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ABSTRACT
Careless development of web-based applications results in
vulnerable code being deployed and made available to the
whole Internet, creating easily-exploitable entry points for
the compromise of entire networks. To ameliorate this situ-
ation, we propose an approach that composes a web-based
anomaly detection system with a reverse HTTP proxy. The
approach is based on the assumption that a web site’s con-
tent can be split into security sensitive and non-sensitive
parts, which are distributed to different servers. The anomaly
score of a web request is then used to route suspicious re-
quests to copies of the web site that do not hold sensitive
content. By doing this, it is possible to serve anomalous
but benign requests that do not require access to sensitive
information, sensibly reducing the impact of false positives.
We developed a prototype of our approach and evaluated
its applicability with respect to several existing web-based
applications, showing that our approach is both feasible and
effective.
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1. INTRODUCTION
Web-based applications represent a serious security expo-

sure. These applications are directly accessible through fire-
walls by design, and, in addition, they are often developed
in a hurry by programmers who focus more on functional-
ity and appearance than security. As a result, web-based
applications have recently become the primary target of at-
tempts to compromise networks. This is confirmed by an
analysis of the web-related vulnerabilities published in the
CVE database, which showed that the percentage of web-
related vulnerabilities increased from 16% in 1999 to 26% in
2004 [7]. Furthermore, recent web-based compromises, such
as the Tower Records incident [13] and the Victoria Secret
incident [18], cost a considerable amount of money in terms
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of settlements paid to users whose private information was
disclosed as a result of the attacks.

The security of web-based application should be addressed
by means of careful design and thorough security testing,
but, unfortunately, in the real world it is often the case that
web-accessible vulnerable systems store and manage sensi-
tive information. For this reason, security-conscious devel-
opment methodologies should be complemented by an in-
trusion detection infrastructure that is able to provide early
warning about malicious activity.

Web-based attacks can be detected (and possibly blocked)
by intrusion detection systems (IDSs) that use signature-
based techniques. For example, Snort 2.3 [14] devotes 1006
of its 2564 signatures to detecting web-related attacks. How-
ever, many web-based attacks cannot be easily modeled by
signatures because they are application-specific, and, in ad-
dition, they often do not contain any common characterizing
feature (such as the NOP sledge in a buffer overflow attack).

To deal with attacks that are tailored to a specific web-
application, anomaly detection systems have been proposed
that characterize the “normal” use of a web-based applica-
tion. These systems are able to block web requests that
do not fit the established parameters of “normality” [5, 8].
Unfortunately, anomaly detection systems are prone to false
positives due to over-simplified modeling techniques or in-
sufficient training. Therefore, if the anomaly score of a web
request is used as the basis to deny access to a web site, a
false positive may cause the denial of a legitimate request.
This situation is the result of an “all-or-nothing” approach,
in which all requests that are identified as anomalous are
automatically considered malicious. In the real world, how-
ever, anomalous requests may be benign.

The “all-or-nothing” approach is often applied to the de-
sign of the web site content as well. This means that sensi-
tive content (e.g., private information about users) and non-
sensitive content (e.g., a product catalog) are both stored
and accessible on the same server.

To mitigate the problem of false positives generated by
anomalous but benign requests, we propose a novel solution
based on data compartmentalization and anomaly-based re-
verse proxying. The idea is to replicate a web site on two
or more “sibling” servers with different levels of privilege
(e.g., different levels of access to sensitive information). An
anomaly detection system then scores incoming requests and
uses the anomaly score to drive a reverse HTTP proxy. A
reverse HTTP proxy is a proxy application that is deployed
close to one or more web servers. The proxy intercepts
HTTP requests for the web servers, performs some process-



ing, and subsequently forwards the request to one of the web
servers. Typically, reverse proxies are used to perform load
balancing among multiple servers or to increase performance
by caching static content. In our case, the purpose of the
reverse proxy is to forward anomalous requests to sibling
servers with only limited (or no) access to sensitive content.
By doing this, it is possible to provide some form of service
even in the case of anomalous requests.

For example, in the case of an e-commerce site, a sibling
server might provide access to product-related information
(e.g., a product catalog) and no (or fake) sensitive informa-
tion about users. Another sibling server would instead be
able to access all sensitive information. In this case, anoma-
lous queries are directed by the reverse proxy to the first
sibling, while normal queries are forwarded to the second
(fully functional) server. If a user performs an anomalous
but benign query that does not involve any sensitive data,
the query will be served by the first sibling and the user
will receive the correct information. Requests that are both
anomalous and malicious, however, will not be able to access
sensitive information.

This paper presents our approach to mitigate the impact
of false positives, describes a prototype implementation of
our system, and provides a discussion of its applicability
to real-world applications. More precisely, in Section 2 we
discuss different high-level designs to achieve processing of
web requests at different levels of privilege. Then, in Sec-
tion 3, we describe how web requests are first analyzed to
determine their anomaly score and then routed to different
sibling web servers. In Section 4, we provide a discussion
of the applicability of our approach with respect to several
existing web-based applications. Finally, Section 5 discusses
related work and Section 6 briefly concludes.

2. CHARACTERIZING INFORMATION
Web-based attacks are aimed at either obtaining control of

the host running the web server application (e.g., through
a buffer overflow) or disclosing sensitive information (e.g.,
through an SQL injection attack that dumps the content of
a database table).

The first type of attack is caused by vulnerabilities in the
web server software or in a server-side web-based application
that allow one to compromise the security of the underly-
ing host. The second type of attack is usually made possi-
ble by the fact that a single back-end database is used to
store all the persistent information of a web-based applica-
tion. Therefore, by exploiting a vulnerability in code that in
principle has access to a limited portion of the database con-
tents, it is possible to extend one’s access to the database
and retrieve sensitive information. For example, Figure 1
(a) shows an e-commerce web site implemented with a sin-
gle server that relies on a single back-end database and that
accesses a credit card processing server. All the application
functions (i.e., f1, f2, and f3) have the same level of access
to the database, even though they use different tables (for
example, f2 uses table x only, while f1 does not use any
table of the database).

A web site could be made more resilient to attacks if it
would be possible to design both the server and the database
infrastructure so that different levels of access to the database
and the hosts running the server processes could be clearly
enforced.

For example, the e-commerce application could be struc-

tured so that: (i) non-sensitive, static information about the
e-commerce company (e.g., company contacts and support
information) is accessible through one server; (ii) the non-
sensitive, dynamic information about product availability is
accessible through a second server that accesses a product
database; and, finally, (iii) the sensitive information about
users is accessible through a third server that relies on a user
database, which is separated from the product database.
This last server has also access to the credit card processing
server. This is the design shown in Figure 1 (b), where each
function is implemented on a different server and accesses
only the needed information.

In this example, the compromise of the server providing
product information would not allow the attacker to access
the database containing the sensitive information about the
users or the credit card transaction server.

Unfortunately, this type of “compartmentalized” design
cannot be easily applied to existing applications, where the
different functions provided by a web site are closely inter-
twined.

Therefore, we propose an alternative design where the web
site’s contents are replicated across servers, instead of being
partitioned. In addition, the database used by the web-
based application is extended with user accounts at different
levels of privilege. Each of these accounts is associated with
one of the replicated servers. Then, an anomaly detection
system is used to determine the likelihood that a request
represents an attack. This information is used by a reverse
web proxy to forward the request to the web server that is
able to provide the best possible level of service, given the
anomaly score of the request.

According to this design, the e-commerce application de-
scribed above would be implemented as shown in Figure 1
(c). In this case, all the site’s functionality (i.e., f1, f2, and
f3) is replicated on three servers (A, B, and C). This step re-
quires no modification of the original application. The web
server proxy is configured so that queries that are highly
anomalous are sent to server A, queries that are consid-
ered moderately anomalous are sent to server B, and normal
queries are sent to server C. Server C is the only one that is
able to access the credit card server.

The database is modified to create two different users u1

and u2, where u1 is allowed to access table x only and u2 is
able to access both table x and table y. User u1 is associated
with server B and user u2 is associated with server C.

In this design, if a request that uses function f2 is sent to
server A, the request will fail because f2 uses the database
but no connections are allowed to the database. On the
other hand, a highly anomalous request for function f1 will
be correctly executed. If identifying this request as highly
anomalous represents a false positive, then the user will not
be denied access. If the request actually represents an at-
tack, then two cases are possible. In the first case, the attack
aims at accessing the database, and, in this case, the attack
will be foiled. In the second case, the attack aims at com-
promising the host. In this case, assuming that the attack
is successful, the host being compromised has no access to
the credit card server and the damage is contained. Note
also that this host is likely to serve a small portion of the
requests and therefore it could be “hardened” to be more
resilient to certain types of attacks at the cost of some per-
formance degradation (as it is done, for example, in [15]).

Moderately anomalous requests are sent to server B in



Figure 1: Web site designs.

this design. If a request of this type uses function f2, it is
executed correctly, since server B has access to the database
tables utilized by f2. Note that if the request would have
failed if it had been sent to the more restrictive server A.

3. ROUTING WEB REQUESTS
We implemented the proxy-based approach described in

the previous section by integrating an existing anomaly de-
tection system into a reverse web proxy that we developed.
The proxy is located at the public IP address of the web site
being protected and receives all incoming HTTP requests.
When a request is received, it is parsed and forwarded to
the anomaly detector component, which calculates a score
indicating how anomalous the request is. If the anomaly
score is below a certain tunable threshold, i.e., the request
is not suspicious, the request is forwarded to the real web
server for processing. If a request is deemed anomalous, it
is forwarded to a locked down system, where a malicious
request would not be able to cause any harm.

The anomaly component of the proxy is based on the We-
bAnomaly system presented in [8]. The anomaly detector
first extracts from the requested URL the path to the web
application being invoked, along with the arguments passed
to it. The anomaly detector then looks up the profile asso-
ciated with the web application. A profile is a collection of
statistical models which is associated with one specific web
application.

The anomaly detection models contained in the profile are
a set of procedures used to evaluate a certain feature of a
query attribute, and operate in one of two modes, learning or
detection. In the learning phase, models build a profile of the
“normal” characteristics of a given feature of an attribute
(e.g., the normal length of values for an attribute), setting
a dynamic detection threshold for the attribute. During the
detection phase, models return an anomaly score for each
observed example of an attribute value. This is simply a
probability on the interval [0, 1] indicating how anomalous
the observed value is in relation to the established profile
for that attribute. Since there are generally multiple models
associated with each attribute of a web application, a final
anomaly score for an observed attribute value during the
detection phase is calculated as the weighted sum of the
individual model scores. The overall anomaly score is then
used to decide which web server should process the request.
For more information on the models themselves, as well as
the anomaly detector as a whole and its evaluation on real-

world data, please refer to [8].
Each of the back-end web servers has a different privi-

lege level and processes requests with a different range of
anomaly scores. For instance, the requests determined to
be normal are sent to the web server with the highest privi-
lege level, while anomalous requests are sent to a less privi-
leged server. Depending on the privilege level of the server,
the amount of sensitive information it can access varies.
What information each web server can access is determined
by what database it is connected to. The most privileged
web server is connected to a database that contains all the
information, while less privileged servers are connected to
databases where part or all of the sensitive data is removed.

Instead of using multiple physical databases, our system
implements the multiple database concept using multiple
users within a single database system. Each web server is
connected to the database as a different user. The access
control system of the database is configured so that each
user is only able to access the records associated with the
privilege level of the corresponding web server. The ad-
vantage of using only one physical database is that it is
much simpler to implement because no database replication
is needed. The problem with this method is that the access
control mechanisms of most databases are not very flexible.
It is for instance easy to deny access to a table, but it is
not easy to deny access to any row containing the string
“sensitive”.

Another possible way of implementing the split back-end
database is using multiple physical database servers. The
master database would contain an unaltered copy of the
sensitive information. The non-sensitive data stored in the
master database would be replicated to the less privileged
servers. Depending on the privilege level of the database,
more or less information would be censored. Replication of
the databases would be done in a lazy manner when it is
not critical that the censored databases contain completely
up-to-date information. However, this approach is difficult
to implement, as it might be hard to determine what in-
formation can be replicated in a lazy manner and what in-
formation must be immediately available to all web servers.
For instance, if session information is stored in the database,
lazy updates can not be used. Consider, for example, two
requests performed in the same session, where one of the re-
quests is flagged as anomalous while the other is determined
to be normal. These two requests might be served by two
different web servers, which would need to access consistent



state information.
In order to prevent potential attackers from simply by-

passing the proxy by connecting directly to the backed web
server, efficient firewalling has to be deployed in order to
prevent this attack vector. We achieved this by assigning
non-routable IP addresses to the web servers and deploying
the servers on a network isolated from the Internet. A sepa-
rate interface on the proxy server connects the proxy to the
isolated network.

4. DISCUSSION
The purpose of this section is to demonstrate that our

reverse proxy technique is capable of reducing the negative
impact of false positives. To this end, we have to provide
evidence that a considerable fraction of web requests can
be handled by an application without relying on access to
sensitive information stored in the database. Unfortunately,
providing such evidence in a general fashion is difficult for
the following reasons:

1. The fraction of requests that access sensitive informa-
tion depends on the type of application. For exam-
ple, a news portal that uses a read-only database will
probably never require access to sensitive tables since
all information should be publicly available. An ap-
plication that is used by a company to keep track of
the working hours of its employees, on the other hand,
will most likely require a significant amount of access
to sensitive data.

2. Even when only a single application is analyzed, its
site-specific usage might dramatically influence the num-
ber of sensitive operations performed. For example, in
a web shop application, the ratio between users who
anonymously browse through the catalogs and users
who actually login and purchase goods will determine
how many of the requests need full access.

3. Finally, it is not always clear which database tables
and operations should be classified as sensitive. While
most people would agree that modifications to a table
with user data should be treated as being privileged,
it is not always that obvious. In a discussion board
application, for example, should one consider the list
of subscriptions to topics of interest as being sensitive
because disclosure might violate user privacy? The an-
swer may vary: When the topics are related to sport
events, then the answer is likely no. When the discus-
sions are on incurable diseases, the answer might be
different.

To address the problem of the different types of web-
based services, we selected three programs that represent
a mix of typical web applications that require substantial
program logic and a back-end database. An important re-
quirement during the selection process was that the ap-
plications had to perform sensitive operations during nor-
mal usage. For our experiments, we chose phPay 2.0 [12],
myBloggie 2.1.2 [9], and punBB 1.2.5 [4]. phPay is a typi-
cal web-shop application that supports products in different
categories, search functionality, user management, and on-
line payment. myBloggie is a web-log script that allows
users to lead an on-line diary and to comment on other peo-
ple’s public entries. punBB is a discussion board that sup-
ports different forums, rich text formatting, as well as user

management and notification if messages are posted on sub-
scribed topics. All three programs are written in PHP [11]
and use the MySQL database [10] to store information. Ta-
ble 1 provides more information on the selected applications
such as the number of different PHP source files, their total
lines of code, and the number of used database tables.

Name Source Files Lines of Code Database Tables

phPay 2.0 43 3,023 29
myBloggie 2.1.2 41 5,277 4
punBB 1.2.5 56 15,993 17

Table 1: Applications used for the experiments.

4.1 Sensitive Path Coverage
Given our selection of web-based applications, the goal of

our experiments is to assess the fraction of required sensitive
data accesses. On one hand, we attempted to measure this
fraction in a way that is independent of a certain site-specific
work load. To this end, we performed static analysis on the
application code as described below. On the other hand,
and to complement the results of the static analysis, we also
setup the three applications in a live test environment and
run several attacks against them (refer to Section 4.3 for
more details).

For our site-independent program analysis, we leveraged
the concept of path coverage, a well-known metric in soft-
ware testing that measures the fraction of execution paths
through the program that are covered by test cases. The
key idea is to adapt this metric and determine the fraction
of all possible execution paths through the application that
perform sensitive operations on the database. We call this
fraction the sensitive path coverage. Note that the sensitive
path coverage should not be mistaken for a precise estimate
of the number of sensitive operations that can be expected
to be performed. We assume here that all paths through
an application occur with equal probability. Therefore, the
result is more useful as a measure of how much code that
accesses non-sensitive information is interspersed with code
that performs sensitive database accesses. When sensitive
operations are rare and cleanly separated from the rest of the
application code (i.e., the sensitive path coverage is small),
we expect the reverse proxy approach to be more successful.

Unfortunately, pure path coverage is impractical in prac-
tice. The reason is the problem of exponential path explo-
sion that is caused by the fact that a code fragment with
a succession of k decisions (e.g., due to if-statements) con-
tains up to 2k different execution paths. Also, many of these
paths may be infeasible, i.e., there is no input to the program
that can cause a particular path to be executed. Therefore,
one usually attempts to aggregate paths to clusters or to
operate at a higher level than individual statements. We
also utilize this common strategy and calculate the possible
paths at the function level. That is, we do not consider any
intra-procedural control flow. To this end, we first gener-
ate a call graph in which each node of the graph represents
an individual function. An edge is introduced from node v

to node w when the function corresponding to node v calls
the function corresponding to w. Based on this graph, we
then determine the fraction of paths that perform sensitive
operations.

In addition to the exclusive focus on inter-procedural con-
trol flow, we also need to perform path aggregation. Again,



the problem is that a node with k successor nodes in the
call graph would account for 2k paths, leading to path ex-
plosion and an excessive impact of functions that call many
other functions. To reduce the influence of nodes with many
successors, we use Equation 1 to determine the number of
(aggregated) paths p(N) through a node N in the call graph.

p(N) = 1 + k ∗

k
X

i=1

(p(Si)) (1)

In this equation, k is the total number of successor nodes
of N , and Si represents the number of paths through the
ith successor node. It can be seen that in this equation,
the factor 2k, which would be necessary to precisely count
the number of possible paths, has been replaced with k. The
number p(R) of the root node R of the call graph denotes the
total number of possible paths (or aggregated path clusters,
to be more precise) through the application. Note that the
algorithm would not terminate when the call graph contains
loops as a result of direct or indirect recursive function calls.
Therefore, such loops are removed from the call graph prior
to processing, by using a simple depth first search.3 11 01 511 1

Figure 2: Call graph and path calculation.

Consider the example in Figure 2, which demonstrates the
calculation of the aggregated paths for all nodes of a small
call graph. Given the recursive definition of p(.), which cal-
culates the number of paths at a node based on the number
of paths through all its successor nodes, the algorithm eval-
uates the nodes of the call graph in bottom-up order. The
value of a leaf node is always 1. The total number of ag-
gregated paths through the application in this example is
31.

In the next step, we have to determine the number of
(aggregated) paths that pass through nodes that correspond
to functions that perform sensitive operations. We call such
paths sensitive paths. Given both the number of sensitive
paths and the total number of paths, we can easily calculate
the sensitive path coverage.

To find all sensitive paths, we have to first identify sensi-
tive operations. In our current analysis, sensitive operations
are found by checking for string constants in the PHP source
code that performs database operations on privileged tables.
Once all sensitive operations are found, each call graph node
corresponding to a function that contains these operations
is appropriately marked.

As mentioned previously, the exact types of operations
and database tables that are considered sensitive depend on
the application and the environment where it is deployed.
We will discuss examples of different sensitive operations in
more detail when describing the experiments with our three
web applications in Section 4.2.

Hereinafter, we assume that all SQL operations can be
seen as strings written into function bodies. This implies
that the program neither utilizes global variables to store

SQL statements, nor that they are generated in a completely
dynamic fashion during run-time. Of course, it is possible
(and common) that the parameters for the where clause of
a select statement or the values for an insert operation
depend on variables. However, we assume that the type
of the SQL operation and the tables that the program oper-
ates on are statically known. Fortunately, the direct inlining
of SQL statements is a very common programming practice
in PHP, and, indeed, in all the programs we considered for
our experiments all database access statements were directly
embedded as strings that specify both the type of operation
and the accessed tables.

The technique to calculate the number of sensitive paths
that run through the marked nodes is very similar to the
previous technique for deriving the total number of paths.
When a node is marked, all paths that run through it are
automatically considered sensitive. If a node contains no
sensitive operations itself, but sensitive paths run through
(some of) its successor nodes, the sensitive paths ps(N) of
the current node N are derived using Equation 2.

ps(N) = k ∗

k
X

i=1

(ps(Si)) (2)1 0( 3 1 )3 ( 1 0 )0 ( 1 ) 2 ( 5 )1 ( 1 )0 ( 1 ) 0 ( 1 )
Figure 3: Call graph and sensitive path calculation.

The previous call graph example has been extended in Fig-
ure 3 by marking a node as containing sensitive operations
(the node that is drawn shaded in the figure). In addition
to the numbers of the total paths at each node, which are
given in parenthesis, the number of sensitive paths for each
node is shown.

4.2 Experimental Results
To be able to calculate the sensitive path coverage for

a program, source code analysis is necessary. In particular,
one has to generate the call graph and identify the SQL state-
ments that represent sensitive database operations. To this
end, we have developed a static analysis tool that can pro-
cess PHP code, implementing the complete PHP 4 standard.
The choice of PHP was motivated by the fact that many web-
based applications are developed in PHP. We used our tool to
determine the sensitive path coverage for the three sample
applications under different assumptions of what constitutes
a sensitive database access. In the following paragraphs, the
results are presented for each program. A summary of the
results is shown in Table 2.

phPay: In a first step, we considered an access to the database
as critical when it can modify the stored data. That is, we
calculated the sensitive path coverage under the assump-
tion that all SQL insert, update, and delete operations are
sensitive. The result was a path coverage of 8.92%, mostly
caused by modifications to the shopping cart table when
items are purchased or quantities updated. This shows that



Program Sensitive Operations Sensitive Path Coverage (in %)

phPay write 8.92
write + read (user) 100.00
write + modified read (user) 57.48
write + mod. read (user,order) 57.48
write + mod. read (user,order,cart) 78.84

myBloggie write 100.00
write w/o comments 2.37
mod. write + read (user) 100.00
mod. write + read (user.pass) 29.11

punBB write 1.17
write + read (user) 100.00
write + modified read (user) 1.17
write + mod. read (user, subscription) 1.17

Table 2: Sensitive path coverage results.

large parts of a web shop can be used without any write
access to the database.

In the next step, we extended the definition of sensitive
accesses to include select queries to the user table. The
reason is that this table stores the user passwords, and thus
can provide an attacker with valuable information. Unfor-
tunately, the initial sensitive path coverage yielded 100%.
Closer analysis revealed that a select query to the user
table was included in the program’s main method to be
able to display the user names of people currently logged
in. However, it is easy to perform a simple modification to
the program (refactoring) and either remove this non-critical
functionality or mirror the user name in the session infor-
mation. In this case, the sensitive path coverage drops to
57.48%, indicating that a significant amount of requests can
be successfully served without requiring access to the user
table at all.

Finally, we included read access to other privacy-related
tables into the set of sensitive operations. In particular, the
table that stores the pending orders and the table that stores
the cart data of currently shopping users were considered.
By including the first table, the sensitive path coverage re-
mained at 57.48%; when the second table was included, the
sensitive path coverage increased to 78.84%.

myBloggie: Similar to the previous application, we checked
the fraction of sensitive paths that perform (potential) write
operations to the database. Initially, we received a sensitive
path coverage of 100%. This was not surprising, as the pro-
gram allows anyone to add comments to blog entries, a func-
tionality that is included into the body of the main function.
However, when checking for write access to all tables except
the one for comments, the coverage is reduced to only 2.37%.

In the next step, we extended the set of sensitive oper-
ations with read access to the user table (which stores the
user passwords in an encrypted field). Again, a path cover-
age of 100% was determined. This time, the reason was an
SQL statement in the code that adds the user names to all log
entries and comments that are displayed. When the appli-
cation is slightly modified to directly store the user names
with the log entries and the comments, then the sensitive
path coverage is reduced to 29.11%.

punBB: Analyzing the path coverage under the assumption
that only write operations are sensitive, we obtained sensi-
tive path coverage of 1.17% for the message and discussion
board applications. This unexpectedly low value is due to
the fact that the code to insert new message items was con-

fined to a single function that appeared close to the leafs
of the call graph (and thus, is probably too small com-
pared with what would be actually observed during nor-
mal program usage). However, the metric provides a good
indication that the code is well-structured and shows that
users who are only reading the presented information will
be successfully served when using the reverse proxy, even
when submitting anomalous queries (e.g., anomalous search
queries).

When including the user table into the set of critical ta-
bles, the path coverage reaches 100%. For this application,
the culprit is an SQL statement in the main function that gen-
erates the statistics of all people that are currently logged in.
When this statement is removed, the sensitive path cover-
age is reduced to 1.17%. Alternatively, the statistics could
be generated from a dedicated table that stored only the
names of the currently logged-in users, separately from the
passwords. The sensitive path coverage remains the same
when the access to the subscription table is included into the
set of sensitive operations. This observation strengthens the
belief that the code is well-arranged because manipulation
to user state (either directly to the user table, or indirectly
to the subscription table) is well-encapsulated and located
together. We decided to include the subscription table be-
cause reading this table could lead to privacy problems in
case people do not want to reveal their interest in certain
topics.

For all three applications, our analysis indicates that the
sensitive path coverage is quite small when classifying only
database write operations as sensitive. This means that, us-
ing our reverse proxy approach, most anomalous requests
could be successfully served when sensitive tables are acces-
sible in read-only mode. With regards to read operations of
sensitive tables (e.g., the user table with passwords), all pro-
grams initially showed 100% sensitive path coverage. How-
ever, with only trivial modifications to non-critical parts of
functionality, this value could be significantly reduced.

4.3 Live System Evaluation
The focus of our approach is on preventing novel web-

based attacks from accessing sensitive information while, at
the same time, reducing as much as possible the impact of
false positives.

The effectiveness of the approach depends on a number of
application-specific conditions, as discussed in the previous
sections. However, we performed a number of tests in a
live setting to provide some useful insight on the general



Program Training Set Test Set Anomalous Attacks False Failed Benign
Requests Positives Requests

phPay 2,530 371 21 10 11 1
myBloggie 3,247 488 28 20 8 0
punBB 1,292 422 16 10 6 1

Table 3: Live experiment results.

applicability of our technique.
Therefore, we installed the phPay, myBloggie, and punBB

applications on two web servers, called smart and dumb. The
two web servers used the same back-end MySQL database, but
the smart server was able to access all of the application-
specific database content, while the dumb server was able to
access non-sensitive information only.

The two servers were protected by our anomaly-driven re-
verse HTTP proxy. The anomaly detection component was
trained semi-automatically using 7,069 requests to the three
test applications. For this experiment, we set the thresholds
used by the anomaly detection system in a conservative fash-
ion to produce a larger-than-usual number of false positives.

We then switched the IDS component to detection mode
and executed 1,281 application requests. This traffic con-
tained 40 attacks generated using 4 exploits that we col-
lected from public security forums or that we developed
ourselves. These exploits included several SQL injections
(Bugtraq ID 14195/a, Bugtraq ID 13507, and one ad hoc
attack against phPay) and an information tampering attack
(Bugtraq ID 14195/b).

The system was able to classify all of the attacks as anoma-
lous and forwarded the corresponding HTTP requests to the
dumb server. As a consequence, the attacks were not able to
access sensitive information or to modify sensitive content.
Because of the conservative way in which the threshold were
set, 25 benign requests were also marked as anomalous and
forwarded to the dumb server. These requests represent a
(somewhat artificially) large number of false positives. How-
ever, only two of these requests required access to sensitive
information, and, therefore, it could not be completed cor-
rectly. The remaining 23 benign requests were served by the
dumb server with no effect on the overall performance of the
system.

The results of this experiment are shown in Table 3. Even
though no general claim can be derived from these results,
the experiment demonstrated that the system is actually
able to sensibly reduce the impact of false positives for a
representative class of web-based applications.

5. RELATED WORK
The detection of web-based attacks has recently received

considerable attention because of the increasingly critical
role that web-based services are playing. For example, in [2]
the authors present a system that analyzes web logs looking
for patterns of known attacks. A different type of analysis
is performed in [3] where the detection process is integrated
with the web server application itself. In [19], a misuse-
based system that operates on multiple event streams (i.e.,
network traffic, system call logs, and web server logs) is
proposed. The system demonstrates that it is possible to
achieve better detection results when taking advantage of
the specificity of a particular application domain.

The identification of web attacks is a critical component

of our architecture, and we use an anomaly-based intrusion
detection system that has been previously presented in [8]
to perform this task. Anomaly detection systems can detect
novel attacks, but they are also prone to make mistakes and
incorrectly classify legitimate requests as malicious. Thus,
it is important to develop strategies that can deal with false
positives.

In [16] an anomaly detection system is used to filter out
normal events so that signature-based detection is applied
to anomalous requests only. This technique reduces the false
positives generated by a misuse detection system and, in a
way, is complementary to our approach.

Our approach is closely related to the use of hardened
systems presented in [15]. The system presented there is
composed of an anomaly detection system that uses ab-
stract payload execution [17] and payload sifting [1] tech-
niques to identify web requests that might contain attacks
that exploit memory violations (e.g., buffer overflows and
heap overflows). The requests that are identified as anoma-
lous are then marked appropriately and processed by a hard-
ened, “shadow” version of the web server. To implement this
approach the Apache web server was modified to allow for
the detection of memory violation attacks and the roll-back
of modifications performed by malicious requests.

The approach proposed in [15] is similar to ours because
it attempts to ameliorate the problem of false positives in
the detection of web-based attacks. However, the proposed
solution is different from our approach in a number of ways.
First of all, the implementation of the system is limited to
dealing with buffer overflow/underflow attacks, while our
system is able to mitigate also non-control-data attacks [6]
that might eventually lead to the corruption of the database.
Second, in [15] the attacks that can be rolled-back are lim-
ited to attacks against the web server itself, while our focus
includes also all server-side components such as CGI pro-
grams, server-side scripts, and back-end databases. Third,
our approach clearly differentiates between sensitive and
non-sensitive information, while the approach presented in [15]
does not make any distinction in the type of information
managed by the protected web-based system. Fourth, the
creation of a “shadow” server requires the modification of
the source code of the web server, and, if extended to server-
side applications, to the application code as well. Our ap-
proach is much less invasive and can be applied to servers
that are closed-source. In addition, it requires minimal mod-
ification to server-side applications.

The two approaches have the potential of being integrated
in one comprehensive solution, where the server that receives
requests deemed anomalous by our anomaly detection sys-
tem is modified to make it more resilient to certain types of
attacks. This is certainly an interesting research direction
and will be the focus of our future work.



6. CONCLUSIONS
This paper presents an approach to provide differentiated

access to a web site based on the anomaly score associated
with web requests. This design allows one to route anoma-
lous requests to servers that have limited access to sensitive
information. By doing this, it is possible to contain the dam-
age in case of an attack, and, at the same time, it is possible
to provide some level of service to benign (but anomalous)
queries.

We implemented a prototype that composes an existing
web-based anomaly detection system and a reverse HTTP
proxy. The prototype is able to analyze in real-time the
requests sent to a web site and determine the corresponding
anomaly score. The score is then used to drive the reverse
HTTP proxy.

To analyze the feasibility of our approach and the impact
that false positives would have on the user’s access to the
system, we build a PHP analyzer and we developed a metric
that characterizes the amount of execution paths involving
critical database access. We then analyzed several existing
web-based applications. The results show that our approach
would be applicable and beneficial to web-based applications
that manage and store sensitive information.
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