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Abstract. The increase in bandwidth over processing power has made state-
ful intrusion detection for high-speed networks more difficult, and, in certain
cases, impossible. The problem of real-time stateful intrusion detection in
high-speed networks cannot easily be solved by optimizing the packet match-
ing algorithm utilized by a centralized process or by using custom-developed
hardware. Instead, there is a need for a parallel approach that is able to
decompose the problem into subproblems of manageable size. We present a
novel parallel matching algorithm for the signature-based detection of net-
work attacks. The algorithm is able to perform stateful signature matching
and has been implemented only using off-the-shelf components. Our initial
experiments confirm that, by making the rule matching process parallel, it
is possible to achieve a scalable implementation of a stateful, network-based
intrusion detection system.

1 Introduction

Intrusion detection is the process of analyzing a stream of events to identify the
evidence of attacks. Intrusion detection can be applied to different domains and can
be based on different techniques, which are usually characterized by the model used
as the basis for detection. Systems used to specify what the “normal behavior” of an
application is are usually called anomaly-based, because an attack will be detected
as an event that does not fit the system’s idea of what is “normal.” On the other
hand, systems used to specify what the manifestation of an attack is are known as
misuse-based, and the models are often referred to as signatures.

Both anomaly-based and misuse-based systems have advantages and disadvan-
tages. Anomaly-based systems are able to detect previously unknown attacks, but
they traditionally produce more false positives (erroneous detections). Misuse-based
systems, on the other hand, are usually more precise, but cannot detect attacks for
which they do not have a description, and, therefore, they need continuous updating.

Because of their low false positive rate and their higher performance, misuse-
based detection approaches are the basis for the majority of the existing network-
based intrusion detection systems. Unfortunately, as the speed of the network links
increases, keeping up with the pace of events becomes a real challenge.

This problem has been addressed by current intrusion detection systems by min-
imizing the amount of state that is associated with the matching process. In partic-
ular, many systems operate on single packets (e.g., [12]) and do not provide support
for complex, stateful signatures, where the evidence necessary to detect an attack is
spread across multiple packets at different points in time.



A number of approaches have been proposed to address the problem of matching
stateful signatures in high-speed networks. Kruegel et al. proposed a parallel archi-
tecture to partition the traffic into slices of manageable size, which are then examined
by a set of intrusion detection sensors [10]. This slicing technique takes into account
the signatures used by the intrusion detection sensors, so that all the evidence needed
to detect an attack is guaranteed to appear in the slice associated with the sensor
responsible for the detection of that particular attack. Therefore, no communication
among the intrusion detection sensors is necessary.

Unfortunately, even though the system was able to improve the overall perfor-
mance of the detection process, it was not able to effectively partition the traffic
in the case of complex stateful signatures. This is because, in general, the correct
partitioning of the traffic is known only at runtime, and, therefore, any approach
that uses a static partitioning algorithm needs to over-approximate the event space
associated with a signature, possibly resulting in a degenerate partitioning.

We propose a novel technique to perform parallel matching of intrusion detection
signatures. Our technique is similar to the one proposed in [10], since it uses a parti-
tioning mechanism to reduce the traffic on a high-speed link to slices of manageable
size, and, in addition, it uses a number of parallel sensors. However, in our approach,
the sensors are able to communicate through a high-speed, low-latency, dedicated
control plane. By doing this, they can provide feedback to each other in order to
synchronize their scanning processes. Therefore, they can detect attacks that would
be missed if the traffic partitions were analyzed separately as it happens in [10]. In
addition, our system does not rely on any predetermined partitioning of the traffic
and can optimally distribute the load over the available sensors.

In this paper, we make the following contributions:

– We introduce a novel architecture for the parallel matching of stateful network-
based signatures.

– We present a novel algorithm that allows for the detection of complex, stateful
attacks in a parallel fashion.

– We provide a precise characterization of the bottlenecks that are inherent to the
parallel matching of stateful signatures in the most general case.

– We describe a prototype implementation of our system and we show that the
proposed architecture allows for the parallel matching of network signatures.

The rest of this paper is structured as follows. In § 2, we present our rule matching
model. Then, in § 3, we present the architecture of our parallel intrusion detection
system. In § 4, we describe an algorithm for parallel rule matching that we imple-
mented on the described architecture and in § 5 we show experimental results. Then,
§ 6 discusses related work in the field of high-speed intrusion detection and, finally,
§ 7 concludes.

2 Model

In general, an intrusion detection system scans a stream of events and detects attacks
using signatures. Rules are matched against the stream of events by a rule matching
system to identify signatures of attacks.

Usually, a rule r is described as composed of a predicate P , possibly a state S
(in this case, the rule is said to be “stateful”), and an action A [5,17]. The predicate
P describes the constraints on the values of the event and attributes of S. If the



predicate evaluates to true for an event, then the action is triggered. The action A
consists in modifying the rule state or raising an alert (that is, generating a new event
for further processing). The rule maintains the state S in order to keep track of the
steps of an attack. For example, a counter might be the state used by a rule to keep
track of the number of TCP connection attempts to a host. This is information can be
used to detect port scans. A number of architectures that implement a rule matching
system as described above are publicly available [5,14,15]. These architectures are,
in general, centralized, i.e., a single processing node deals with all the events.

A parallel architecture for intrusion detection should help lower the processing
power demand and the memory footprint of packet analysis by distributing the net-
work traffic to be analyzed among different sensors. We define a parallel model for
intrusion detection by expanding the aforementioned event model, with some as-
sumptions:
1. The network traffic is split and sent to one or more sensors.
2. Each sensor tries to match one or more signatures against the traffic it receives.
3. The system does not rely on any predefined mapping between packets and sen-

sors, i.e., each packet could be sent to any sensor. This is a more general approach
than the one described by Kruegel et al. in [10], where the traffic slicer enforced
a mapping between packet features and sensors based on the analysis of the sig-
natures’ event spaces. Here, we take into consideration the most general case,
that is, for any pair of packets, we have no a priori knowledge that they both
belong to the same event space.

It is easy to see that, given these assumptions, stateful rules are difficult to imple-
ment in a parallel rule matcher. The reason is that, without any pre-existent mapping
between packet features and sensors, there is no guarantee that two packets that are
required to match a signature are processed by the same sensor.

A trivial solution to overcome this problem would be to replicate the traffic so
that each packet is sent to every sensor. Unfortunately, this solution would render the
parallel approach totally ineffective. A better approach is to minimize the amount of
traffic to be scanned by processing each packet only once, which, in turn, entails that
every sensor has to maintain the same rules with the same state loaded. Therefore,
our parallel machine, by design, requires no replication of the incoming traffic, but
a complete replication in the matcher state, which has to be the same for all the
sensors at any time. To refine this observation, we express the predicate evaluation
of a stateful rule in the following form:
Definition 1. Predicate evaluation of a stateful rule:

SR,t+1 = F (It, SR,t),

where It is the input at time t, R is a rule, and SR,t is the state of the rule at time t.
If one sees the rule matching process as a finite state machine (FSM), F is nothing

more than its transition function. The computationally expensive parts of the whole
process are hidden in the formalism above and consist, most notably, of: (a) the
evaluation of the input It, i.e., the packet scanning, which will possibly trigger a
state transition, and (b) the corresponding state update that a transition might
imply.

Evaluating the predicate is part of the packet scanning process, and it can be
performed in parallel with no additional effort1, since each sensor evaluates the same
1 These kind of problems are also known as “embarrassingly parallel.”



predicate on different packets. On the other hand, the state update is an operation
that we aim to avoid in our system, because it needs to be repeated on all the sensors,
in order to have the state of the parallel machine to evolve simultaneously.

These considerations are not very encouraging when building a parallel system.
Amdahl’s law [1] here fits perfectly: the time needed by the state update has to be
spent by all the sensors for each packet that modifies the state, even though the
packet matching occurs on only one sensor, and, therefore, cannot be parallelized.
Simply put, during the state update triggered by a packet matching a rule, all the
sensors do the same operation, behaving as if they were a single machine and without
exploiting any parallelization. Therefore, it is already clear that the bottleneck of an
architecture that has to address a general, parallel stateful signature matching system
lies in updating the state of the rule(s) when a match occurs.

Note that the above considerations hold only for the scanned packets that match
a rule and, thus, update the rule’s state. However, not all the packets will match
(hopefully, very few will). Therefore, we can significantly benefit from parallelizing
the packet scanning process.

Intuitively, we need to make the update of the state of a rule as fast as possible.
In order to do that, we can partition the rule’s state. More precisely, we split the
rule’s state in two parts: a scanning state, or predicate state, and a working state.
The working state does not modify the scanning state and thus does not affect the
matching capability of a sensor. Only the predicate state needed for the evaluation
has to be updated in the aforementioned non-scalable fashion. The actual working
state can, on the other hand, live on a separate centralized machine, which we call
“control node,” and it can be updated asynchronously (in § 3, we will describe the
system architecture in more detail). Ideally, we would like the scanning state to be
as small as possible. More formally, we can functionally decompose a rule as below:
Definition 2. State transition and output of a stateful sensor:

SP,t+1 = FSP (It, SP,t); OP,t+1 = FOP (It, SP,t)

Definition 3. State transition and output of a control node:

SW,t+1 = FSW (OP,t, SW,t); OW,t+1 = FOW (SW,t)

In the definition above, SP is the scanning (or predicate) state and SW is the
working state, while OP and OW are, respectively, the output of the sensors (going
to the control node) and the output of the control node, which could be an alert. FS·
are the state transition functions, which map states and inputs to new states, and
FO· are the output functions, which map states, or states and input, to output.

Def. 2 describes the behavior of a generic sensor in terms of a Mealy Machine, while
Def. 3 describes the control node in terms of a Moore Machine. The fundamental point
is that the control node can process the output from the sensors in an environment
that is completely decoupled from the sensors.

Following the considerations above, we want to split the state management so
that the state update process on the sensors is minimized and does not require any
feedback from the control node to the sensors. For example, a rule that detects a port
scan attack can be implemented as a TCP stream-based predicate on the sensors.
The stream-based predicate and the predicate state take care of filtering out packets
that are part of a flow (thus, maintaining some predicate state that mimics the TCP
state machine for each stream and filters out packets when they are found to belong



to a legitimate connection). The detection part (working state) on the control node
takes care of keeping in memory and updating all the data structures needed for the
detection of the scan, such as the list of targets and scanners, counters and timers, or,
to detect coordinated port scans, a whole implicit graph representation of inter-host
connectivity as described in [9], on which to run periodically complex set-covering
algorithms.

3 Architecture

The proposed system uses a parallel architecture as shown in Figure 1. In our setup,
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Fig. 1: The architecture of the parallel rule matcher.

packets are obtained from a tap (T) into the high-speed network link(s) that copies
the packets and sends them to a packet numbering unit (PNU). The PNU, in turn,
tags the packets with a logical timestamp (e.g., generated using a counter starting
from zero) and forwards them to the splitter. The splitter sends the traffic in a
round-robin fashion to N sensor nodes in charge of performing the detection.

The sensor nodes are managed by a control node that maintains the working state
associated with the attack instances, as described in the previous section. The sensor
nodes forward to the control node any packet2 that is tagged as suspicious, i.e., that
it is possibly part of a stateful attack.

The control node updates its state (the working state) according to the messages
received from the sensors. In addition, the sensors are able to talk to each other
through a low-latency broadcast channel. As a result, when one of the sensors matches
a rule, the others can update their predicate state (once again, the same for all
sensors) consistently.

In order for the parallel matcher to emulate a serial one, each sensor is provided
with a buffer that we call sensor match buffer (SMB), which is utilized to store
already-scanned packets. This buffer is required in case an earlier packet was matched
by another node, which triggered a sensor state change. In § 4, an algorithm will be
described that leverages the SMB on each sensor in order to make the parallel rule
matcher behave like a serial one.

In this architecture, the traffic is split in a round-robin fashion, and, therefore,
each node receives 1/Nth of the total traffic, without incurring any potential load-
balancing problems that instead would be caused by alternative traffic partitioning

2 More precisely, only the relevant attributes of the packet such as, for example, source or
destination IP, are forwarded to the other sensors and the control node.



techniques employed in other frameworks, such as [2,10]. Moreover, since there are
no constraints on the mapping between sensors and traffic, if a sensor is slower than
the others and is overloaded, the excess traffic can be seamlessly diverted to other
sensors in order to keep the load constant, without using any complicated load-
balancing algorithm.

4 Algorithm and Protocol

We present a general algorithm, called “simple-sequencer,” that we use to perform the
parallel update of the state transition function of the predicate state as described
in Def. 2. The algorithm is implemented on the sensor nodes and is used to keep
synchronized their predicate state. The simple-sequencer parallel algorithm behaves
like a serial algorithm performing the same task, as far as correctness is concerned, if
the predicate state transition function of Def. 2 belongs to a class of strict-sequence
state machine that we define below. The control node implements a serial rule-
matching algorithm corresponding to the working state update function in Def. 3
and needs only to perform reordering of out-of-order packets sent by the sensors.
Definition 4. Strict-sequence state machine:

A strict-sequence state machine recognizes events that happen in a sequential fash-
ion, i.e., any event in the sequence can be followed by one and only one different event
in the event stream.

According to Kumar et al. [11], the majority of known intrusion patterns can
be formulated as a set of events that happen in strict sequence. Nevertheless, the
ability of the algorithm to match events in strict sequence can also be leveraged to
recognize patterns not directly implying an attack. For instance, the simple-sequencer
algorithm allows to identify the beginning of a TCP connection, described by the
sequence (SYN, SYN-ACK, ACK) in this particular order. Even though the starting
of a TCP connection is not a manifestation of an attack itself, it could help, for
instance, filter out packets belonging to a legitimate TCP connection in a signature,
which would reduce the rate of the traffic processed by the parallel matcher.

Note that the strict-sequence constraint above applies only to the portion of rule
implemented on the sensors. The control node can evaluate more complex functions
(order-variant, with partial order constraints, etc.) on the output of the sensor nodes,
since it does not operate in parallel and leverages a centralized state.

4.1 Simple-Sequencer Matching Algorithm

Overview of the algorithm. From now on, we refer to packets as being “earlier”
or “later,” using the packet ID as the ordering parameter; with smaller corresponding
to earlier and larger corresponding to later. In addition, when we say “packet x” we
mean “packet with packet ID x”. We also say that a packet “matches” the rule when
it causes a state update on the associated FSM defined in Def. 2.

The intuition behind the inner works of the simple-sequencer algorithm is the fol-
lowing: if a packet causes a state change on a sensor, then any other packet following
it in the input has to be scanned against the new state. This means that no packets
can be discarded from the sensors’ SMBs as long as they are needed.

The crux of the algorithm lies in the logic used to prune the sensors’ SMBs,
which, otherwise, would grow unbounded. The algorithm guarantees that no packet
that could be needed at some sensor is ever discarded. This condition is enforced



in two ways: (i) no packet later than the earliest packet currently scanned (i.e., the
packet scanned by the slowest sensor) is discarded; (ii) if a packet caused a match
and a state update on all the sensors, it is retained until all the matches triggered
by that state update are completed.

The need for (ii) is clarified by an example. Suppose that the slowest sensor is
scanning packet x and that packet x causes a match. At this point, we say that packet
x has a pending match. The match is communicated to the other sensors, which will
update their state accordingly. The sensors will rescan any packet later than x. If,
during this operation the packet x + 1 causes a new match on any sensor, then all
the packets later than x + 1 must be retained on the sensors. But in the meantime,
the slowest sensor could have moved far beyond packet x + 2, thus discarding all the
earlier packets (and, x + 2 itself) by (i). Therefore, packet x + 2 needs to be retained
in the slowest sensor’s SMB by additional logic, as described by (ii).

A match remains pending until it has been acknowledged by all the sensors. A
sensor acknowledges a match when all the matches triggered by this match have been
acknowledged, or, no new matches have been triggered. Packet x + 2 will become
available to be discarded only when no packets earlier than it have pending matches.

We assume that all messages between a pair of sensors are transported using a
first-in-first-out messaging system. Each sensor i keeps the following variables:
– lastInspectedi: The packet ID of the last packet inspected by sensor i.
– pendingMatchesi: A priority queue arranged in ascending order of the value of

packet ID ki. This queue contains the matches that are pending, i.e., not yet
acknowledged by the other sensors.

– earliestNeededi: The head of the pendingMatchesi, i.e., the packet ID of the
earliest packet that needs to be retained at sensor i.

– SMBi: The buffer in which packets are stored, ordered by packet ID. Packets
stored in this buffer include those yet to be scanned, as well as those already
scanned but not yet discarded, i.e., all the packets later than earliestNeededi.

In addition to the previous per-sensor variables, we define discardPtr to be the
minimum of earliestNeededj over all the sensors j.

Now, we are ready to specify the algorithm, and we do so for one sensor i. We
rely on the following primitives:
BroadcastMatch(< Match(Pk, rl, i) >): If the packet matches a rule rl then broad-

cast < Match(Pk, rl, i) > to all nodes. Add < k, triggerMsg, timestamp > to
the pendingMatchesi priority queue. The parameter triggerMsg may be null if
no other match triggered this match. Pk is the packet that matched3.

ProcessMatch(< Match(Pk, rl, j) >): A rule match < Match(Pk, rl, j) > is re-
ceived by sensor i. Update rule rl according to the action specified by the rule
and the data present in packet Pk, then scan the packets up to and includ-
ing lastInspectedi in buffer SMBi that are after packet k for a match against
the updated rule. For each match that occurs at packet h, for rule m, call
BroadcastMatch(< Match(Ph, rm, i) >).

ProcessMatchAck(< MatchAck(Pk, rl, j) >): Mark in pendingMatchesi that sen-
sor j has acknowledged < k, triggerMsg =< Match(Ph, rm) >, timestamp >.
If all the nodes have acknowledged this match, remove < k, triggerMsg =<
Match(Ph, rm, j) >, timestamp > from the priority queue pendingMatchesi and
send a match acknowledgment < MatchAck(Ph, rm, i) > to node j.

3 Of course, in a real-world deployment, only the relevant information needed by other
sensors will be broadcast.



// Task 1: new packets are enqueued in the sensor’s SMB
foreach new packet Pk available from network do

Insert Pk at the end of buffer SMBi;
end
// Task 2: packet inspection and communication with other sensors
foreach packet Pk not yet scanned in SMBi do

if a Match message is available wrt packet Ph and rule rl for sensor j then
ProcessMatch(< Match(Ph, rl, j) >);

else
if a MatchAck message is available wrt packet Ph and rule rl for
sensor j then

ProcessMatchAck(< Match(Ph, rl, j) >);
end

end
Scan Pk against each rule;
Set lastInspectedi to k;
if a match with rule rl occurred then

BroadcastMatch(< Match(Pk, rl, i) >)
end

end
// Task 3: synchronize sensors’ buffers
Every T packets scanned, run the bully algorithm to compute discardPtr;

Fig. 2: The simple-sequencer rule matching algorithm.

The algorithm, shown in Figure 2 for the i-th sensor, is composed of three tasks,
which can be performed concurrently.

The bully algorithm [8] is utilized to compute the discardPtr. All the sensors
can discard the packets from their SMBs periodically (an appropriate timer can be
utilized to trigger discards). More precisely, the sensors can discard packets earlier
of the last discardPtr seen. This deferred deletion ensures that the transitories as-
sociated with the contention have vanished, so that there is not any packet earlier
than discardPtr, which is needed.
Properties of the Simple-Sequencer Algorithm. The simple-sequencer algo-
rithm has an interesting property, i.e., it behaves as a serial algorithm in matching
strict-sequence FSMs as described in Def.4. This property is important because it
guarantees the matching of strict-sequence FSMs avoiding any race condition among
the sensors’ state.

Due to space constraints, a more thorough description of the simple sequencer
algorithm with exemplifications can be found in [7]. Also, for the same reasons,
an analysis of the scaling properties of the architecture when running the simple-
sequencer algorithm is omitted and reported in [6], Section 4.4.

4.2 Control Node

The simple-sequencer algorithm works on the sensors by implementing the predicate
state transition function of Def. 2. This function is constrained to belong to the
class of strict-sequence FSM as defined in Def. 4. Nevertheless, the Moore machine
of Def. 3 implemented on the control node and used to update the working state



does not have any limitation. Therefore, any kind of rule, as decomposed in Def. 2
and Def. 3, can be implemented on the parallel architecture made of sensors and
control node, as long as the rule is decomposed in such a way that guarantees that
its predicate part is an FSM that abides to Def. 4.

Going back to the port scan detection example of § 2, now we can see how this
signature can be detected by our parallel architecture. The sensor nodes are respon-
sible of tracking established TCP connections and filter out packets belonging to a
legitimate connection. Tracking the beginning of a TCP connection means identi-
fying the three-way handshake between the involved hosts. The (SYN, SYN-ACK,
ACK) pattern can be matched by a strict-sequence rule implemented on the sensors.
Once the sensors identify a connection they start discarding packets belonging to it.
Other packets are instead forwarded to the control node, which performs a thorough
port scan detection on them. In this way, the joint action of sensors and control node
can detect a signature that cannot be described by a strict-sequence FSM itself. We
will review this setup more in depth in § 5.

We stress that the control node, being a serial component, simply processes pack-
ets sent to it by the sensors. However, sensors can still send to the control node
packets out of order. The reordering is caused by the different relative instantaneous
speeds at which sensors operate. To prevent the control node to analyze packets sent
by the sensors in the wrong order, we use a simple reordering buffer.

The buffer must be large enough to accommodate as many packets as can fit the
gap between the fastest and the slowest sensor. In the same fashion, the delay before
processing packets must be large enough to allow late packets to come in and be put
in the right order.

Different from the SMBs, where the correct size of the buffers were enforced as a
byproduct of the simple-sequencer algorithm, the size of the control node front buffer
cannot be easily predicted. We will therefore set the size of the buffer and the delay
before processing to conservative values, which will be validated in § 5.

5 Experimental Validation

To test our model, following the model and algorithm presented in § 2 and § 4, we
implemented a parallel architecture to detect port scans.

Our implementation of the sensors and the control node relies on Snort version
2.6 [15]. The Snort running on the sensors has two preprocessors loaded, namely
stream4 reassemble and sfportscan, which have been modified to update their
state synchronously, as described in the algorithm reported in Fig. 2. More precisely,
the stream4 reassemble preprocessors have been enabled to communicate with each
other to synchronize the state of the observed TCP connections.

The control node runs Snort 2.6 with the sfportscan preprocessor loaded and has
a packet reordering buffer. The packet reordering buffer is used to reorder possibly
out-of-order packets from the sensors. The sensors use the stream4 reassemble to
check if a packet belongs to an established TCP connection. When this is not the case,
the packet is forwarded to the control node that uses the sfportscan preprocessor
to match it against the port scan signature.

We expect our parallel architecture to be able to detect port scans as a single-
instance vanilla Snort with sfportscan preprocessor loaded would do. In addition,
we expect the parallel machine to be able to keep up with a higher throughput than
what a single instance detector can cope with.



At first, we have performed a functionality test in an emulated environment based
on tap interfaces and the Virtual Distributed Ethernet [3,4]. A complete description
of the emulated environment cannot be reported here due to lack of space and can
be found in [6], § 6.1.

We have also set up a real-world network testbed to evaluate our algorithm,
protocol, and architecture. From the network point of view, the system was built
following the architecture described in § 3. More precisely, the system is composed
of two networks:

The distribution network, through which packets are sent from the splitter to
the sensors. This has been implemented as an Ethernet network with no IP-level
processing. The splitter has a high throughput network interface connected to a
switch, configured with static routes from the interface to which the splitter is
connected towards the outgoing interfaces to the sensors.

The control network, through which the sensors exchange control packets among
each other and with the control node. The sensors and the control node are
connected through a hub, since there are no high throughput requirements for
control traffic, and only low latency is required.

We analyzed the behavior of the sensors by following the journey of a packet
captured from the live interface by a sensor.

1. When a new packet is captured on the live interface, it is passed to the Snort
decoding engine.

2. Before sending a packet to the preprocessors, each sensor listens (in non-blocking
mode) for incoming packets on the control interface and processes them, if any.

3. Packets received from the live interface are sent to the stream4 reassemble
preprocessor. If the packet changes the state of the reassembly machine (i.e.,
initiates, tears down, or modifies the state of some connections), which in this
case represents the scanning state described in our theoretical framework, then
it is broadcast to the other sensors as a Match beacon.

4. Packets received from the control interface (coming from other sensors) are
stored into the SMB and will be used to re-create the same state changes on
the stream4 reassemble preprocessor.

5. Packets coming from the live interface and sent through the stream reassembly
preprocessor are then handed out to the port scan preprocessor. At the beginning
of the process, some tests are performed on the packet in order to exclude benign
packets. One of these tests consists in checking if the packet is part of a legitimate
connection. If this is the case, the packet surely cannot be part of a scan, and,
thus, no further checks are performed on it.
Here is where the scanning state of the stream4 reassemble preprocessor is
exploited. Packets that are not tagged as benign at this stage do not go through a
complete analysis against port scan detection heuristics, but are simply forwarded
to the control node, which takes care of them. Therefore, sensors do not need to
maintain any state associated with the port scan preprocessor, such as scanners
and scanned hosts lists. Moreover, only a small fraction of the input traffic will
reach the control node.

6. The control node puts the packets received from the sensors in the reordering
buffer and, after a delay of 0.2 seconds, scans them and identifies scan attacks.
In our experiments we have seen that a delay of 0.2 second was sufficient to allow
the control node for processing all the packets in order.



It is easy to recognize that the aforementioned setup is a particular case of the
general architectural model described in § 2. The preprocessor stream4 reassembly
on the sensors maintains the predicate state and uses the simple-sequencer algorithm
to keep the state of TCP connections synchronized among sensors. The sfportscan
preprocessor loaded on the sensors performs the rule predicate evaluation to filter out
benign traffic. The working state is only kept in the sfportscan preprocessor on the
control node in the form of all the relevant structures maintained by the preprocessor
itself, such as the scanner hosts and the scanned hosts lists.

5.1 Evaluation Dataset

To evaluate our system, we have crafted an artificial dataset by merging attack-
free traffic collected on a real-world network at UCSB with a dump of a port scans
performed against a host inside the home network. The scans were performed using
the nmap tool. The attack-free traffic contains 3.46 million packets, and includes a
mix of web traffic, mail traffic, IRC traffic, and other common protocols.

We rewrote, by means of the tcprewrite tool [20], the MAC address of every
frame in order to induct a round-robin scattering pattern on the splitter.

5.2 Hardware and Software Configuration

We set up four Linux sensors running Snort 2.6. Each sensors is equipped with four
Intel Xeon CPUs X3220 at 2.40GHz and 4GB of RAM.

The control node is deployed on another Linux host with the same hardware
characteristics of the sensors. The control node runs a version of Snort with the
reordering packet buffer mentioned before and a vanilla version of the sfportscan
preprocessor. Another Linux box is used only to inject the traffic into the testbed
using a Gigabit Ethernet card connected to a PCI-Express bus.

Each sensor box mounts two Gigabit Ethernet network cards, one to receive the
traffic from the splitter, and another one to communicate with the other sensors and
the control node. Sensors are connected to the splitter box through a Cisco Catalyst
3500 XL switch configured with static routes to the sensors capture interfaces. The
switch has a 1000-BaseT GBIC module that receives the traffic from the splitter
output interface and is connected to sensors through FastEthernet ports. The sensors’
control interfaces are connected to each other through an ordinary FastEthernet hub.

5.3 Experiments

We performed several experiments to validate our model. We compared the parallel
rule matcher setup with a single instance of Snort with the stream4 reassemble
and sfportscan preprocessor loaded. The Snort community ruleset [19] (version
“CURRENT” as of July 2008) was loaded on both the parallel sensors and the single
instance. We note that none of the rules loaded on the sensors were extended to work
correctly on the parallel machine. The rules were used only to represent a realistic
per-packet workload in a real-world intrusion detection system.

We expected that, at a certain traffic rate, the single instance Snort would not
be able to keep up with the traffic, and, therefore, would miss the port scan attack,
while the parallel version of the sensor would be able to catch it. Each experiment
has been repeated 10 times and the results reported are the average of the outcomes.
More precisely, the setups compared are as follows.



Single Snort: In this setup, the traffic has been replayed via a cross cable to a
single box mounting a Gigabit Ethernet interface.

Parallel architecture with four sensors: In this setup, we implemented the com-
plete parallel architecture with four sensors and a control node.

Parallel architecture with two and three sensors: In this setup, we changed
the number of sensor utilized to study the scalability of our approach.

Fig. 3: % of correct detection when varying the number of sensors and the traffic speed.

Results are reported in Figure 3. For each setup, the percentage of attacks detected
versus the input traffic throughput is plotted. The percentage of detected attacks is
computed as the average number of port scan packets detected with respect to the
total present in the trace. It can be seen how the four-sensors Snort outperforms
the single instance starting from a traffic throughput of 190Mb/s. At this speed,
the single instance of Snort starts discarding packets. The percentage of discarded
packets grows almost linearly as the throughput of the traffic increases. On the
other hand, the parallel Snort starts discarding packets at around 320Mb/s. This
happens because we saturated the aggregated capacity of the four outbound ports
of the Catalyst switch going to the sensors. In fact, we found that none of the four
Snort sensors employed dropped any packet during their analysis; instead, packets
were dropped by the switch. We expect our parallel architecture to be able to achieve
higher throughputs, but we were not able to prove our expectation due to the physical
limitations of the hardware employed. The same problem of capacity saturation was
also encountered with the parallel architecture using two and three sensors, as can
be seen in Figure 3. For two sensors, in particular, the performance in detection is
worse than using a single Snort. This is easily explained by the fact that the single
Snort was tested using a crossover connection between the splitter and the instance,
therefore bypassing, the FastEthernet switch.
CPU Usage. We measured the time spent by the parallel-enabled Snort in the
portion of code implementing the communication and parallel synchronization logic.
The RDTSC instruction was used to achieve a precise time measure. RDTSC returns
time in arbitrary units (count of ticks from processor reset). Therefore, it can be



used only to get relative measurements. From our experiment, we have measured
that the average time spent by the sensors in the additional logic (at the highest
possible speed) is about 5.3% of the total time spent in the Snort engine. The CPU
usage measurements were performed without the community ruleset used for the
throughput experiments mentioned above, which is the worst case. In fact, if the
ruleset had been loaded, the fraction of time spent in the parallel logic would have
dropped even more, as it is independent of the loaded rules.
Latency and Cost of Communication. Another important factor to take into
consideration is the latency introduced by the SMBs. In our experimental setup,
we chose to limit the length of the SMBs to 1,000 packets. Therefore, this number
determines the upper bound of the latency that a traffic packet can experience in
its journey to the control node. With four sensors scanning the traffic at 100Mb/s,
the maximum latency experienced would be ∼ 0.05 seconds, which is negligible.
Moreover, the latency decreases with the increasing of throughput, becoming less
significant at higher throughputs.

As far as the communication cost introduced by the communication among sensors
and control node is concerned, we report that only 58K packets out of 3.46 million
were forwarded to the control node when the setup with four sensors was employed at
100Mb/s (no packet loss). 17K packets were exchanged among the sensors to update
the predicate state. Most of the rest of the communication cost of the parallel machine
is spent for the buffer synchronization protocol. More precisely, 127K packets were
exchanged among sensors as part of the bully algorithm. We note that, since we
chose to limit the SMB length to 1,000 packets, we could have disabled the buffer
synchronization mechanism. However, we decided to leave it active to determine
experimentally the cost of the number of packets exchanged for buffer synchronization
purposes. We also note that the total cost spent in communication among the sensors
and the control node accounts for 203K packets, out of the 3.46 million present in
the traffic. This means that only a small fraction of the input traffic (∼ 6%) reached
the control node and the majority of packets were filtered out by the sensors.

6 Related Work

As we mentioned in the introduction, Kruegel et al. proposed a distributed architec-
ture to partition the traffic into slices of manageable size, which were then examined
by dedicated intrusion detection sensors [10]. Our technique is different because the
sensors can communicate with each other in order to keep a synchronized version of
the matching state, which, in turn, allows the packets to be sent independently to
any sensors.

Sekar et al. [16] describe an approach to perform high-performance analysis of
network data. They propose a domain-specific language for capturing patterns of
both normal and abnormal packet sequences (therefore, their system encompasses
both misuse and anomaly detection). Moreover, they developed an efficient imple-
mentation of data aggregation and pattern matching operations. A key feature of
their implementation is that the pattern-matching time is insensitive to the number
of rules, thus making the approach scalable to large rule sets. The shortcomings in
their work are that the processing of the packets is done on a central sensor, and,
therefore needs to be able to keep up with the fast pace of packets on high-speed
networks.



Building up from the foundations laid by Sekar et al., but using a more general
approach, Meier et al. [13] propose a method for system optimization in order to
detect complex attacks. Their method reduces the analysis run time that focuses on
complex, stateful, signatures.

Sommer et al. [18] propose a way to exchange state among sensors by serializing it
into a file and exchanging it between sensors. Their approach is focused on providing
a framework to transfer fine-grained state among different sensors in order to enhance
the IDS with a number of features. Although the authors provide a way to exchange
fine-grained state among sensors, no emphasis is put on performance.

However, the mechanisms introduced in [18] were leveraged by Vallentin et al. to
build a cluster-based NIDS [21]. This design has a number of similarities with our
architecture, as it includes a component that splits the traffic across sensors, which,
in turn, exchange information to detect attacks whose evidence span multiple slices.
However, the focus of the work of Vallentin et al. is on the engineering challenges
associated with the creation of a high-performance, cluster-based NIDS, while the
focus of the research we described in this paper is on the modeling and analysis of the
general problem of performing parallel detection of stateful signatures. For example, a
substantial part of the complexity of our algorithm is due to the analysis of previously
processed packets when a new rule triggers a change in the replicated state. This
problem is simply avoided by Vallentin et al. by partitioning the traffic according to
source/destination pairs, using loose synchronization, and by limiting the possibility
of race conditions by means of signature-specific techniques. Even though the two
approaches have different foci, many of the lessons learned by implementing each
approach can be used as a basis to improve the respective designs.

Other approaches, such as the ones from Colajanni et al. [2] and Xinidis et al. [22]
propose optimization based on load-balancing and early filtering to reduce the load
of each sensor. However, their work does not focus on the design of a truly parallel
matching algorithm.

7 Conclusions

The speed of networking technologies has increased faster than the speed of proces-
sors, and, therefore, centralized solutions to the network intrusion detection problems
are not scalable. The problem of detecting attacks in high-speed environment is made
more difficult by the stateful nature of complex attacks.

In this paper, we have presented a novel approach to the parallel matching of
stateful signatures in network-based intrusion detection systems. Our approach is
based on a multi-sensor architecture and a parallel algorithm that allow for the
efficient matching of multi-step signatures. We have analyzed the feasibility and
described a proof-of-concept implementation of a parallel, stateful intrusion detection
system for high-speed networks.

The architecture has been deployed on a real network using four Linux boxes as
sensors and it has been tested for port scan detection in various configurations. The
result of the evaluation have confirmed the validity of the theoretical model, since
the parallel rule matcher, composed of four sensors, has successfully outperformed a
single sensor instance, which we used as a baseline for comparison, performing the
same kind of detection on the same dataset.
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