy,
2005.

16. V. Paxson. Bro: A System for Detecting Network Intruders in Real-Time. In 7th
Usenix Security Symposium, 1998.

17. M. O. Rabin. Fingerprinting by Random Polynomials. Technical report, Center
for Research in Computing Techonology, Harvard University, 1981.

18. M. Roesch. Snort - Lightweight Intrusion Detection for Networks. In Usenix LISA
Conference, 1999.

19. S. Singh, C. Estan, G. Varghese, and S. Savage. Automated Worm Fingerprinting.
In 6th Symposium on Operating System Design and Implementation (OSDI), 2004.

20. S. Skiena. Implementing Discrete Mathematics: Combinatorics and Graph Theory,
chapter Graph Isomorphism. Addison-Wesley, 1990.

21. Sophos. War of the Worms: Top 10 list of worst virus outbreaks in 2004. http:

//www.sophos.com/pressoffice/pressrel/uk/20041208yeartopten.html.
22. S. Staniford, D. Moore, V. Paxson, and N. Weaver. The Top Speed of Flash Worms.

In 2nd ACM Workshop on Rapid Malcode (WORM), 2004.
23. S. Staniford, V. Paxson, and N. Weaver. How to 0wn the Internet in Your Spare

Time. In 11th Usenix Security Symposium, 2002.
24. S. Venkataraman, D. Song, P. Gibbons, and A. Blum. New Streaming Algorithms

for Fast Detection of Superspreaders. In Network and Distributed Systems Sympo-
sium (NDSS), 2005.

25. N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. A Taxonomy of Com-
puter Worms. In ACM Workshop on Rapid Malcode, October 2003.

26. N. Weaver, S. Staniford, and V. Paxson. Very Fast Containment of Scanning
Worms. In 13th Usenix Security Symposium, 2004.

27. D. Whyte, E. Kranakis, and P. van Oorschot. DNS-based Detection of Scanning
Worms in an Enterprise Network. In Network and Distributed Systems Symposium
(NDSS), 2005.

28. M. Williamson. Throttling Viruses: Restricting Propagation to Defeat Malicious
Mobile Code. In 18th Annual Computer Security Applications Conference (AC-
SAC), 2002.

