
1

Vulnerability Analysis of Web-based
Applications

Summary. In the last few years, the popularity of web-based applications has
grown tremendously. A number of factors have led an increasing number of orga-
nizations and individuals to rely on web-based applications to provide access to a
variety of services. Today, web-based applications are routinely used in security-
critical environments, such as medical, financial, and military systems.

Web-based systems are a composition of infrastructure components, such as web
servers and databases, and of application-specific code, such as HTML-embedded
scripts and server-side CGI programs. While the infrastructure components are usu-
ally developed by experienced programmers with solid security skills, the application-
specific code is often developed under strict time constraints by programmers with
little security training. As a result, vulnerable web-based applications are deployed
and made available to the whole Internet, creating easily-exploitable entry points
for the compromise of entire networks.

To ameliorate these security problems, it is necessary to develop tools and tech-
niques to improve the security of web-based applications. The most effective ap-
proach would be to provide secure mechanisms that can be used by well-trained
developers. Unfortunately, this is not always possible, and a second line of defense
is represented by auditing the application code for possible security problems. This
activity, often referred to as web vulnerability analysis, allows one to identify security
problems in web-based applications at early stages of development and deployment.

Recently, a number of methodologies and tools have been proposed to support
the assessment of the security of web-based applications. In this paper, we survey
the current approaches to web vulnerability analysis and we propose a classifica-
tion along two characterizing axes: detection model and analysis technique. We also
present the most common attacks against web-based applications and discuss the
effectiveness of certain analysis techniques in identifying specific classes of flaws.

1.1 Introduction

The World-Wide Web started in the mid 90’s as a system to support hyper-
textual access to static information and has since then evolved into a full-
fledged platform for the development of distributed applications. This has

4 1 Vulnerability Analysis of Web-based Applications

been made possible by the introduction of a number of mechanisms that can
be used to trigger the execution of code on both the client and the server side.
These mechanisms are the basis to implement web-based applications.

As the use of web applications for critical services has increased, the num-
ber and sophistication of attacks against web application has grown as well.
A series of characteristics of web-based applications make them a valuable
target for an attacker. First, web applications are often designed to be widely
accessible. Indeed, by design, they are almost always reachable through fire-
walls and a significant part of their functionality is available to anonymous
users. Because of this, they are considered the most effective entry point for
the compromise of computer networks. Second, web-based applications of-
ten interface with back-end components, such as mainframes and product
databases, that might contain sensitive data, such as credit card information.
Therefore, they become an attractive target for attackers who aim at gaining
a financial profit. Third, the technology used to implement, test, and interact
with web-based applications is inexpensive, well-known, and widely available.
Therefore, attackers can easily develop tools that expose and automatically
exploit vulnerabilities.

Other factors contribute to make web applications a preferred target for
attackers. For example, some of the most popular languages used to develop
web-based applications are currently easy enough to allow novices to start
writing their own applications, but, at the same time, they do not provide a
comprehensive, easy-to-use set of mechanisms that support the development
of secure applications. This problem is particularly difficult to solve. In fact,
while the infrastructure components, such as web servers and browsers, are
usually developed by experienced programmers with solid security skills and
reviewed by a large developer team, the application-specific code is often de-
veloped under strict time constraints by few programmers with little security
training. As a consequence, vulnerable code is made available on the web.

This trend is confirmed by various statistics. In the first semester of 2005,
Symantec cataloged 1,100 new vulnerabilities, which represent well over half
of all new vulnerabilities, as affecting web-based applications. This is a 59%
increase over the previous semester, and a 109% increase over the same period
of the previous year [33].

An analysis of the reported vulnerabilities shows various types of prob-
lems. Web applications can be affected by flaws that are not web-specific and
that have been commonly found also in traditional applications. Examples of
such problems include broken authentication and authorization management,
where account credentials and session tokens are not properly protected; im-
proper handling of errors or exceptional conditions, which leads to the leaking
of confidential information or to unexpected system behavior.

In addition to these well-known security problems, web-based applications
are affected by a number of vulnerabilities that are specific of the web en-
vironment. Some vulnerabilities are due to architectural choices, such as the
use of relational databases as back-ends for long-term storage, which lead

1.1 Introduction 5

to vulnerabilities such as SQL injections [1, 30] and permanent Cross Site
Scripting (XSS) [14]. Other causes of web-based vulnerabilities are the incor-
rect handling of trust relations between clients and servers, which might lead
to XSS, and inconsistencies in web protocols implementations, which lead to
request smuggling [20] and response splitting [15]. Another source of security
problems are the unforeseen consequences of the use of special features pro-
vided by the languages used to implement web-based applications, such as the
use of the register globals option in the PHP language. In this paper, we
will focus on vulnerabilities that are specific to the web environment.

Clearly, the abundance of vulnerabilities in web-based applications and
their increasing popularity make a strong case for the need of techniques and
tools for their security assessment. A number of approaches to secure web-
based applications have been proposed in the recent past by both industry
and academia. While most of these techniques reuse well-know ideas from the
past, these ideas have to be extended to take into account the novel aspects
of web-based application security. These approaches can be classified on the
basis of when they can be applied in the life-cycle of a web-based application.

At the coding phase, new programming languages have been adopted that,
among other things, take away from the programmer the burden of performing
error-prone tasks, and, in addition, eliminate the ability to perform insecure
operations commonly found in traditional languages, such as memory man-
agement and pointer arithmetic.

New testing tools and methodologies have been proposed that aim at iden-
tifying and removing flaws by exercising an instance of an application with
unexpected, random, or faulty input. Testing-time approaches are appealing
because, in general, they can be performed even on applications whose source
code is not available. In addition, they are usually independent of the in-
ternals of the application under testing, and, therefore, they are reusable on
different applications. Finally, they are characterized by the absence of false
positives, i.e., flaws found through testing correspond to actual bugs in the
application code. The main disadvantage of these testing approaches is their
lack of completeness, that is, in general, they cannot guarantee to expose all
vulnerabilities in a program.

Code reviews and security audits are part of the quality assurance phase.
In particular, vulnerability analysis is the process of examining different char-
acteristics of an application in order to evaluate whether there exists a se-
quence of events that are capable of driving the application into an insecure
state. Thus, vulnerability analysis supports the identification and fixing of
errors. In its simplest form, the analysis is performed by manually auditing
the source code of an application. However, a number of more sophisticated
and automatic approaches have been proposed in the last few years.

Finally, at deployment and operation time, an application can be protected
through the use of web application firewalls. These applications examine the
requests directed to a web server and determine if a request is to be considered
an attack or not. The focus of web application firewalls is on preventing attacks

6 1 Vulnerability Analysis of Web-based Applications

directed against a web-based application rather than identifying and fixing its
errors. These security mechanisms usually do not require the understanding
of an application internals or its modification.

This chapter reviews and discusses a number of techniques that can be used
to perform the vulnerability analysis of web-based applications. Before delv-
ing into the details of these techniques, Sect. 1.2 presents the existing mecha-
nisms for the execution of code in web-based applications. Then, Sect. 1.3 dis-
cusses the type of attacks that are common of web-based application. Finally,
Sect. 1.4 provides a survey of the techniques used to perform vulnerability
analysis of web-based applications.

1.2 Technologies

The technologies used to implement web-based applications have rapidly
evolved since the appearance of the first simple mechanisms to create dy-
namic web pages. In this section, we will briefly present the most important
steps in this evolution.

1.2.1 Common Gateway Interface

One of the first mechanisms that enabled the generation of dynamic content
was the Common Gateway Interface (CGI) [23]. The CGI standard defines a
mechanism that a server can use to interact with external applications. The
CGI standard specifies the rules of this interaction but does not dictate the use
of any particular technology for the implementation of the external applica-
tions. Therefore, CGI programs can be written virtually in any programming
language and executed by virtually all web servers.

The original goal of the CGI invocation mechanism was to provide web-
based access to legacy applications. In this case, a CGI program acts as a
gateway between the web server and the legacy application, e.g., a database.
More precisely, the life-cycle of a CGI-based program is as follows: whenever a
request references a CGI program, the server creates a new process to execute
the specified application. Then, the web server passes to the program the data
associated with the user request. The CGI program executes and produces
data, which is passed back to the server. The server, in turn, passes the data
to the client. When the CGI program exits, the request is completed.

The CGI specification defines different ways for a web server to communi-
cate with a CGI program. At every request, the web server sets a number of
environment variables that contain information about both the server (e.g.,
server name and version, or CGI specification supported) and the request
(e.g., request method, request content type, and length). The request itself is
passed to the CGI program through its standard input (if the request is issued
using the POST HTTP method) or through an environment variable (if the
request is issued using the GET HTTP method). When the CGI program has

1.2 Technologies 7

#!/ usr/bin/perl -w
use CGI;
use CGI:: Session;

$cgi = new CGI;

my $user = $cgi ->param (" username ");
my $pass = $cgi ->param (" password ");

if (validate($user , $pass) == 1) {
my $session = new CGI:: Session (" driver:File",

undef , {Directory =>"/tmp "});
$cookie = $cgi ->cookie(CGISESSID => $session ->id);
print $cgi ->header(-cookie=>$cookie);
print $cgi ->start_html (" Login ");
print "Welcome !";

} else {
print $cgi ->header;
print $cgi ->start_html (" Login ");
print "Invalid username or password !";

}

print $cgi ->end_html;

Fig. 1.1. A sample CGI program.

finished serving the request, it sends back the results to the server through its
standard output. The output can either consist of a document generated by
the program or one or more directives to the server for retrieving the output.

The example in Fig. 1.1 shows a CGI program written in Perl. The pro-
gram allows users to authenticate with the application to access services of-
fered only to authenticated users. Users are expected to send their credentials
as two request parameters, namely username and password. The program
uses two Perl modules, CGI and CGI::Session, which provide a number of
library functions to ease the tasks of parameter decoding and session manage-
ment. The credential parameters are extracted from the request and validated
through the validate function (which, for example, could lookup a database
of registered users). If the credentials are found to be valid, a new session
is started and a welcome message is shown to the user. Otherwise, the pro-
gram returns to the user an error message. Note that this is just one of the
components of a web-based application. For example, there might be other
components that will provide access to information or services.

Developing web-based applications using the CGI mechanism to invoke
server-side components has some advantages. First, as noted before, the CGI
mechanism is language-independent, that is, each CGI-based component of

8 1 Vulnerability Analysis of Web-based Applications

the application can be implemented using a different language. Second, CGI
programs run in separate processes so problems in one program do not affect
other components of the web applications or the web server.

The main disadvantage of using the CGI mechanism is that it requires that
a new process be created and executed for each request, with significant impact
on the performance and scalability of the web-based application. On many
systems (notably UNIX), the creation of a new process is a costly operation.
Furthermore, the use of a separate process for each request poses a limit to
the maximum number of requests that can be satisfied at the same time,
which is bounded by the maximum number of processes allowed by the OS.
In addition, CGI programs run in a separate address space than the web
server, and, therefore, they can only have a limited interaction with it. In
particular, they cannot take advantage of its services (e.g., logging) leading
to a duplication of functionalities between the server and the CGI programs.

In an attempt to overcome some of these problems, several extensions to
the original CGI standard have been proposed. For example, the FastCGI
mechanism creates a pool of resident processes that handle multiple requests
without exiting and needing to be restarted [3]. Also, the FastCGI mechanism
allows the web server and the external program to communicate through Unix-
domain or TCP sockets rather than pipes, allowing developers to create more
sophisticated architectures where server-side components are not required to
run on the same host as the web server.

A different approach to overcome these limits consists in leveraging various
functionalities of the server that are exposed through vendor-specific APIs.
The most notable examples are the ISAPI extensions for Microsoft IIS and
the API provided by Apache. External programs that use these server-specific
APIs generally have low initialization cost and can perform more general
functionalities than CGI-based programs. For example, they can rely on the
web server to enforce access control or even hook into the server’s request
handling process.

However, server-specific APIs lack some of the benefits provided by the
CGI mechanism. Writing a program that relies on server-specific APIs is gen-
erally more complex than writing a CGI program, because it requires some
knowledge of the server’s inner workings. In addition, the APIs are typically
language-specific (i.e., they have C or C++ bindings) and vendor-specific,
and, thus, not portable.

1.2.2 Embedded Web Application Frameworks

Today, the most common approach to web-based application implementation
is a middle way between the original CGI mechanism and the use of server-
specific APIs. More precisely, the web server is provided with extensions that
implement frameworks for the development of web-based applications. At a
minimum, these frameworks include an interpreter or compiler for the lan-

1.2 Technologies 9

<?php

$username = $_GET[" username "];
$password = $_GET[" password "];

if (validate($username , $password)) {
session_start ();
$_SESSION ["user"] = $username;

?>
<p>Welcome!</p>

<?php
} else {
?>

<p>Invalid username or password!</p>
<?php
}
?>

Fig. 1.2. A sample PHP program.

guage used to encode the application’s components and define rules that gov-
ern the interaction between the server and the application’s components.

Frameworks vary greatly in the support provided to the application devel-
oper. At their most basic level, they simply parse request parameters and make
them available to the application. Some frameworks also offer mechanisms to
deal with HTTP-specific characteristics, e.g., cookies, authentication mech-
anisms, and connection handling. Most frameworks generally support other
commonly-used features, such as access to back-end databases and sessions.
More sophisticated environments are designed to support large-scale enter-
prise applications and include support for features such as transactions and
complex authorization mechanisms.

Web application frameworks are available for a variety of programming
languages. Most frameworks are built around scripting languages, such as
PHP, Perl, and Pyhton. These are high-level languages, which are generally
interpreted, provide support for object-oriented programming and are loosely
typed. These characteristics simplify the development of small components,
which is a perfect match for web-based applications. In fact, these applica-
tions are usually characterized by a number of small server-side components
that perform relatively simple tasks. Other significant choices are Java, used
in the J2EE platform, and the languages compatible with the ASP.NET en-
vironment, such as Visual Basic, C# and JScript.

The example in Fig. 1.2 shows a PHP-based version of the login example
shown in the Sect. 1.2.1. In PHP, the parameters of requests issued through the
HTTP GET method are available in the predefined $ GET array. Also, PHP
provides native support for sessions, and, therefore, it is extremely easy to keep

10 1 Vulnerability Analysis of Web-based Applications

<%
String username = request.getParameter (" username ");
String password = request.getParameter (" password ");

if (validate(username , password)) {
session.setAttribute ("user", username);

%>
<p>Welcome!</p>

<%
} else {
%>

<p>Invalid username or password!</p>
<%
}
%>

Fig. 1.3. A sample JSP program.

track of a user across different requests. In the example, users credentials are
first checked using the validate function. If the validation is successful, a
new session is started and a welcome message is printed; otherwise, an error
message is sent back to the user. Note that in a PHP program it is possible
to interleave PHP and HTML code.

Fig. 1.3 shows a similar program written using the JavaServer Pages (JSP)
framework [32]. In both examples, the code of the validate function has been
omitted for the sake of clarity.

1.3 Attacks

Web-based applications have fallen prey to a variety of different attacks that
violate different security properties that should be enforced by the application.
Note that here we are not concerned with attacks that might involve the
infrastructure (for example, in terms of web server and databases) or the
operation of the network (for example, in terms of routers and firewalls).
Instead, we focus on attacks that try to induce a web-based application to
behave in unforeseen (and unwanted) ways to disclose sensitive information
or execute commands on behalf of the attacker.

Many web-based applications offer services that are available only to reg-
istered users, e.g., “premium” functionalities or personalized content. These
services require that some authentication mechanism be in place to establish
the identity of users. Errors in authentication code or logic can be exploited
to bypass authentication or lock out legitimate users. For example, user cre-
dentials transferred in clear to the application can be stolen by eavesdropping

1.3 Attacks 11

the network connection and weak authentication mechanisms can be broken
by brute force or dictionary attacks [6].

Once a user has been authenticated, the application has to enforce the
policy that establishes which resources are available to the user. Broken au-
thorization can lead to elevation of privileges, disclosure of confidential data
and data tempering. Authorization mechanisms are particularly critical when
web-based applications handle sensitive data, such as financial or health in-
formation.

Web-based applications tend to be large, heterogeneous, complex pieces
of software, whose configuration is far from being trivial. Configuration prob-
lems may affect both the infrastructure (e.g., the account under which the
web server runs or the configuration of a back-end database) and the web
application itself (e.g., where the application stores its temporary files). Con-
figuration errors can allow an attacker to bypass otherwise effective authen-
tication and authorization mechanisms. For example, improper configuration
has been exploited to gain unauthorized access to administrative functional-
ities or retrieve sensitive information, such as secrets stored as plain-text in
configuration files, such as database server passwords.

Attacks that exploit poorly-designed authentication, faulty authorization
or configuration mechanisms are the cause of serious compromises. However,
currently, most of attacks against web applications can be ascribed to one class
of vulnerabilities: improper input validation. Most web application develop-
ers assume that they might receive from their users incorrect input, either
as a result of an error or of malicious intent. Input validation is a defensive
programming technique that makes sure that all user input is in the expected
format and does not contain dangerous content. While simple in principle, per-
forming correct and complete validation of all input data is a time-consuming
task that requires notable expertise. Therefore, this type of flaw is all too
common in current web-based applications.

The remaining of this section explores different types of attacks that take
advantage of incorrect or missing input validation.

1.3.1 Interpreter Injection

Many dynamic languages include functions to dynamically compose and inter-
pret code. For example, the PHP language provides the eval function, which
accepts a string as a parameter and evaluates it as PHP code. If unchecked
user input is used to compose the string to be evaluated, the application is
vulnerable to arbitrary code execution.

For example, consider the following simple example of interpreter injec-
tion that was present in Double Choco Latte (version 0.9.4.3 and earlier), a
PHP web-based application that provides basic project management function-
ality [2]. The attack URL is of the form:

http://[target]/[dcl-directory]/
main.php?menuAction=htmlTickets.show;system(id);ob_start

12 1 Vulnerability Analysis of Web-based Applications

The parts of the request URL containing the strings menuAction=html-
Tickets.show and ob start are required to avoid errors. The arbitrary code
is the part between these two string, and, in the example above, corresponds
to the part containing system(id).

The vulnerability is contained in the following code snippet:

if ($g_oSec ->ValidateMenuAction () == true)
{

list($class , $method) = explode (".", $menuAction);
$obj = CreateObject(’dcl.’ . $class);
eval ("\$obj ->$method ();");

}
else
{

commonHeader ();
PrintPermissionDenied ();

}

As can be seen from the code above, the class and method variables,
obtained from the user’s controlled menuAction variable, are never validated.
Therefore, it is possible to insert a command to be executed in the string that
represents the variable’s value. After requesting the attack URL, the eval call
becomes:

eval("$obj->show;system(id);ob_start();");

Thus, in addition to execute the show method on the obj object, the in-
terpreter will also execute the command specified by the attacker. In this
example, the id UNIX command will be executed and the information about
the user ID under which the command is executed will be printed. Of course,
arbitrary (and more malicious) commands can be executed by exploiting this
flaw.

One difficulty in preventing interpreter injection attacks is that popular
languages offer many attack vectors. In PHP, eval and preg replace can
be used to interpret PHP code. In addition, the functions system, passthru,
backticks, and shell exec pass a command to the system shell. Finally,
exec, pcntl exec, popen, and proc open can be used to execute external
programs.

Some languages offer natively sanitization primitives that ensure that
malicious user input is properly removed before use. For example, in PHP,
escapeshellarg and escapeshellcmd can be used to escape quotes or other
special characters that might be inserted to trick an application into executing
arbitrary commands. However, programmers must be aware of the problem,
choose the proper sanitization function, and remember to invoke it on all
possible code paths that lead to an invocation of a dangerous function. This
requires substantial expertise, and might be foiled by subsequent reorganiza-
tions of the code.

1.3 Attacks 13

1.3.2 Filename Injection

Most languages used in the development of web-based applications allow pro-
grammers to dynamically include files to either interpret their content or
present them to the user. This feature is used, for example, to modularize an
application by separating common functions into different files or to generate
different page content depending on user’s preferences, e.g., for international-
ization purposes. If the choice of the file to be included can be manipulated
by the user, a number of unintended consequences can follow. To worsen the
situation, some languages, most notably PHP, even supports the inclusion of
files from remote sites.

The following snippet of code illustrates a filename injection vulnerability
in txtForum, an application to build forums [11]. In txtForum, pages are
divided in parts, e.g., header, footer, forum view, etc., and can be customized
by using different “skins,” which are different combination of colors, fonts, and
other presentation parameters. For example, the code that defines the header
is the following:

DEFINE ("SKIN","$skin ");
...
function
t_header($h_title ,$pre_skin=’’,$admin_bgcolor =’’) {

...
include(SKIN.’/header.tpl ’);

}

During execution, each page is composed by simply invoking the functions that
are responsible of creating the various parts, e.g., t header("page title").
Unfortunately, the skin variable can be controlled by an attacker, who
can set it to cause the inclusion and evaluation of arbitrary content. Be-
cause PHP allows for the inclusion of remote files, the code to be added
to the application can be hosted on a site under the attacker’s control. For
example, requesting the login.php page and passing the parameter skin
with value http://[attacker-site] leads to the execution of the code at
http://[attacker-site]/header.tpl.

For this type of problem, PHP does not offer any sanitization methods
natively. Therefore, appropriate, ad hoc checks must be put in place by the
developers.

1.3.3 Cross-site Scripting

In Cross-site Scripting (XSS) attack, an attacker forces a client, typically a web
browser, to execute attacker-supplied executable code, typically JavaScript
code, which runs in the context of a trusted web site [14].

This attack allows the perpetrator to bypass the same-origin policy en-
forced by browsers when executing client-side code, typically JavaScript. The

14 1 Vulnerability Analysis of Web-based Applications

same-origin policy states that scripts or documents loaded from one site can-
not get or set the properties of documents from different sites (that is, from
different “origins”). This prevents, for instance, a malicious web application
from stealing sensitive information, such as cookies containing authentication
information, associated with other applications running on different sites.

However, the same-origin policy can be circumvented, under certain con-
ditions, when an application does not perform correct input validation. In
these cases, the vulnerable application can be tricked into storing malicious
code from an attacker and then presenting that malicious code to users, so it
will be executed under the assumption that it originates from the vulnerable
application rather than from the attacker.

There exist different forms of XSS attacks, depending on how malicious
code is submitted to the vulnerable application and later echoed from the
application to its users. In non-persistent (or reflected) attacks, the user is
lured into visiting a specially-crafted link that points to the vulnerable ap-
plication and embeds the malicious code (e.g., as the value of a parameter
or the name of a resource). When the link is activated the vulnerable web
application immediately reflects the code to the user (e.g., as part of an error
message). The code is then executed in the context of the vulnerable site and
has access to all the information associated with the attacked application,
such as authentication cookie or session information.

In persistent (or stored) attacks, the malicious code is first stored by the
vulnerable application, and then, at a later time, it is presented to its users.
In this case, the security of a user is compromised each time he/she visits a
page whose content is determined using the stored malicious code. Typical
examples of vulnerable applications include guestbook applications or blog
systems. If they allow users to submit entries containing scripting code, then
they are vulnerable to persistent XSS attacks.

A third form of XSS attacks, called DOM-based, is also possible. In this
case, the vulnerable application presents to the users an HTML page that uses
data from parts of its Document Object Model (DOM) in insecure ways [16].
The DOM is a data structure that allows client-side scripting code to dynami-
cally access and modify the content, structure, and style of HTML documents.
Some of its properties are populated by the browser on the basis of the re-
quest parameters, rather than on the characteristics of the document itself.
For example, the document.URL and document.location properties are set
to the URL of the document by the browser. If an HTML page contains code
that dynamically changes the appearance of the page using the content of
document.URL (e.g., to show to the user the URL associated with the page),
it is possible to use a maliciously crafted URL to execute malicious scripting
code.

An example of code vulnerable to non-persistent XSS attacks could be
found in the application PHP Advanced Transfer Manager (version 1.30 and
earlier) [28]. The vulnerability is contained in the following snippet of code.

1.3 Attacks 15

$font = $_GET[’font ’];
...
echo "<font face =\" $font \" color =\" $normalfontcolor \"

size =\"1\" >\n";

The variable $font is under the control of the attacker because it is ex-
tracted from the request parameters and it is used to create the web page
returned to the user, without any sanitizing check. To exploit this vulnerabil-
ity an attacker might request the following URL:

http://[target]/[path]/viewers/txt.php?font=
\%22\%3E\%3Cscript\%3Ealert(document.cookie)\%3C/script\%3E

As a consequence, the vulnerable application will generate the following web
page:

<script>alert(document.cookie)</script>

When interpreted by the browser, the scripting code will be executed and it
will show in a pop-up window the cookies associated with the current page.
Clearly, a real attack would, for instance, send the cookies to the attacker.

1.3.4 SQL Injection

A web-based application has an SQL injection vulnerability when it uses un-
sanitized user data to compose queries that are later passed to a relational
database for evaluation [1, 30]. This can lead to arbitrary queries being exe-
cuted on the database with the privileges of the vulnerable application.

For example, consider the following code snippet:

$activate = $_GET[" activate "];
$result = dbquery (" SELECT * FROM new_users " .

"WHERE user_code=’$activate ’");
if ($result) {

...
}

The dbquery function is used to perform a query to a back-end database
and return the results to the application. The query is dynamically composed
by collating a static string with a user-provided parameter. In this case, the
activate variable is set to the content of the homonymous request parameter.
The intended use of the variable is to contain the user’s personal code to
dynamically compose the page’s content. However, if an attacker submits a
request where the activate parameter is set to the string ’ OR 1=1 -- the
query will return the content of the entire new users table. If the result of the
query is later used as the page content, this will expose personal information.
Other attacks, such as the deletion of database tables or the addition of new
users, are also possible.

16 1 Vulnerability Analysis of Web-based Applications

1.3.5 Session Hijacking

Most web applications use HTTP as their communication protocol [5]. HTTP
is a stateless protocol, i.e., there is no built-in mechanism that allows an ap-
plication to maintain state throughout a series of requests issued by the same
user. However, virtually all non-trivial applications need a way to correlate
the current request with the history of previous requests, i.e., they need a “ses-
sion” view of their interaction with users. In e-commerce sites, for example,
a user adds to a cart items he/she intends to buy and later proceeds to the
checkout. Even though these operations are performed in separated requests,
the application has to keep the state of the user’s cart through all requests,
so that the cart can be displayed to the user at checkout-time.

Consequently, a number of mechanisms have been introduced to provide
applications with the abstraction of sessions. Some languages provide session-
like mechanisms at the language level, others rely on special libraries. In other
cases, session management has to be implemented at the application level.

The session state can be maintained in different ways. It can be encoded
in a document transmitted to the user in a way that will guarantee that the
information is sent back as part of later requests. For example, HTML hidden
form fields can be used for this purpose. These fields are not showed to the
user, but when the user submits the form, the hidden variables are sent back
to the application as part of the form’s data. In our e-commerce example, the
application might keep the current sub-total of the transaction in a hidden
field. When the user chooses the shipping method, the field is returned to the
application and used to calculate the final total cost.

The state can be kept in cookies sent to a user’s browser and automatically
resent by the browser to the application at subsequent visits. Cookies might
contain the items currently inserted in a user’s cart. The application, during
checkout, looks up the price of each item and presents the total cost to the
user.

All the methods mentioned above require the client to cooperate with
the application to store the session state. A different approach consists in
storing the state of all sessions on the server. Therefore, each user is assigned
a unique session ID, and this is the only information that is sent back and
forth between the application and the user, e.g., by means of a cookie, or
of a similar mechanism that rewrites all the URLs in the page adding the
session identifier as a parameter. As a consequence, every future request will
include the session identifier as a parameter. Then, whenever the user submits
a request to the site, e.g., to add an item to the cart, the application receives
the session ID, looks up the associated session in its repository, and updates
the session’s data according to the request.

A number of attacks have been designed against session state management
mechanisms. Approaches that require clients to keep the state assume that
the client will not change the session state, for example by modifying the
hidden field (or the cookie) storing the current sub-total to lower the price of

1.3 Attacks 17

an item. Countermeasures include the use of cryptographic techniques to sign
parameters and cookies to make them tamper-resistant.

A more general attack is session fixation. Session fixation forces a user’s
session ID to an explicit value of the attacker’s choice [17]. The attack requires
three steps. First, the attacker sets up a session with the target application
and obtains a session ID. Then, the attacker lures the victim into accessing
the target application using the fixed session ID. Finally, the attacker waits
until the victim has successfully performed all the required authentication and
authorization operations and then impersonates the victim by using the fixed
session ID. Depending on the characteristics of the target web applications,
different methods can be used to fix the session ID. In the simplest case, an
attacker can simply lure the users into selecting a link that contains a request
to the application with a parameter that specifies the session ID, such as .

1.3.6 Response Splitting

HTTP response splitting is an attack in which the attacker is able to set
the value of an HTTP header field such that the resulting response stream
is interpreted by the attack target as two responses rather than one [15].
Response splitting is an instance of a more general category of attacks that
take advantage of discrepancies in parsing when two or more devices or entities
process the data flow between a server and a client.

To perform response splitting the attacker must be able to inject data
containing the header termination characters and the beginning of a second
header. This is usually possible when user’s data is used (unsanitized) to
determine the value of an HTTP header. These conditions are commonly met
in situations where web applications need to redirect users, e.g., after the login
process. The redirection, in fact, is generally performed by sending to the user
a response with appropriately-set Location or Refresh headers.

The following example shows part of a JSP page that is vulnerable to
response splitting attack:

<%
response.sendRedirect ("/ by_lang.jsp?lang=" +

request.getParameter ("lang "));
%>

When the page is invoked, the request parameter lang is used to determine
the redirect target. In the normal case, the user will pass a string representing
the preferred language, say en US. In this case, the JSP application generates
a response containing the header:

Location: http://vulnerable.com/by_lang.jsp?lang=en_US.

However, consider the case where an attacker submits a request where lang
is set to the following string:

18 1 Vulnerability Analysis of Web-based Applications

dummy%0d%0a
Content-Length:%200
%0d%0a%0d%0a
HTTP/1.1%20200%20OK%0d%0a
Content-Type:%20text/html%0d%0a
Content-Length:%2019%0d%0a%0d%0a
<html>New document</html>

The generated response will now contain multiple copies of the headers
Content-Length and Content-Type, namely, those injected by the attacker
and the ones inserted by the application. As a consequence, depending on
implementation details, intermediate servers and clients may interpret the re-
sponse as containing two documents: the original one and the document forged
by the attacker.

Use cases of the attack most often mention web cache poisoning. In fact,
if a caching proxy server interprets the response stream as containing two
documents and associates the second one, forged by the attacker, with the
original request, then an attacker would be able to insert in the cache of the
proxy a page of his/her choice in association to a URL in the vulnerable
application.

Recently, support to contrast response splitting has been introduced in
some languages, most notably PHP. In the remaining cases, the programmer
is responsible to properly sanitize data used to construct response headers.

1.4 Vulnerability Analysis

The term vulnerability analysis refers to the process of assessing the secu-
rity of an application through auditing of either the application’s code or
the application’s behavior for possible security problems. In this section, we
survey current approaches to vulnerability analysis of web-based applications
and classify them along two characterizing axes: detection model and anal-
ysis technique. We show how existing vulnerability analysis techniques are
extended to address the specific characteristics of web application security,
in terms of both technologies (as seen in Sect. 1.2) and types of attacks (as
shown in Sect. 1.3).

The identification of vulnerabilities in web applications can be performed
following one of two orthogonal detection approaches: the negative (or vul-
nerability-based) approach and the positive (or behavior-based) approach.

In the negative approach, the analysis process first builds abstract mod-
els of known vulnerabilities (e.g., by encoding expert knowledge) and then
matches the models against web-based applications, to identify instances of
the modeled vulnerabilities. In the positive approach, the analysis process first
builds models of the “normal,” or expected, behavior of an application (for
example, using machine-learning techniques) and then uses these models to

1.4 Vulnerability Analysis 19

analyze the application behavior to identify any abnormality that might be
caused by a security violation.

Regardless of whether a positive or negative detection approach is followed,
there are two fundamental analysis techniques that can be used to analyze the
security of web applications: static analysis and dynamic analysis.

Static analysis provides a set of pre-execution techniques for predicting
dynamic properties of the analyzed program. One of the main advantages of
static analysis is that it does not require the application to be deployed and
executed. Since static analysis can take into account all possible inputs to the
application by leveraging data abstraction techniques, it has the potential to
be sound, that is, it will not produce any false negatives. In addition, static
analysis techniques have no impact on the performance of the actual appli-
cation because they are applied before execution. Unfortunately, a number of
fundamental static analysis problems, such as may alias and must alias, are
either undecidable or uncomputable. Consequently, the results obtained via
static analysis are usually only a safe and computable approximation of actual
application behavior. As a result, static analysis techniques usually are not
complete and suffer from false positives, that is, these techniques often flag as
vulnerable parts of an application that do not contain flaws.

Dynamic analysis, on the other hand, consists of a series of checks to detect
vulnerabilities and prevent attacks at run-time. Since the analysis is done on a
“live” application, it is less prone to false positives. However, it can suffer from
false negatives, since only a subset of possible input values is usually processed
by the application and not all vulnerable execution paths are exercised.

In practice, hybrid approaches, which mix both static and dynamic tech-
niques, are frequently used to combine the strengths and minimize the limi-
tations of the two approaches. Since many of the approaches described here-
inafter are hybrid, in the context of this chapter, we will use the term static
techniques to signify that the detection of vulnerabilities/attacks is done based
on some information derived at pre-execution time and the term dynamic tech-
niques when the detection is done based on dynamically-acquired data. We
will use the positive vs. negative approach dichotomy as our main taxonomy
when describing current research in security analysis of web-based applica-
tions.

This section is structured as follows. Sections 1.4.1 and 1.4.2 discuss nega-
tive and positive approaches, respectively. Each section is further divided into
subsections covering static and dynamic techniques. Section 1.4.3 summarizes
the challenges in the security analysis of web-based applications and proposes
directions for future work.

1.4.1 Negative Approaches

In the context of the vulnerability analysis of web-based applications, we
define as the negative approaches those approaches that use characteristics
of known security vulnerabilities and their underlying causes to find security

20 1 Vulnerability Analysis of Web-based Applications

flaws in web-based applications. More specifically, known vulnerabilities are
first modeled, often implicitly, and then applications are checked for instances
of such models. For example, one model for the SQL Injection vulnerability
in PHP applications can be defined as “untrusted user input containing SQL
commands is passed to an SQL database through a call to mysql query().”

The vast majority of negative approaches to web vulnerability analysis
are based on the assumption that web-specific vulnerabilities are the result of
insecure data flow in applications. That is, most models attempt to identify
when untrusted user input propagates to security-critical functions without
being properly checked and sanitized.

As a result, the analysis is often approached as a taint propagation prob-
lem. In taint-based analysis, data originated from the user input is marked
as tainted and its propagation throughout the program is traced (either stat-
ically or dynamically) to check whether it can reach security-critical program
points.

When taint propagation analysis is used, models of known vulnerabilities
are often built implicitly and are simply expressed in the form of the analysis
performed. For example, the models are often expressed by specifying the
following two classes of objects:

1. a set of possible sources of untrusted input (such as variables or function
calls);

2. a set of functions, often called sinks, whose input parameters have to be
checked for malicious values.

To track the flow of data from sources in (1) to sinks in (2), the type system
of the given language is extended with at least two new types: tainted and
untainted. In addition, the analysis has to provide a mechanism to represent
transitions from tainted to untainted, and vice-versa. Usually, such transitions
are identified using a set of technique-specific heuristics. For example, tainted
data can become untainted if it is passed to some known sanitization routine.
However, modeling sanitization is a very complex task, and, therefore, some
approaches simply extend the language with additional type operations, such
as untaint() and require programmers to explicitly execute these operations
to untaint the data.

In the following two sub-sections, we explore in greater details how negative
approaches are applied, both statically and dynamically, to the vulnerability
analysis of web-based applications.

Static Techniques

All of the works described in this section use standard static analysis tech-
niques to identify vulnerabilities in web-based applications. Despite the fact
that many of the static analysis problems have been proven to be undecidable,
or at least uncomputable, this type of analysis is still an attractive approach

1.4 Vulnerability Analysis 21

for a number reasons. In particular, static analysis can be applied to applica-
tions before the deployment phase, and, unlike dynamic analysis, static anal-
ysis usually does not require modification of the deployment environment,
which might introduce overhead and also pose a threat to the stability of
the application. Therefore, static analysis is especially suitable for the web
applications domain, where the deployment of vulnerable applications or the
execution in an unstable environment can result in a substantial business cost.

As a result, there is much recent work that explores the application of static
analysis techniques to the domain of web-based applications. The current focus
of the researchers in this field is mostly on the analysis of applications written
in PHP [10, 12, 13, 37] and Java [9, 21]. This phenomenon can be explained by
the growing popularity of both languages. For example, the popularity of PHP
has grown tremendously over the last five years, making PHP one of the most
commonly used languages on the Web. According to the Netcraft Survey [24],
about 21,000,000 sites were using PHP in March of 2006 compared to about
1,500,000 sites in March of 2000. In the monthly Security Space Reports [29],
PHP has constantly been rated as the most popular Apache module over the
last years. In the Programming Community Index report published monthly
by TIOBE Sofware [34], Java and PHP are consistently rated in the top five
most popular programming languages around the world.

A tool named WebSSARI [10] is one of the first works that applies taint
propagation analysis to finding security vulnerabilities in PHP. WebSSARI
targets three specific types of vulnerabilities: cross-site scripting, SQL injec-
tion, and general script injection. The tool uses flow-sensitive, intra-procedural
analysis based on a lattice model and typestate. In particular, the PHP lan-
guage is extended with two type-qualifiers, namely tainted and untainted,
and the tool keeps track of the type-state of variables. The tool uses three
user-provided files, called prelude files: a file with preconditions to all sensi-
tive functions (i.e., the sinks), a file with postconditions for known sanitization
functions, and a file specifying all possible sources of untrusted input. In order
to untaint the tainted data, the data has to be processed by a sanitization
routine or cast to a safe type. When the tool determines that tainted data
reaches sensitive functions, it automatically inserts run-time guards, or sani-
tization routines.

The WebSSARI tool is not publicly available and the paper does not pro-
vide enough implementation details to draw definitive conclusions about the
tool’s behavior. However, from the information available, one can deduce that
WebSSARI has at least the following weaknesses. First of all, the analysis
performed seems to be intra-procedural only. Secondly, to remain sound, all
dynamic variables, arrays, and other complex data structures, which are com-
monly used in scripting languages, are considered tainted. This should greatly
reduce the precision of the analysis. Also, WebSSARI provides only a limited
support for identifying and modeling sanitization routines: sanitization done
through the use of regular expressions is not supported.

22 1 Vulnerability Analysis of Web-based Applications

A more recent work by Xie and Aiken [37] uses intra-block, intra-procedur-
al, and inter-procedural analysis to find SQL injection vulnerabilities in PHP
code. This approach uses symbolic execution to model the effect of statements
inside the basic blocks of intra-procedural Control Flow Graphs (CFGs). The
resulting block summary is then used for intra-procedural analysis, where a
standard reachability analysis is used to obtain a function summary. Along
with other information, each block summary contains a set of locations that
were untainted in the given block. The block summaries are composed to
generate the function summary, which contains the pre- and post-conditions
of the function. The preconditions for the function contain a derived set of
memory locations that have to be sanitized before function invocation, while
the postconditions contain the set of parameters and global variables that are
sanitized inside the function. To model the effects of sanitization routines, the
approach uses a programmer-provided set of possible sanitization routines,
considers certain forms of casting as a sanitization process, and, in addition,
it keeps a database of sanitizing regular expressions, whose effects are specified
by the programmer.

The approach proposed by Xie and Aiken has a number of advantages
comparing to WebSSARI. First of all, it is able to give a more precise analysis
due to the use of inter-procedural analysis. Secondly, their analysis technique
is able to derive preconditions for some functions automatically. Also, the Xie
and Aiken approach provides support for arrays, commonly-used data struc-
tures in PHP, in the presence of simple aliases. However, they only simulate
a subset of PHP constructs that they believe is relevant to SQL injection vul-
nerabilities. In addition, there seems to be no support for the object-oriented
features of PHP, and the modeling of the effects of many sanitization routines
still depends on manual specification.

One of the most recent works on applying taint-propagation analysis for
security assessment of applications written in Java is the work by Livshits
and Lam [21]. They apply a scalable and precise points-to analysis to dis-
cover a number of web-specific vulnerabilities, such as SQL injection, cross-
site scripting, and HTTP response splitting. The proposed approach uses a
context-sensitive (but flow-insensitive) Java points-to analysis based on binary
decision diagrams (BDDs) developed by Whaley and Lam [36]. The analysis
is performed on the bytecode-level image of the program and a program query
language (PQL) is used to describe the vulnerabilities to be identified.

The main problem with the Livshits and Lam’s approach is the fact that
each vulnerability that can be detected by their tool has to be manually
described in PQL. Therefore, previously unknown vulnerabilities cannot be
detected and the detection of known vulnerabilities is only as good as their
specification.

Even though static analysis has a number of desirable characteristics that
make it suitable for web vulnerability analysis, it also has a number of both
inherent and domain-specific challenges that have to be met to be able to
apply it to real-world applications in an effective way. First of all, static anal-

1.4 Vulnerability Analysis 23

ysis heavily depends on language-specific parsers that are built based on a
language grammar. While this is not generally a problem for general-purpose
languages, such as Java and C, grammars for some scripting languages, like
PHP, might not be explicitly defined or might need some workarounds to be
able to generate valid parsers.

More importantly, many web applications are written in dynamic scripting
languages that facilitate the use of complex data structures, such as arrays and
hash structures using non-literal indices. Moreover, the problems associated
with alias analysis and the analysis of object-oriented code are exacerbated
in scripting languages, which provide support for dynamic typing, dynamic
code inclusion, arbitrary code evaluation (for example, eval() in PHP), and
dynamic variable naming (for example, $$ in PHP). Some of these challenges
are described in greater details in the recent research work of Jovanovic et
al. who developed a static analysis tool for PHP, called Pixy [12], and imple-
mented new precise alias analysis algorithms [13] targeting the specifics of the
PHP language.

Other solutions and workarounds to these challenges include different tech-
niques, such as abstraction of language features or simplification of the analy-
sis, and result in different levels of precision of the analysis. For example, the
WebSSARI tool chooses to ignore all complex language structures by simply
considering them tainted. The tool proposed by Xie and Aiken models only a
subset of PHP language that is believed to be relevant to the targeted class of
vulnerabilities. Lam and Livshits, on the other hand, apply scalable points-
to analysis to the full Java language, but choose to abstract away from flow
sensitivity.

Precise evaluation of sanitization routines becomes even more difficult for
applications written in scripting languages. Dynamic languages features stim-
ulate programmers to extensively use regular expression and dynamic type
casting to sanitize user data. Unfortunately, it is not possible to simply con-
sider the process of matching a regular expression against tainted data as a
form of sanitization, if the analysis has to be sound. To increase the precision
of the analysis, it is necessary to provide a more detailed characterization of
the filtering performed by the regular expression matching process.

One of the main drawbacks of static analysis in general is its suscepti-
bility to false positives caused by inevitable analysis imprecisions. Researches
only started exploring the benefits of applying traditional static analysis tech-
niques, such as symbolic execution and points-to analysis, to the domain of
web-based applications. However, the first efforts in this direction clearly show
that web-based applications have their domain-specific additional complexi-
ties, which require novel static analysis techniques.

Dynamic Techniques

The dynamic negative approach technique is also based on taint analysis.
As for the static case, untrusted sources, sensitive sinks, and the ways in

24 1 Vulnerability Analysis of Web-based Applications

which tainting propagates need to be modeled. However, instead of running
the analysis on the source code of an application, either the interpreter or the
program itself are first extended/instrumented to collect the right information
and then the tainted data is tracked and analyzed as the application executes.

Perl’s Taint mode [27] is one of the best-known example of dynamic taint
propagation mechanism. When the Perl interpreter is invoked with the -T
option, it makes sure that no data obtained from the outside environment
(such as user input, environment variables, calls to specific functions, etc.)
can be used in security critical functions (commands that invoke sub-shell,
modify files, etc.). Even though this mode can be considered too conservative
because it can taint data that might not be tainted in reality1, it is a valuable
security protection against several of the attacks described in Sect. 1.3.

Unsurprisingly, approaches similar to Perl taint mode have been applied
to other languages as well. For example, Nguyen-Tuong et al. [25] propose
modification of the PHP interpreter to dynamically track tainted data in
PHP programs. Haldar et al. [8] apply a similar approach to the Java Virtual
Machine (JVM).

The approach followed by Nguyen-Tuong et al. modifies the standard PHP
interpreter to identify data originated from untrusted sources in order to pre-
vent command injection and cross-site scripting attacks. In the modified in-
terpreter, strings are tainted at the granularity of the single character and
tainting is propagated across assignments, compositions, and function calls.
Also, the source of taintedness, such as the parameters of a GET method and
the cookies associated with a request, is kept associated with each tainted
string. Such precision comes at a price, and even though the authors report
a low average overhead, the overhead of run-time taint tracking sometimes
reaches 77%. Besides the possible high overhead, the proposed solution has
the additional disadvantage that the only way to untaint a tainted string is to
explicitly call a newly-defined untaint routine, which requires manual mod-
ification of legacy code. In addition, deciding when and where to untaint a
string is an error-prone activity that requires security expertise.

The approach proposed by Haldar at el. implements a taint propagation
framework for an arbitrary JVM by using Java bytecode instrumentation.
In the framework, system classes like java.lang.String and java.lang.-
StringBuffer are instrumented to propagate taintedness. This instrumen-
tation has to be done off-line because no modification of system classes is
allowed at run- or load-time by the JVM. All other classes are instrumented
at loading time. Tainted data can be untainted by passing the data to one
of the methods of the java.lang.String class that performs some kind of
checking or matching operations.

The dynamic approach to the taint propagation problem has some advan-
tages over static analysis. First of all, a modified interpreter can be transpar-

1 For example, Perl considers any sub-expression of tainted expressions to be tainted
as well.

1.4 Vulnerability Analysis 25

ently applied to all deployed applications. Even more important, no complex
analysis framework for features such as alias analysis is required, because all
the required information is available as the result of program execution.

However, there are some inherent disadvantages of this approach as well.
As noted earlier, the analysis is only performed on executed paths and does
not give any guarantee about paths not covered during a given execution. This
is not a problem if the modified interpreter is used in production versions of
the application, but provides no guarantees of security if the dynamic analysis
framework is used in test versions only.

Another problem associated with the use of dynamic techniques is the
possible impact on application functionality. More precisely, dynamic checks
might result in the termination or blocking of a dangerous statement, which, in
turn, might have the side-effect of halting the application or blocking it in the
middle of a transaction. Also, any error in the modifications performed on the
interpreter or in the instrumentation code can have an impact on application
stability and might not be acceptable in some production systems.

More importantly, despite the fact that dynamic analysis has the potential
of being more precise, it can still suffer from both false positives and false
negatives. If taint propagation is done in an overly conservative way, safe
data can still be considered tainted and lead to a high false positive rate.
Imprecisions in the modeling of untainting operations, on the other hand, can
lead to false negatives. Unfortunately, in either case, the increased precision
comes at the price of increased overhead and worse run-time performance.

Summary

As we have shown, many known classes of web-specific vulnerabilities are
the result of improper or insufficient input validation and can be tackled as
a taint propagation problem. Taint propagation analysis can be done either
statically or dynamically, and, depending on the approach taken, it has both
strengths and weaknesses. In particular, if it is done statically, the precision
of the analysis highly depends on the ability of dealing with the complexities
of dynamic features. Precise evaluation of sanitization routines is especially
important, and none of the current approaches is able to deal with this aspect
effectively. If taint propagation analysis is done dynamically, on the other
hand, issues of analysis completeness, application stability and performance
arise.

Regardless of the approach taken, taint propagation analysis depends on
the correct identification of the sets of untrusted sources and sensitive sinks.
Any error in identifying these sets can lead to incorrect results. Currently,
there is no known fully automated way to derive these sets, and at least some
sources and sinks have to be specified manually. The other challenge, which
is common to all taint propagation based approaches, is how to safely untaint
previously tainted data to decrease the number of false positives. In many

26 1 Vulnerability Analysis of Web-based Applications

cases, this becomes a problem of precise sanitization identification, evaluation,
or modeling.

However, taint propagation analysis is not the only possible negative ap-
proach to vulnerability analysis of web-based applications. For example, Mi-
namide [22] proposes another approach to static detection of cross-site script-
ing attacks in PHP applications. The PHP string analyzer developed by
Minamide approximates the output of PHP applications and constructs a
context-free grammar for the output language. This grammar is then stati-
cally checked against user-provided description of unsafe strings.

For example, a user can describe the cross-site scripting vulnerability as
the regular expression “.*<script>.*”. In this case, if the script tag is con-
tained in the output language of an application, the application will be marked
as vulnerable to cross-site scripting. As originally presented by Minamide, this
approach cannot be applied to check for cross-site scripting vulnerabilities in
real-world applications, because of its high false positive rate. For example,
all applications that are designed to generate JavaScript code would be con-
sidered vulnerable. Since cross-site scripting is in the class of vulnerabilities
caused by improper handling of user input, some mechanism to identify user
input in program-produced output is needed.

In general, negative approaches rely on the knowledge of causes and mani-
festations of different types of vulnerabilities. Their main disadvantage is that
the analyzers developed for a particular set of vulnerabilities might not be
able to recognize previously-unknown classes of vulnerabilities. Nonetheless,
currently, this is the most adopted approach because many vulnerabilities,
both known and newly discovered, are caused by the same type of problems,
such as insufficient input validation. As a result, the same analysis techniques
can be effectively applied to detect a wide range of vulnerabilities.

1.4.2 Positive Approaches

In the positive approaches to the identification of vulnerabilities in web-based
applications, the analysis is based on inferred or derived models of the “nor-
mal” application behavior. These models are then used, usually at run-time, to
verify if the dynamic application behavior conforms to the established mod-
els, in the assumption that: 1) deviations are manifestations of attacks or
vulnerabilities; and 2) attacks create an anomalous manifestation.

Models are built either statically, using some form of analysis done at pre-
execution time, or dynamically, as a result of analysis of dynamic application
behavior. Detection of attacks (or vulnerabilities) is almost always done at
run-time, and, thus, most approaches are not purely static or dynamic in
the traditional sense, but should be considered hybrid. In the context of this
section, we will classify the approaches as static if models are built prior to
program execution, and as dynamic otherwise.

1.4 Vulnerability Analysis 27

Static Techniques

Static models of expected application behavior are usually derived either au-
tomatically, by means of traditional static analysis techniques, or analytically,
by deducing a set of rules that must hold during program execution. Usually,
models are not concerned with all aspects of application behavior, but instead
they focus on specific application properties that are relative to specific types
of attacks/vulnerabilities.

A good example of the static, positive approach is the work of Halfond
and Orso, whose tool is called AMNESIA [9]. AMNESIA is particularly con-
cerned with detecting and preventing SQL injection attacks for Java-based
applications. During the static analysis part, the tool builds a conservative
model of expected SQL queries. Then, at run-time, dynamically-generated
queries are checked against the derived model to identify instances that vio-
late the intended structure of a query. AMNESIA uses the Java String Anal-
ysis (JSA) [4], a static analysis technique, to build an automata-based model
of the set of legitimate strings that a program can produce at given points
in the code. AMNESIA also leverages the approach proposed by Gould, Su,
and Devanbu [7] to statically check type correctness of dynamically-generated
SQL queries.

More precisely, Halfond and Orso define an SQL injection as the attack
in which the logic or semantics of a legitimate SQL statement is changed due
to malicious injection of new SQL keywords or operators. Thus, to detect
such attacks, the semantics of dynamically-generated queries must be checked
against a derived model that represents the intended semantics of the query.

AMNESIA builds a Non-Deterministic Finite Automata (NDFA) model
of possible string expressions for each program point where SQL queries are
generated. The derived character-level NDFA is then simplified through string
abstraction. The resulting model represents the structure of the legitimate
SQL query and consists of SQL tokens intermixed with a place-holder, which
is used to denote any string other than SQL tokens. To detect SQL injection
attacks at run-time, the web-based application is instrumented with calls to a
monitor that checks if the queries generated at run-time respect the abstract
query structure derived statically.

The approach proposed by Halfond and Orso is based on the following
two assumptions. First of all, they assume that the source code of the pro-
gram contains enough information to build models of legitimate queries. It
can be argued that this is usually the case with most applications. The sec-
ond assumption, stated also by the authors, is that the SQL injection attack
must violate the derived model in order to be detected. This is generally a
safe assumption given that models are able to distinguish between SQL to-
kens and other strings. However, AMNESIA will generate false positives if an
application allows user input to contain SQL keywords. The authors argue
that this does not represent a real problem because usually only database-
administration tools perform such queries.

28 1 Vulnerability Analysis of Web-based Applications

The work by Su and Wassermann [31] is another example of positive ap-
proach that targets injection attacks, such as XSS, XPath injection, and shell
injection attacks. However, the current implementation, called SqlCheck is de-
signed to detect SQL injection attacks only. The approach works by tracking
substrings from user input through program execution. The tracking is imple-
mented by augmenting the string with special characters, which mark the start
and the end of each substring. Then, dynamically-generated queries are in-
tercepted and checked by a modified SQL parser. Using the meta-information
provided by the substring markers, the parser is able to determine if the query
syntax is modified by the substring derived from user input, and, in that case,
it blocks the query.

Unlike in AMNESIA, in SqlCheck the model of application-specific legit-
imate SQL queries is built somewhat implicitly at pre-execution time and is
expressed in the form of an augmented grammar. The observation made by
the authors is that any non-malicious SQL query should have a node whose
descendants comprise the entire input substring. These syntactically-correct
queries are modeled by introducing additional rules into the augmented SQL
grammar. For example, if characters ≪ and ≫ are used to mark the start
and the end of user input strings and the augmented SQL grammar has a pro-
duction rule value ::= ≪id≫, then an entire user input substring covered
by the subtree of the value node is considered non-malicious even if it con-
tains SQL keywords. Thus, SQL grammar productions are used to implicitly
specify which non-terminals are allowed to be roots of user input substrings.

The approach proposed by Su and Wassermann has one advantage over
other approaches that have been shown so far. Since it works with the output
language grammar (i.e., the SQL grammar), it does not require any analysis of
the application source code, and, therefore, the tool can be potentially applied
to applications written in different languages. However, the approach requires
that the application code marks user input with meta-characters, which have
to be inserted into the application either manually by the programmers or
automatically as a result of some form of static analysis. In addition, from
the published research, it is not clear whether or not the augmented SQL
grammar has to be redefined for each tested application based on knowledge
of the type of queries generated by that application.

One disadvantage that both the approaches described above have in com-
mon is the fact that detection of attacks or vulnerabilities can only be done at
run-time. As a result, any error in model construction can result in undesired
side effects, such as undetected application compromises or the blocking of
valid queries.

To the best of our knowledge, in the web applications domain, the posi-
tive approach so far has only been applied to the detection of SQL injection
attacks. However, this approach has the potential of being applied to a wider
range of attacks resulting from insecure input handling by an application, such
as cross-site scripting and interpreter injection attacks. More important, un-
like the taint propagation analysis approaches described in Sect. 1.4.1, positive

1.4 Vulnerability Analysis 29

approaches have the potential for being used to detect attacks that exploit
logical errors in applications, such as attacks exploring insufficient authenti-
cation, authorization, and session management mechanisms.

Dynamic Techniques

Positive approaches based on dynamic information build models of expected
behavior of an application by analyzing the application’s execution profiles
associated with attack-free input. In other words, the application’s behavior
is monitored during normal operation, and then the profiles are derived on
the basis of the collected meta-information such as log files or system call
traces. After the models have been established, the run-time behavior of an
application is compared to the established models, to identify discrepancies
that might represent evidence of malicious activity.

Traditionally, this approach has been applied to the area of learning-based
anomaly detection systems. An example of the application of this approach to
web-based application is represented by the work of Kruegel and Vigna [18]. In
this case, an anomaly detection system utilizes a number of statistical models
to identify anomalous events in a set of web requests that use parameters to
pass values to the server-side components of a web-based application.

The anomaly detection system operates on the URLs extracted from suc-
cessful web requests. The set of URLs is further partitioned into subsets corre-
sponding to each component of the web-based application (for example, each
PHP file). The anomaly detector processes each subset of queries indepen-
dently, associating models with each of the parameters used to pass input
values to a specific component of the web-based application.

The anomaly detection models are a set of procedures used to evaluate
a certain feature of a request parameter, and operate in one of two modes,
learning or detection. In the learning phase, models build a profile of the
“normal” characteristics of a given feature of a parameter (e.g., the normal
length of values for a parameter), setting a dynamic detection threshold for
the parameter. During the detection phase, models return an anomaly score
for each observed example of a parameter value. This is simply a probability
on the interval [0, 1] indicating how probable the observed value is in relation
to the established profile for that parameter (note that a score close to zero
indicates a highly anomalous value). For example, there are models that char-
acterize the normal length and the expected character distribution of string
parameters, models that derive the structure of path-like parameters, and
models that infer if a parameter takes only a value out of a limited set of
constants [19].

Since there are generally multiple models associated with each parameter
passed to a web application, a final anomaly score for an observed parameter
value during the detection phase is calculated as 1 minus the weighted sum of
the individual model scores. If the weighted anomaly score is greater than the
detection threshold determined during the learning phase for that parameter,

30 1 Vulnerability Analysis of Web-based Applications

the anomaly detector considers the entire request anomalous and raises an
alert.

The advantage of this approach is that, in principle, it does not require
any human interaction. The system is able to automatically learn the profiles
that describe the normal usage of an application and then it is able to de-
termine abnormal use of a server-side component. In addition, by following a
positive approach, this technique is able to detect both known and unknown
attacks. Finally, by operating on the requests sent to the server, this approach
is completely language independent and therefore can be applied, without
modification, to web-based application developed with any technology.

The main disadvantage of this approach is shared by all the anomaly detec-
tion systems. These systems rely on two assumptions, namely that an anomaly
is evidence of malicious behavior and that malicious behavior will generate
an anomaly. Neither assumption is always valid. When the first assumption
is violated, the system generates a false positive, that is, a normal request is
blocked or identified as malicious. When the second assumption is violated,
the system generates a false negative, that is, it fails to detect an attack.

Summary

Positive approaches have the advantage that, by specifying the normal, ex-
pected state of a web-based application, they can usually detect an attack
whether it is part of the threat model or not. On the other hand, the concept
of normality is difficult to define for certain classes of applications, and the
creation of models that correctly characterize the behavior of an application
still requires the use of ad hoc heuristics and manual work. Therefore, web vul-
nerability analysis systems based on the positive approach are not as popular
as the ones based on the negative approach.

Another problem of these systems is that they are in general vulnerable to
mimicry attacks [35]. These are attacks where a vulnerability is exploited in a
way that makes its manifestation similar to what is considered to be normal
usage in order to avoid detection. To counter these attacks, the models should
be tightly “fit” to the application. Unfortunately, tighter models are more
prone to produce false positives, and determining the right detection threshold
to optimize detection and minimize errors still requires manual intervention
and substantial expertise.

Finally, all known positive approaches require some form of run-time mon-
itoring of the application behavior, and, therefore, are likely to introduce some
form of overhead.

1.4.3 Challenges and Solutions

Web-based applications are complex systems, and while in the previous sec-
tions we have shown a number of approaches that attempt to make this class

1.4 Vulnerability Analysis 31

of applications more secure, there are still a number of open problems, which
will likely be the focus of research in the next few years.

A first general consideration is that there is no approach or technique
that can be considered “the silver bullet,” under all conditions and cases. One
challenge is, thus, that of combining the strengths from the various techniques
and approaches that we have described so far.

Another general consideration is that there is already a corpus of work
on vulnerability analysis techniques for traditional applications that can be
extended to web-based applications. While some of the existing techniques
can be applied to the web domain with little effort, some characteristics of
web-based applications make the adaptation process difficult. For example,
web-based applications implement shared, persistent state in a number of
ways, such as cookies, back-end databases, etc. Modeling this state is not
trivial when applying “traditional” vulnerability analysis techniques that were
mostly developed for the analysis of structured languages such as C and C++.

In addition, some web-based applications have a complex interaction model
and are assembled as a composition of various, heterogeneous modules, written
in different languages. One challenge is thus to develop analysis techniques
that are able to take into account the interaction between all the different
technologies used in a web-based application. Consider for example a web-
based application, in which a module, written in PHP, stores a value obtained
from a user in a back-end database. This value is then retrieved by a module
written in Python and used, without any sanitization, to perform a sensitive
operation. In this case, the vulnerability analysis process should be able to
analyze PHP, Python, and SQL code to identify the path that can bring the
user-defined value to be used in a sensitive operation. Unfortunately, currently
there are no techniques that are able to perform this type of analysis.

Another group of challenges is specific to the different techniques and ap-
proaches. For example, in the case of static analysis, it is necessary to include
new techniques to perform more precise analysis in the context of dynamic lan-
guages. These new techniques should support object-oriented code, dynamic
features of languages (e.g., $$ in PHP), complex data structures, etc.

Another major challenge is represented by the correct modeling of saniti-
zation. So far, the only way to characterize sanitization in an application has
been through simple heuristics. For example, if tainted data is passed to string
manipulation functions or to functions that return an integer value, the data
is considered “safe”. This approach is too näıve and it might lead to attacks
that are able to exploit “blind spots” in the sanitization routines. Therefore,
it is important to provide techniques and tools to better model sanitization
operations and to assess whether a sanitization operation is appropriate for
the task at hand (e.g., the sanitization necessary to prevent SQL injection is
different from the sanitization required to avoid XSS attacks.)

Another set of challenges is represented by novel, web-specific attack tech-
niques. In fact, while vulnerabilities caused by improper input validation are
starting to be well-known, well-studied, and effectively detected, new vulnera-

32 1 Vulnerability Analysis of Web-based Applications

bilities begin to surface. For example, attacks that tend to violate the intended
logic of a web application cannot be easily expressed in terms of tainting. Con-
sider, for example, a web-based application that implements an e-commerce
site. A login process allows a registered user to access a catalog with links to
sensitive documents. The developer assumed that the only way to access these
documents is through the catalog page, which is presented to the user after the
login process. Unfortunately, there is no automatic mechanism that prevents
a de-registered user to simply provide the address of a sensitive document and
completely bypass the authentication procedure. In this case, the attacker has
not violated the logic of a web-application component. It has simply violated
the implicit workflow of the application. Modeling and protecting from this
types of attacks is still an open problem.

Finally, a set of challenges in the field is posed by the need to compare re-
sults between different approaches. Currently, there is no standard, accepted
dataset usable as base-line for evaluation. While there exists some effort to
build “standard” applications with known sets of vulnerabilities (e.g., Web-
Goat [26]), there is still no consensus inside the security community on which
applications to use for testing and how. As a consequence, every tool is eval-
uated on a different set of applications and a fair comparison of different
approaches is not possible.

As web-based applications will become the prevalent way to provide ser-
vices and distribute information on the Internet, the challenges described
above will have to be addressed to support the development of secure ap-
plications based on web technologies.

References

1. C. Anley. Advanced SQL Injection in SQL Server Applications. Technical
report, Next Generation Security Software, Ltd, 2002.

2. J. Bercegay. Double Choco Latte Vulnerabilities. http://www.gulftech.org/
?node=research&article id=00066-04082005, April 2005.

3. M. Brown. FastCGI Specification. Technical report, Open Market, Inc., 1996.
4. A. Christensen, A. Møller, and M. Schwartzbach. Precise Analysis of String

Expressions. In Proceedings of the 10th International Static Analysis Symposium
(SAS’03), pages 1–18, May 2003.

5. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft
Standard), June 1999. Updated by RFC 2817.

6. K. Fu, E. Sit, K. Smith, and N. Feamster. Dos and Don’ts of Client Authenti-
cation on the Web. In Proceedings of the USENIX Security Symposium, Wash-
ington, DC, August 2001.

7. C. Gould, Z. Su, and P. Devanbu. Static Checking of Dynamically Generated
Queries in Database Applications. In Proceedings of the 26th International Con-
ference of Software Engineering (ICSE’04), pages 645–654, September 2004.

8. V. Haldar, D. Chandra, and M. Franz. Dynamic Taint Propagation for Java.
In Proceedings of the 21st Annual Computer Security Applications Conference
(ACSAC’05), pages 303–311, December 2005.

9. W. Halfond and A. Orso. AMNESIA: Analysis and Monitoring for NEutraliz-
ing SQL-Injection Attacks. In Proceedings of the International Conference on
Automated Software Engineering (ASE’05), pages 174–183, November 2005.

10. Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. Lee, and S.-Y. Kuo. Securing Web
Application Code by Static Analysis and Runtime Protection. In Proceedings of
the 12th International World Wide Web Conference (WWW’04), pages 40–52,
May 2004.

11. N. Jovanovic. txtForum: Script Injection Vulnerability. http://www.seclab.
tuwien.ac.at/advisories/TUVSA-0603-004.txt, March 2006.

12. N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static Analysis Tool for De-
tecting Web Application Vulnerabilities. In Proceedings of the IEEE Symposium
on Security and Privacy, May 2006.

13. N. Jovanovic, C. Kruegel, and E. Kirda. Precise Alias Analysis for Static Detec-
tion of Web Application Vulnerabilities. In Proceedings of the ACM SIGPLAN

34 References

Workshop on Programming Languages and Analysis for Security (PLAS’06),
June 2006.

14. A. Klein. Cross Site Scripting Explained. Technical report, Sanctum Inc., 2002.
15. A. Klein. “Divide and Conquer”. HTTP Response Splitting, Web Cache Poi-

soning Attacks, and Related Topics. Technical report, Sanctum, Inc., 2004.
16. A. Klein. DOM Based Cross Site Scripting or XSS of the Third Kind. Technical

report, Web Application Security Consortium, 2005.
17. M. Koľsek. Session Fixation Vulnerability in Web-based Applications. Technical

report, ACROS Security, 2002.
18. C. Kruegel and G. Vigna. Anomaly Detection of Web-based Attacks. In Proceed-

ings of the 10th ACM Conference on Computer and Communication Security
(CCS’03), pages 251–261, October 2003.

19. C. Kruegel, G. Vigna, and W. Robertson. A Multi-model Approach to the
Detection of Web-based Attacks. Computer Networks, 48(5):717–738, August
2005.

20. C. Linhart, A. Klein, R. Heled, and S. Orrin. HTTP Request Smuggling. Tech-
nical report, Watchfire Corporation, 2005.

21. V. Livshits and M. Lam. Finding Security Vulnerabilities in Java Applications
with Static Analysis. In Proceedings of the 14th USENIX Security Symposium
(USENIX’05), pages 271–286, August 2005.

22. Y. Minamide. Static Approximation of Dynamically Generated Web Pages. In
Proceedings of the 14th International World Wide Web Conference (WWW’05),
pages 432–441, May 2005.

23. NCSA Software Development Group. The Common Gateway Interface. http:
//hoohoo.ncsa.uiuc.edu/cgi/.

24. Netcraft. PHP Usage Stats. http://www.php.net/usage.php, April 2006.
25. A. Nguyen-Tuong, S. Guarnieri, D. Greene, and D. Evans. Automatically Hard-

ening Web Applications Using Precise Tainting. In Proceedings of the 20th
International Information Security Conference (SEC’05), pages 372–382, May
2005.

26. OWASP. WebGoat. http://wwwo.wasp.org/software/webgoat.html, 2006.
27. Perl. Perl security. http://perldoc.perl.org/perlsec.html.
28. rgod. PHP Advanced Transfer Manager v1.30 underlying system disclosure / re-

mote command execution / cross site scripting. http://retrogod.altervista.
org/phpatm130.html, 2005.

29. Security Space. Apache Module Report. http://www.securityspace.com/s
survey/data/man.200603/apachemods.html, April 2006.

30. K. Spett. Blind SQL Injection. Technical report, SPI Dynamics, 2003.
31. Z. Su and G. Wassermann. The Essence of Command Injection Attacks in Web

Applications. In Proceedings of the 33rd Annual Symposium on Principles of
Programming Languages (POPL’06), pages 372–382, 2006.

32. Sun. JavaServer Pages. http://java.sun.com/products/jsp/.
33. Symantec Inc. Symantec Internet Security Threat Report: Vol. VIII. Technical

report, Symantec Inc., September 2005.
34. TIOBE Software. TIOBE Programming Community Index for April 2006. http:

//www.tiobe.com/index.htm?tiobe index, April 2006.
35. D. Wagner and P. Soto. Mimicry Attacks on Host-Based Intrusion Detection

Systems. In Proceedings of the ACM Conference on Computer and Communi-
cations Security, pages 255–264, Washington DC, November 2002.

References 35

36. J. Whaley and M. Lam. Cloning-Based Context-Sensitive Pointer Alias Analysis
Using Binary Decision Diagrams. In Proceedings of the Conference on Program-
ming Language Design and Implementation (PLDI’04), pages 131–144, June
2004.

37. Y. Xie and A. Aiken. Static Detection of Security Vulnerabilities in Script-
ing Languages. In Proceedings of the 15th USENIX Security Symposium
(USENIX’06), August 2006.

