
Using Hidden Markov Models to Evaluate the
Risks of Intrusions

System Architecture and Model Validation

André Årnes1, Fredrik Valeur2, Giovanni Vigna2, and Richard A. Kemmerer2

1 Centre for Quantifiable Quality of Service in Communication Systems
Norwegian University of Science and Technology

O.S. Bragstads plass 2E, N-7491 Trondheim, Norway
andrearn@q2s.ntnu.no, http://www.q2s.ntnu.no/

2 Department of Computer Science,
University of California Santa Barbara,
Santa Barbara, CA 93106-5110, USA

{fredrik|vigna|kemm}@cs.ucsb.edu, http://www.cs.ucsb.edu/∼rsg/

Abstract. Security-oriented risk assessment tools are used to determine
the impact of certain events on the security status of a network. Most
existing approaches are generally limited to manual risk evaluations that
are not suitable for real-time use. In this paper, we introduce an approach
to network risk assessment that is novel in a number of ways. First of all,
the risk level of a network is determined as the composition of the risks
of individual hosts, providing a more precise, fine-grained model. Second,
we use Hidden Markov models to represent the likelihood of transitions
between security states. Third, we tightly integrate our risk assessment
tool with an existing framework for distributed, large-scale intrusion de-
tection, and we apply the results of the risk assessment to prioritize the
alerts produced by the intrusion detection sensors. We also evaluate our
approach on both simulated and real-world data.

Keywords: Risk assessment, Intrusion detection, Hidden Markov mod-
eling.

1 Introduction

The complexity of today’s networks and distributed systems makes the process of
risk management, network monitoring, and intrusion detection increasingly dif-
ficult. The amount of data produced by a distributed intrusion detection system
can be overwhelming, and prioritization and selection of appropriate responses
is generally difficult. On the other hand, risk assessment methodologies are be-
ing used to model and evaluate network and system risk. These approaches are
generally limited to manual processes, and are not suitable for real-time use.

The approach presented in this paper provides both a high-level overview of
network risk based on individual risk evaluations for each host and a quantitative
metric for performing alert prioritization. Alerts are prioritized according to the

risk associated with the hosts referenced in the alert. Preliminary work on the
risk-assessment method used in this paper was presented in [1], but it was not
tested as part of an intrusion detection system. The implementation presented in
this paper processes the alerts produced by a set of sensors monitoring a number
of hosts. We use training data from Lincoln Laboratory [11] and real network
traffic from the Technical University of Vienna [8] to test the performance of the
model.

The main contribution of this paper is a novel approach to network risk as-
sessment. The approach considers the risk level of a network as the composition
of the risks of individual hosts. It is probabilistic and uses Hidden Markov mod-
els (HMMs) to represent the likelihood of transitions between security states.
We tightly integrate the risk assessment tool with an existing framework for
distributed, large-scale intrusion detection, and we apply the results of the risk
analysis to prioritize the alerts generated by the intrusion detection sensors.
Finally, the approach is evaluated using both simulated and real-world data.

The remainder of this paper is structured as follows. In Section 2 we present
the theoretical model and the necessary terminology for the paper. In Section 3
we present the system architecture, and in Section 4 we discuss how the method
can be used for real-time risk assessment for two example data sets. We provide
a discussion of the method in Section 5 and an overview of related work in
Section 6. Conclusions and some open research issues are discussed in Section 7.

2 Model and Terminology

This section presents our risk-assessment model and discusses some aspects of
parameter estimation and learning.

2.1 Security State Estimation

The use of Hidden-Markov Models (HMMs) as a method for estimating the risk
of a network was proposed in [1]. An HMM enables the estimation of a hidden
state based on observations that are not necessarily accurate. An important
feature of this model is that it is able to model the probability of false positives
and false negatives associated with the observations. The method is based on
Rabiner’s work on HMMs [13].

Assume that each host h can be modeled by N different states, i.e., S =
{s1, . . . , sN}. The security state of a host changes over time, and the sequence
of states visited by a host is denoted X = x1, . . . , xT , where xt ∈ S. Each host
is monitored by a number of sensors k ∈ Kh

1 , . . . ,Kh
L, where L is the number of

sensors for host h. A sensor generates observation messages from the observation
symbol set V k = {vk

1 , . . . , vk
M}, where M is the number of messages for sensor

k. The sequence of observed messages is denoted Y = y1, . . . , yT , where yt ∈ V
is the observation message received at time t. The HMM for each host consists
of a state transition probability matrix P, an observation probability matrix Q,
and an initial state distribution π. The HMM is denoted λ = (P,Q, π).

The hosts modeled in this paper are assumed to have four possible security
states S = {G, P, A,C}, which are defined as follows:

– Good (G): The host is not subject to any attacks.
– Probed (P): The host is subject to probing or mapping activity. This state

can lead to a reduction in availability, and it increases the probability of an
attack.

– Attacked (A): The host is being attacked by one or more parties. This state
can lead to a reduction in availability, and it increases the probability of a
compromise.

– Compromised (C): The host has been compromised. This state may result
in loss of confidentiality, integrity, and availability.

Figure 1 shows the Markov model for the security states of the hosts. The
edge from one node to another represents the fact that when a host is in the
state indicated by the source node it can transition to the state indicated by the
destination node. Note that the graph is fully connected, which indicates that it
is possible to transition from any security state to any other security state.

The state transition probability matrix P describes the probabilities of tran-
sitions between the states of the model. Each entry, pij , describes the probability
that the model will transfer to state sj at time t + 1 given that it is in state si

at time t, i.e., pij = P (xt+1 = sj |xt = si), 1 ≤ i, j ≤ N .
The observation probability matrix Q describes the probabilities of receiving

different observations given that the host is in a certain state. Each entry, qn(m),
represents the probability of receiving the observation symbol vk

m at time t, given
that the host is in state sn at time t, i.e., qn(m) = P (yk

t = vk
m|xt = sn), 1 ≤ n ≤

N, 1 ≤ k ≤ K, 1 ≤ m ≤ M .

G P A C

Fig. 1. Markov model for hosts.

Consider examples of a university network and a military network to see how
values are assigned to the model parameters.

Example 1. In a university network, we can assume that there are high volumes
of probing and a fair amount of attack attempts. The security level for hosts is
also varying, and a system compromise is a likely scenario for some hosts. Con-
sequently, the transitions to state P , A, and C are relatively likely. In addition,
because the traffic in university networks is heterogeneous and changing over

time, we assume that it is hard to configure and maintain accurate IDS sen-
sors. Therefore, we have to assume that there is a high number of false positives
and negatives. This is modeled by increasing the probabilities of receiving an
observation that indicates a false positive or a false negative and decreasing the
probability of receiving an accurate observation in the matrix Q. For example,
qG(4), which represents the probability of receiving an observation indicating
a compromised alert when the system is actually in the good state, has to be
increased to represent the false positive probability. P and Q can for example
be set as follows:

P =

0BB@
pGG pGP pGA pGC

pPG pPP pPA pPC

pAG pAP pAA pAC

pCG pCP pCA pCC

1CCA =

0BB@
0.95 0.02 0.02 0.01
0.02 0.95 0.02 0.01
0.02 0.02 0.94 0.02
0.01 0.01 0.01 0.97

1CCA ,

Q =

0BB@
qG(1) qG(2) qG(3) qG(4)
qP (1) qP (2) qP (3) qP (4)
qA(1) qA(2) qA(3) qA(4)
qC(1) qC(2) qC(3) qC(4)

1CCA =

0BB@
0.7 0.1 0.1 0.1
0.1 0.7 0.1 0.1
0.1 0.1 0.7 0.1
0.1 0.1 0.1 0.7

1CCA .

In this simple example, the values in the bottom left corner of the Q matrix
represent false negatives, whereas the values in the top right represent false
positives. The diagonal represents the probability of accurate detections. Also,
in such a network, the initial state distribution π has to take into consideration
the probability that a system is already under attack or even compromised:

π = {0.65, 0.2, 0.1, 0.05}.

Example 2. In a military grade system, we can assume that the security level
is very high, and the probability of attacks is low, as the system is not known
to the public. This implies that the probability of transition to P and A should
be low, but P should still take into account the possibility of random scanning.
Due to the high level of security, the probabilities of transition to state C should
be extremely low. The observation probabilities should represent the fact that
the traffic is regulated, and that the IDSs and logging systems are configured to
be highly accurate. The initial state can be assumed to be π = {1, 0, 0, 0}. The
following are example transition and observation probability matrices:

P =

0.995 0.002 0.002 0.001
0.02 0.959 0.02 0.001
0.02 0.02 0.958 0.002
0.01 0.01 0.01 0.97

 ,Q =

0.97 0.01 0.01 0.01
0.01 0.97 0.01 0.01
0.01 0.01 0.97 0.01
0.01 0.01 0.01 0.97

 .

2.2 Risk Assessment

Each of the states for a host is associated with a cost vector C, indicating the
potential consequences of the state in question. The total risk Rh,t for host h at
time t is

Rh,t =
N∑

i=1

γt(i)C(i) (1)

where γt(i) is the probability that the host is in security state si at time t, N is
the number of security states, and C(i) is the cost value associated with state si.

Example 3. A university network usually consists of a large number of hosts,
including student laptops, workstations, web servers, student record databases,
and staff file servers. For the purpose of network management, the servers are
the most valuable assets, and a compromise of staff data or student records
could have very negative consequences. Example cost vectors could be: Claptop =
{0, 1, 2, 5}, Cworkstation = {0, 2, 5, 10}, Cwebserver = {0, 2, 5, 20}, CstudentDB =
{0, 5, 20, 50}, and Cfileserver = {0, 5, 10, 25}. If the current security state distri-
bution for the student record database is {0.8, 0.15, 0.05, 0}, then the risk for
that asset at time t is RstudentDB,t = 0.8 ∗ 0 + 0.15 ∗ 5 + 0.05 ∗ 20 = 1.75. The
same security state distribution for a student laptop would result in the risk
Rlaptop,t = 0.25.

The total risk for an entire network at time t can be expressed as

Rnw,t =

HX
h=1

Rh,t (2)

where H is the number of hosts in the network. By using the sum of the risk
of all hosts, it is possible to see aggregate peaks of risk activity where the risk
of several hosts are simultaneously increased. A property of this definition of
network risk is that security incidents that only involve a few hosts may not
impact the total risk of a large network to a noticeable degree. Also, the risk can
only be interpreted by using knowledge of the normal risk level of the system,
as well as the maximum risk of the system. A limitation of this definition of
network risk is that it does not consider dependencies between hosts. This is not
covered in this paper, but left for further work.

The average risk for a network can be expressed as

Rnw,t =
Rnw,t

H
. (3)

As opposed to (2), the average risk for a network is a normalized value for a given
network. If a high percentage of the hosts in a network are subject to security
incidents, the average risk for the network can be expected to vary significantly
over time. Note that Rnw,t is system-dependent, as the HMMs and cost vectors
of different hosts vary.

In a traditional risk assessment context, one would expect risk to stay at
the most critical security state once that state has been reached. This paper
focuses on real-time risk assessment, and the model proposed in this paper is
intended to be used as a real-time tool for risk management. That is, we are
interested in representing the level of risk activity ; therefore, the HMMs used in
the examples allow the risk to gradually decrease, even if the host in question
has been assessed to be in state C. The arrival of new alerts indicating a less
critical state also decreases the risk of a host. This is done in order to avoid a
situation where an increasing number of hosts are assessed to have the maximum
risk possible. Another possible approach is outlined in Section 5.

2.3 Alert Prioritization

Each processed alert is assigned a priority according to the risk of the involved
hosts. If a host is assessed to have a high risk, all alerts involving that host will
receive a high priority, whereas a low risk host will receive a low priority. The
alert receives a prioritization number according to the host with the highest risk
number. The priority Pa for an alert a at time t can be determined as follows

Pa = max(Rh1,t,Rh2,t), (4)

where h1 is the source IP address and h2 is the destination IP address of the
alert a.

Example 4. In a network with both high and low value hosts, the priority of an
alert is decided by the current risk of the affected host, which is in turn a function
of the cost vector and the estimated security state. An alert a1 at time t for the
student database in Example 3 would receive a priority Pa1 = 1.75, whereas an
alert a2 for the student laptop would receive priority Pa2 = 0.25. If both the
source and destination address of an alert are monitored by the risk assessment
system, the priority is assigned to be the higher of the two risk values.

2.4 Parameter Estimation and Learning

The estimation of the appropriate values for the model parameters P, Q, π, and
for the cost vector C can be determined using either training algorithms or ex-
pert knowledge, supported by an appropriate methodology. Notably, a uniform
initial distribution of the P and π parameters is adequate as a basis for train-
ing the parameters, according to [13]. The initial parameters can alternatively
be determined using a risk assessment methodology, such as [2]. These method-
ologies provide a framework for identifying threats and vulnerabilities and for
determining probabilities and consequences of risks.

Based on an HMM with initial parameters, there are several algorithms avail-
able for re-estimating the parameters (i.e., training the models). There is, how-
ever, no analytical solution to the re-estimation problem, and there is no optimal
way of estimating the model parameters based on an observation sequence as
training data [13]. A standard approach for learning HMM parameters is the
Baum-Welch method, which uses iteration to select HMM parameters to maxi-
mize the probability of an observation sequence.

3 System Architecture and Implementation

This section discusses the architecture of the real-time risk assessment system
and how it is integrated into the STAT framework. Some implementation details
are also presented.

3.1 System Architecture

The risk-assessment system receives input events from multiple intrusion detec-
tion sensors throughout the protected network. Both host-based and network-
based sensors are supported. The alerts generated by the sensors are either in
the IDMEF format [3] or in a format native to the sensor. Native alert formats
are converted into IDMEF alerts before further processing. Intrusion detection
alerts from the sensors are collected by the MetaSTAT collector [17, 18] through
network connections. MetaSTAT then merges the different alert streams and the
aggregate stream is fed to the risk-assessment system.

The output of the system is a stream of prioritized alerts. The main advantage
of this system is that the security administrator can easily identify the most
important alerts by sorting them by the prioritization value. By handling the
important alerts first, the administrator can make more efficient use of his time.

The system is implemented as a set of modules in the STAT framework [17,
18]. Figure 2 is an overview of the architecture. The system consists of three
different modules: Alert Classification, Spoof Detection, and Risk Analysis. The
operation of each of the modules is explained in detail below.

Fig. 2. Overview of the System Architecture

The classification module augments the incoming alerts with a classification
attribute. The classification assigned to a given alert is dependent on the im-
pact that the attack referenced in the alert has on the network. The system
utilizes the following classes of attacks: successful recon limited, successful user,
and successful admin.

The IDMEF standard specifies an optional classification attribute, and the
classification module uses this attribute if it is set by the intrusion detection
sensor. Unfortunately, most sensors do not provide a value for the classification
attribute. When the classification module encounters alerts with no classifica-
tion, the missing attribute is looked up in a database. The database contains
a mapping from sensor-type/alert-name tuples to the corresponding class. The
mapping database can be created manually by looking at the rules of the de-
ployed intrusion detection sensors and classifying each rule as either referring
to a successful recon limited, successful user, or successful admin attack. The
database can also be created automatically if the rules of the intrusion detection

sensors contain a CVE id, which is often the case. The CVE database can be
queried for the description of the attack and the classification can be filled in
from the description.

A problem that may occur is that some alerts do not contain the real IP of the
host that caused the IDS alert to be generated. This happens when the attacker
host spoofs the source IP of the packets that are part of the attack. A network
IDS monitoring the attack traffic sees the attack coming from the spoofed IP
and reports the spoofed IP as the attacker. The spoof detection module detects
spoofed alerts and attempts to infer the real IP of the attacker.

Spoof detection can be performed by keeping track of what IP addresses each
host is utilizing. An anti-spoofing tool, such as arpwatch, can be utilized to
create a database of what IPs are associated with each Ethernet address. When
the spoof detection module of the risk assessment system receives an alert, the
database is consulted to check if the attacker IP contained in the alert matches
the Ethernet address in the alert. Some of the problems with this approach are
that most intrusion detection alerts do not contain Ethernet addresses and that
packets with spoofed Ethernet addresses would not be detected. Another way of
performing spoof detection is to check whether the IPs referenced in the alert
are part of the protected network. If neither the attacker nor the victim is part of
the protected network, the attack must either be spoofed or an outside attacker
is attacking another outsider using the protected network. Since most networks
do not allow traffic from third parties to transit their network, the second case is
highly unlikely, and one can conclude that spoofing has taken place. Note that
this spoof detection mechanism is unable to catch instances of spoofing where
the victim of the spoofing is within the protected network.

When a spoofed alert is detected, the real IP of the attacker can be fetched
from the IP mapping database if Ethernet addresses are present in the alerts.
In the case of alerts without Ethernet addresses the real attacker cannot easily
be identified. In this case, any of the hosts in the protected network could be
the attacker. The spoof detection module handles this by forwarding the alert
to every host in the subnet where the attack was detected.

After spoof detection is performed, the alerts are processed by the risk anal-
ysis module. The module keeps one HMM model for each of the protected hosts.
When an alert is received, the models for the hosts referenced in the alert are
looked up. For each of these hosts, the HMM model is updated with the latest
observation. Finally, the risk value for each of the affected hosts is calculated
and the alert is augmented with the maximum of these risk values before the
alert is sent to the administrator.

3.2 Implementation

The real-time risk assessment implementation is based on the algorithms in [1].
Only one observation probability matrix Q is defined for each host. For hosts
with multiple sensors (such as Mill and Pascal in Section 4.1), all sensors have
been incorporated into one Q.

The implementation is integrated into the STAT framework, as described
above. It consists of the following C++ classes: RiskObject (representing a
host), RiskSensor (representing an IDS sensor), and RiskObservation (rep-
resenting a sensor observation). The implementation receives IDMEF messages
from the framework, and processes these based on the source and destination IP
addresses, sensor identities, alert timestamps, and the alert impact values.

As the Hidden Markov Models are discrete time models, the risk is updated
for every second for each host, based on the available alerts relevant to each host.
A relevant alert either has the IP address of the host in question as its source or
destination IP address, or it originates from a host-based IDS on the host. If no
alert is available for a host, the system uses the default observation “no alert”
as input to the HMM computation. If more than one alert is received for a host
during the 1 sec. interval, the first alert is processed and the remaining alerts
are queued for the next intervals. For the sake of responsiveness, the maximum
queue size is set to 60 seconds for the purpose of this paper. All new alerts will
be discarded when the maximum queue size has been reached. This approach is
chosen in order to be able to handle alert bursts, such as the outbound DDoS
described in Section 4.1. Note that the problem of alert queues can be mitigated
by choosing a sufficiently short time interval for the hidden Markov models.

4 Experiments

The purpose of this section is to validate the proposed method and to demon-
strate how the system outlined in Section 3 can be used on real-life data. For the
experiments two different data sets were used: the Lincoln Laboratory 2000 data
set and traffic data from TU Vienna. The first data set contains experimental
data, whereas the second contains data from a real network. The advantage of
using the Lincoln Labs data is that it contains a truth file [11]. Therefore, the
results can be checked against these values. The TU Vienna data set validates
the feasibility of using the approach on real data.

The basic experimental approach was to determine the HMM parameters
Q, P, π, and C for the Lincoln Laboratory data and to verify that the results
produced by our method correspond to the information gleaned from the truth
file. The same parameters were then used on the real traffic data from TU Vienna
in order to validate the model’s parameters in a realistic setting. By using the
same HMM parameters for both data sets, where applicable, it is possible to
compare the results obtained from the two cases.

The outcome of the experiments are highly dependent on the HMM param-
eters and the alert classification, in addition to the alert and traffic data used.
The HMM parameters used in these examples were determined manually based
on the authors’ experience with the models. The following general guidelines
were used in determining the appropriate values for the parameters:

– The risk level for a host should be close to zero when there are no alerts.
This implies that the probability of being in state G should be close to 1
when there are no alerts.

– When state C occurs, the model should stay in this state longer than it
would for states P and A.

– In order to make the results comparable, the cost vector for all hosts are
identical. In a real setting, the cost vectors for different assets would vary
depending on their value.

Section 4.1 presents the details of the parameters used and the results of ap-
plying the method to the Lincoln Laboratory 2000 data set. Section 4.2 presents
the same for the TU Vienna data.

4.1 Lincoln Laboratory Scenario (DDoS) 1.0

The Lincoln Laboratory 2000 data set [11] is based on experimental network
traffic for a network of four class C subnets. The data set contains a network
dump, as well as Solaris BSM [16] system logs. This data has been processed with
the Snort network-based IDS and the USTAT host-based IDS in order to generate
IDMEF alerts. The resulting data set contains more than three hours of intrusion
detection data for subnets 172.16.112.0/24, 172.16.113.0/24, 172.16.114.0/24,
and 172.16.115.0/24. The hosts Mill (172.16.115.20), Pascal (172.16.112.50), and
Locke (172.16.112.10) are attacked and compromised, and they are then used to
launch a DDoS attack against an external host using spoofed IP addresses. There
are two Snort network IDS sensors (an outside sensor and a DMZ sensor), and
the hosts Mill and Pascal are equipped with instances of the USTAT host-based
IDS.

Attack Phases The data set contains an attack in five phases (see [11]). The
phases are outlined below with excerpts from the original description.

IP sweep approximate time 09:45 to 09:52: “The adversary performs a scripted
IPsweep of multiple class C subnets on the Air Force Base. (...) The attacker
sends ICMP echo-requests in this sweep and listens for ICMP echo-replies to
determine which hosts are up.”

sadmind ping approximate time 10:08 to 10:18: “The hosts discovered in the
previous phase are probed to determine which hosts are running the sadmind
remote administration tool. (...) Each host is probed, by the script, using the
ping option of the sadmind exploit program.”

Break in to Mill, Pascal, and Locke approximate time 10:33 to 10:34: “The
attacker then tries to break into the hosts found to be running the sadmind
service in the previous phase. The attack script attempts the sadmind Remote-
to-Root exploit several times against each host (...) there are 6 exploit attempts
on each potential victim host. To test whether or not a break-in was successful,
the attack script attempts to login.”

Installation of DDoS tools on Mill, Pascal, and Locke approximate time 10:50:
“Entering this phase, the attack script has built a list of those hosts on which
it has successfully installed the hacker2 user. These are Mill, Pascal, and Locke.
For each host on this list, the script performs a telnet login, makes a directory
(...) and uses rcp to copy the server-sol binary into the new directory. This is the
mstream server software. The attacker also installs a .rhosts file for themselves.”

Outbound DDoS with spoofed source IP addresses approximate time 11:27: “In
the final phase, the attacker manually launches the DDoS. This is performed
via a telnet login to the victim on which the master is running, and then, from
the victim, a telnet to port 6723 of the localhost. (...) The command mstream
131.84.1.31 5 causes a DDoS attack, of 5 seconds duration (...) to be launched
by all three servers simultaneously.”

Observation Messages Based on the available alert data and the output from
the alert classification preprocessor, we use the following observations in the
implementation:

1. Suspicious Snort alert: All alerts that are not explicitly classified.
2. Compromise Snort alert: All alerts that are classified as “successful admin”.
3. Scan Snort alert: All alerts that are classified as “successful recon limited”.
4. Host-based alert (only available for hosts Mill and Pascal): The data set only

contains the alert types “unauth delete” and “restricted dir write”.
5. Outbound Snort alert: All Snort alerts originating from an internal host.
6. No alert: This observation is assumed whenever there are no other alerts to

be processed for a host.

The classification could be made more fine-grained, but it is kept simple in this
paper for demonstration purposes. In particular, the output of the host-based
USTAT IDS in a real setting would generate a wide range of different alert
types. In this example, however, we have made the simplification of modeling
the USTAT sensor as producing one observation type only. Similarly, we have
made the assumption that outbound Snort alerts reduce the probability of being
in the “good” state.

Model Parameters The monitored network consists of 1016 IP addresses,
each modeled by an HMM. The transition probability matrices P, observation
probability matrices Q, initial state distribution vectors π, and the cost vectors
C are the same for each host, with the exception of the hosts Mill and Pascal,
which incorporate the possibility of receiving USTAT alerts. As an example, the
host Mill is modeled as follows:

PMill =

0BB@
pGG pGP pGA pGC

pPG pPP pPA pPC

pAG pAP pAA pAC

pCG pCP pCA pCC

1CCA

=

0BB@
0.992995 0.004 0.003 0.000005

0.004 0.991995 0.004 0.000005
0.003 0.004 0.992995 0.000005

1× 10−34 1× 10−34 1× 10−34 1− 3× 10−34

1CCA ,

QMill =

0BB@
qG(1) qG(2) qG(3) qG(4) qG(5) qG(6)
qP (1) qP (2) qP (3) qP (4) qP (5) qP (6)
qA(1) qA(2) qA(3) qA(4) qA(5) qA(6)
qC(1) qC(2) qC(3) qC(4) qC(5) qC(6)

1CCA

=

0BB@
0.05 0.0001 0.02 0.01 0.02 0.8999
0.05 0.0001 0.25 0.01 0.02 0.6699
0.1 0.005 0.1 0.03 0.03 0.735
0.02 0.05 0.04 0.04 0.05 0.8

1CCA ,

πMill = (πG, πP , πA, πC) = (1, 0, 0, 0),

CMill = (cG, cP , cA, cC) = (0, 25, 50, 100).

From PMill, we can see that the probability of entering the state C is rela-
tively low, but that once entered, the probability of leaving this state is very low.
From QMill, we can see that the scan observation is relatively likely to occur
in the P state, that the suspicious and scan observations are relatively likely to
occur in the A state, and that the USTAT and outbound observations have a
relatively high probability in the C state. Note that once entered, the C state is
likely to last for a long time. From πMill and CMill, we can see that the initial
state of the host is G with corresponding cost 0. The maximum cost for the host
is 100. Most of the hosts do not have a host-based IDS and are modeled with the
following observation probability matrix (host Locke is given as an example):

QLocke =

0BB@
0.05 0.0001 0.02 0 0.02 0.9099
0.05 0.0001 0.25 0 0.02 0.6799
0.1 0.005 0.1 0 0.03 0.765
0.02 0.05 0.04 0 0.05 0.84

1CCA
For the purpose of this example all hosts, except the hosts with USTAT, have

the exact same model parameters. This is done for demonstration purposes and
in order to provide comparable results between the hosts. In a real setting, the
model parameters of the hosts would vary according to their security configura-
tions, the observation probability parameters vary according to the sensors used,
and the cost vector is determined by the value of the assets and the consequence
of the different security states.

Results The above models were implemented and used to perform real-time
risk assessment on the Lincoln Laboratory data set. The entire data set has a

duration of 11836 sec., and a total of 36635 alerts, 84 of which are USTAT alerts.
The remaining are Snort alerts. As outlined above, the data set consists of an
attack in five phases. By inspecting the data set, we can see that the phases
correspond to the approximate time periods 1500 - 1920 sec. (the IP sweep),
2880 - 3480 sec. (the sadmind ping), 4380 - 4420 sec. (the break in to Mill,
Pascal, and Locke), 5400 sec. (the installation of DDoS tools), and 7620 sec.
(the outbound DDoS).

Figure 3 shows the total assessed risk for the Lincoln Laboratory data for
the full duration of the data set. The figure shows a sum of the risk for all
hosts in the four subnets (in total 1016 hosts). The break-ins performed against
Mill, Pascal, and Locke are clearly visible as peaks of risk activity. The sadmind
ping also introduces a peak in the data, but the IP sweep and the installation
of DDoS tools are hardly distinguishable from the remaining activity. Note that
the system seems to have a minimum risk of approximately 1200 in the long run.
This is caused by a stable security state with risk level 1.09 for the individual
hosts, given a sufficiently long interval of only “no alert” observations. The stable
security state risk for the entire network is consequently 1107. The difference can
be explained by the fact that the host 172.16.114.1 has a high amount (more than
2000) of outbound ICMP related alerts. As a router, this host should probably
have different HMM parameters then the other hosts.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 2000 4000 6000 8000 10000

Ri
sk

 A
ct

ivi
ty

Time (s)

Fig. 3. Total assessed risk for Lincoln Labs data set.

Figure 4 (a), (b), and (c) show the assessed risk for the hosts Mill, Pascal, and
Locke, respectively. The hosts Mill and Pascal have host-based IDSs (USTAT)
that provide several alerts during the experiment. This can be seen in Fig. 4 (a),
(b), and (c), as the host Locke has far less activity than the other two. Phase
3 and 5 of the attack are clearly marked with the maximum risk activity value
(100) for all three hosts. Phase 2 and 4 are also visible as peaks, whereas phase 1
is hardly discernible from the other activity in Fig. 4 (a) and (b), and not visible
at all in (c). Note that Pascal (Fig. 4 (b)) shows more peaks than Mill (Fig. 4

(a)). This is caused by the fact that Pascal produces 70 USTAT alerts, while
Mill only produces 14.

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

Ri
sk

 A
ct

ivi
ty

Time (s)

(a) Assessed risk for host Mill.

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

Ri
sk

 A
ct

ivi
ty

Time (s)

(b) Assessed risk for host Pascal.

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

Ri
sk

 A
ct

ivi
ty

Time (s)

(c) Assessed risk for host Locke.

Fig. 4. Real-time risk assessment for Lincoln Labs data set.

Figure 5 (a) and (b) show the assessed total network risk and the assessed
risk for Mill at the approximate time of the compromise (4000s to 6000s). The
graphs correspond to Fig. 3 and 4 (a), but zoom in on the time period. Fig. 5
(b) shows the two peaks corresponding to phase 3 and 4 of the attack.

By counting the priority of the alerts for the entire data set, we can eval-
uate the performance of the alert prioritization mechanism. However, for the
purpose of the prioritization results, we do not consider the outbound DDoS
attack with spoofed IP addresses and the outbound alerts from the router with
IP address 172.16.114.1. The outbound DDoS attack alerts represents 93% of
the total alerts, and are all marked with the highest priority. The IP address
172.16.114.1 is discussed above. It has a high number of alerts (6% of the total
amount), and they would also all be marked as maximum priority alerts. Having
filtered out these alerts, 52.49% of the alerts are with priority below 20, 28.87%
with priority between 20 and 40, 6.49% with priority between 40 and 60, 2.35%
with priority between 60 and 80, and 9.81% with priority between 80 and 100. It
is clear that the alert prioritization is successful in that only a small percentage
of the alerts are assigned high priority values. The majority of the alerts are
marked as low priority.

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 4000 4500 5000 5500 6000

Ri
sk

 A
ct

ivi
ty

Time (s)

(a) Assessed network risk showing
system compromise.

 0

 20

 40

 60

 80

 100

 4000 4500 5000 5500 6000

Ri
sk

 A
ct

ivi
ty

Time (s)

(b) Assessed risk showing host Mill
compromise.

Fig. 5. Lincoln Labs data set showing period of time of compromise.

We see that the risk assessment method with the current configuration and
alert classification parameters is able to assess the risk and detect several of the
security relevant incidents outlined above. In particular, we see that the model
is capable of assigning the appropriate maximum risk values to the two most
critical incidents, the compromise and the outbound DDoS attack with spoofed
IP addresses.

4.2 Real Traffic Data from the Technical University of Vienna

The second data set is based on real network traffic from the Technical University
of Vienna [8]. The data set contains a trace of nine days for a class B network.
However, in this experiment we have only included three days worth of data
from one class C network. There were no known security incidents during this
period. The IDS used in this setup is Snort with the same signature set as in the
previous example. The model parameters are also the same as in the previous
example, with the exception that there are no host-based IDSs in this setup.

Results Figure 6 shows the assessed risk for the entire network for the full
three day period. The two periods of increased risk activity are caused by an
increasing amount of outbound alerts, as seen in Fig. 7 (c). We see that the risk
seems to have a lower bound at a level about 280. This lower bound is the total
risk associated with the stable security state of the individual host HMMs. As
in 4.1, the individual stable state risk for a host is 1.09, and the total stable
state risk for the network is consequently 276.86.

Figure 7 (a), (b), (c), and (d) show the assessed risk for a duration of 3.5
hours, corresponding to the second period of increased activity in Fig. 6. Fig. 7
(a) shows the risk activity for the full network, indicating three peaks of increased
risk and some periodic fluctuations. Fig. 7 (b) shows the risk activity for a host
with no alert activity. Fig. 7 (c) shows the risk activity for a host with outbound
alerts that lead to several peaks of maximum risk for the host. Based on the
underlying traffic data, it has been determined that these alerts are in fact false
alerts from Snort caused by a specific user pattern. Finally, Fig. 7 (d) shows the

risk activity for a web server with periodic peaks of risk values between 20 and
40. This is caused by probing activity directed at the web server. This activity is
present during the entire period, and is a contributing factor to the fluctuations
in Fig. 6.

 0

 100

 200

 300

 400

 500

 100000 150000 200000 250000

Ri
sk

 A
ct

ivi
ty

Time (s)

Fig. 6. Total assessed risk for class C subnet (3 days).

For this data set, 46.35% of the alerts are assigned priority below 20, 49.78%
with priority between 20 and 40, 1.29% with priority between 40 and 60, 0.08%
with priority between 60 and 80, and 2.49% with priority between 80 and 100.
As for the previous example, it is clear that the alert prioritization is successful
in that only a small percentage of the alerts are assigned high priority values.

We see that the approach is applicable to data from real network traffic.
However, this example demonstrates that the proposed model is dependent on
the accuracy of the underlying IDSs, and false positives and negatives affect
the results of the risk assessment. In this experiment, we have reused the HMM
parameters from the Lincoln Laboratory example. This allows us to compare
the performance of the model under similar circumstances. However, this is not
an optimal approach for this data set, as the parameters should be estimated
specifically for the monitored network.

5 Discussion

The network risk assessment approach presented in this paper provides a quan-
tification of the risk level of hosts in a network. An alternative, naive approach
to this problem could involve counting alerts and assigning a value according to
the assumed impact of the alerts. A decay function could be used to facilitate
a gradual decrease in risk to avoid a non-decreasing risk situation. The method
proposed in this paper provides several advantages over the naive approach. The
primary advantage is that HMMs provide an established framework for state

 0

 200

 400

 600

 800

 1000

 1200

 170000 172000 174000 176000 178000 180000 182000

Ri
sk

 A
ct

ivi
ty

Time (s)

(a) Assessed risk for class C subnet
(3.5 hours).

 0

 20

 40

 60

 80

 100

 170000 172000 174000 176000 178000 180000 182000

Ri
sk

 A
ct

ivi
ty

Time (s)

(b) Assessed risk for a host with no
alert activity (3.5 hours).

 0

 20

 40

 60

 80

 100

 170000 172000 174000 176000 178000 180000 182000

Ri
sk

 A
ct

ivi
ty

Time (s)

(c) Assessed risk for a host with out-
bound alerts (3.5 hours).

 0

 20

 40

 60

 80

 100

 170000 172000 174000 176000 178000 180000 182000

Ri
sk

 A
ct

ivi
ty

Time (s)

(d) Assessed risk for a web server
(3.5 hours).

Fig. 7. Real-time risk assessment for a real Class C subnet (3.5 hours).

estimation, modeling both the probabilities of entering certain states, as well as
the probabilities of receiving different observations in each state, effectively pro-
viding a framework for representing the false-positive and false-negative effects
of IDSs. The state modeling and transition probabilities can also be related to
traditional risk assessment methodologies. Finally, the use of learning algorithms
and parameter re-estimation can be employed to tune the system automatically.

Note that we model the security state of a system; we do not attempt to
model individual attacks or attackers. One limitation of the approach is that
an attacker with knowledge of the HMMs used could attempt to camouflage a
successful compromise by subsequently causing a number of less serious alerts.
Depending on the HMMs used, this could lead to a misrepresentation of the risk
level of the system.

The HMMs used in this paper are fully connected, in that every state of the
model can be reached in a single step from every other state of the model [13].
It is possible to use other types of HMMs, such as the left-right models. These
models can, for example, be used if one wants to model the compromised state
as consuming; i.e., that the probability of being in state C never decreases. Fig. 8
shows an example of a left-right HMM, which only allows transitions from left to
right; i.e., to more security critical states. If there is a steady input of alerts, the
risk of a system modeled with this HMM will tend to approach the maximum
risk for the system.

G P A C

Fig. 8. A left-right HMM.
Although the experiments in this paper were run in an off-line mode, we

believe that the method is capable of handling alerts in real-time. The 3.5 hour
Lincoln Laboratory data set was processed in 2 minutes 44 seconds, while the
3 day TU Vienna data set was processed in 20 minutes 54 seconds. Even with
significantly smaller time intervals, the model would still be able to process alerts
on a single host in real-time for multiple class C networks.

6 Related Work

Research in risk assessment and risk management has traditionally focused on
the development of methods, tools, and standards for risk assessment. Two com-
monly recommended references for risk management are [14] and [15]. Method-
ologies, such as Coras [2] and Morda [5], have been developed to support the
risk assessment process. This paper complements these approaches by performing
risk assessment in real-time based on an initial estimation of model parameters
representing the probabilities of different security states. A real-time risk assess-
ment method has previously been proposed by [6]. However, that approach is
limited to risk assessment for individual hosts.

A number of different approaches that perform alert prioritization have been
proposed. In [12] Porras et al. present a model that takes into account the im-
pact of alerts on the overall mission that a network infrastructure supports. This
approach relies on a knowledge base that describes the security-relevant char-
acteristics of the protected network in order to prioritize the alerts. Other alert
prioritization systems [4, 7, 9] perform alert verification. These systems assign a
higher priority to alerts that are verified as true attacks, while alerts that are de-
termined to be false positives are given a low priority. Alert verification systems
operate either offline or online. Offline systems perform periodic vulnerability
scans of the protected network and store the result in a database. Alerts are
verified by checking if the vulnerabilities that the alerts refer to are present on
the attacked hosts. Online alert verification systems operate in a similar way,
but no database is kept. Instead, vulnerability scanning is performed on-demand
when alerts are received by the system [10].

7 Conclusions and Future Work

We have presented an approach to real-time network risk assessment that de-
termines the risk level of a network as the composition of the risks of individual

hosts, providing a precise and fine-grained model for risk assessment. The model
is probabilistic and uses Hidden Markov Models to represent the likelihood of
transitions between security states. We have tightly integrated the risk assess-
ment approach with the STAT framework and have used results of the risk
assessment to prioritize the IDS alerts. Finally, we have evaluated the approach
using both simulated and real-world data.

An important limitation of this approach is the need for model parameter
estimation. The parameters for our experiments were estimated manually. This
is a time-consuming task with inherent uncertainties. We plan to investigate the
use of training algorithms to estimate the model parameters

For the experiments in this paper we did not take into consideration de-
pendencies between hosts. Doing this would give a more accurate overview of
network risk and better model the consequences of security incidents relating to
assets inside a network. For example, if a host on the inside of a network is com-
promised, this should increase the risk level of other hosts within the network
as well. We plan to include inter-host dependencies in our future experiments.

A general framework for handling multiple sensors can be implemented by
representing each of the sensors monitoring a host with an HMM. In this way,
each sensor can be assigned a separate observation probability matrix Q. The
state estimation can be performed on behalf of each of the sensors, while the
risk for a host is computed as a function of the state estimates of all the relevant
sensors. This will be implemented in the next version of the system.

We have performed experiments using real-traffic data in an off-line mode,
but we have not yet tested the system on-line with live traffic. This will be done
as part of the future work.

Acknowledgments

This research was supported by the US Army Research Office, under agreement
DAAD19-01-1-0484, and by the National Science Foundation, under grants CCR-
0238492 and CCR-0524853. The “Centre for Quantifiable Quality of Service in
Communication Systems, Centre of Excellence” is appointed by The Research
Council of Norway, and funded by the Research Council, NTNU and UNINETT.

References

1. André Årnes, Karin Sallhammar, Kjetil Haslum, Tønnes Brekne, Marie Elisa-
beth Gaup Moe, and Svein Johan Knapskog. Real-time risk assessment with
network sensors and intrusion detection systems. In International Conference on
Computational Intelligence and Security (CIS 2005), 2005.

2. CORAS IST-2000-25031 Web Site, 2003. http://www.nr.no/coras.
3. Hervé Debar, David A. Curry, and Benjamin S. Feinstein. Intrusion detection

message exchange format (IDMEF) – internet-draft, 2005.
4. Neil Desai. IDS correlation of VA data and IDS alerts. http://www.

securityfocus.com/infocus/1708, June 2003.

5. Shelby Evans, David Heinbuch, Elizabeth Kyule, John Piorkowski, and James
Wallner. Risk-based systems security engineering: Stopping attacks with inten-
tion. IEEE Security and Privacy, 02(6):59 – 62, 2004.

6. Ashish Gehani and Gershon Kedem. Rheostat: Real-time risk management. In
Recent Advances in Intrusion Detection: 7th International Symposium, (RAID
2004), Sophia Antipolis, France, September 15-17, 2004. Proceedings, pages 296–
314. Springer, 2004.

7. Ron Gula. Correlating ids alerts with vulnerability information. Technical report,
Tenable Network Security, December 2002.

8. Cristopher Kruegel, Engin Kirda, Darren Mutz, William Robertson, and Giovanni
Vigna. Polymorphic worm detection using structural information of executables. In
Proceedings of the International Symposium on Recent Advances in Intrusion De-
tection (RAID 2005), volume 3858 of LNCS, pages 207–226, Seattle, WA, Septem-
ber 2005. Springer-Verlag.

9. Cristopher Kruegel and William Robertson. Alert verification: Determining the
success of intrusion attempts. In Proceedings of the 1st Workshop on the De-
tection of Intrusions and Malware and Vulnerability Assessment (DIMVA 2004),
Dortmund, Germany, July 2004.

10. Cristopher Kruegel, William Robertson, and Giovanni Vigna. Using alert verifica-
tion to identify successful intrusion attempts. Practice in Information Processing
and Communication (PIK 2004), 27(4):219 – 227, October – December 2004.

11. Lincoln Laboratory. Lincoln laboratory scenario (DDoS) 1.0, 2000. http://www.

ll.mit.edu/SST/ideval/data/2000/LLS_DDOS_1.0.html.
12. Phillip A. Porras, Martin W. Fong, and Alfonso Valdes. A mission-impact-based

approach to infosec alarm correlation. In Proceedings of the International Sympo-
sium on the Recent Advances in Intrusion Detection (RAID 2002), pages 95–114,
Zurich, Switzerland, October 2002.

13. Lawrence R. Rabiner. A tutorial on hidden markov models and selected applica-
tions in speech recognition. Readings in speech recognition, pages 267–296, 1990.

14. Standards Australia and Standards New Zealand. AS/NZS 4360: 2004 risk man-
agement, 2004.

15. Gary Stonebumer, Alice Goguen, and Alexis Feringa. Risk management guide for
information technology systems, special publication 800-30, 2002. http://csrc.

nist.gov/publications/nistpubs/800-30/sp800-30.pdf.
16. Sun Microsystems, Inc. Installing, Administering, and Using the Basic Security

Module. 2550 Garcia Ave., Mountain View, CA 94043, December 1991.
17. Giovanni Vigna, Richard A. Kemmerer, and Per Blix. Designing a web of highly-

configurable intrusion detection sensors. In W. Lee, L. Mè, and A. Wespi, editors,
Proceedings of the 4th International Symposium on Recent Advances in Intrusion
Detection (RAID 2001), volume 2212 of LNCS, pages 69–84, Davis, CA, October
2001. Springer-Verlag.

18. Giovanni Vigna, Fredrik Valeur, and Richard Kemmerer. Designing and imple-
menting a family of intrusion detection systems. In Proceedings of European Soft-
ware Engineering Conference and ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE 2003), Helsinki, Finland, September 2003.

