
Why Johnny Can’t Pentest:

An Analysis of Black-box Web Vulnerability Scanners

Adam Doupé, Marco Cova, and Giovanni Vigna

University of California, Santa Barbara

{adoupe,marco,vigna}@cs.ucsb.edu

Abstract. Black-box web vulnerability scanners are a class of tools that can be

used to identify security issues in web applications. These tools are often mar-

keted as “point-and-click pentesting” tools that automatically evaluate the secu-

rity of web applications with little or no human support. These tools access a web

application in the same way users do, and, therefore, have the advantage of being

independent of the particular technology used to implement the web application.

However, these tools need to be able to access and test the application’s various

components, which are often hidden behind forms, JavaScript-generated links,

and Flash applications.
This paper presents an evaluation of eleven black-box web vulnerability scanners,

both commercial and open-source. The evaluation composes different types of

vulnerabilities with different challenges to the crawling capabilities of the tools.

These tests are integrated in a realistic web application. The results of the evalu-

ation show that crawling is a task that is as critical and challenging to the overall

ability to detect vulnerabilities as the vulnerability detection techniques them-

selves, and that many classes of vulnerabilities are completely overlooked by

these tools, and thus research is required to improve the automated detection of

these flaws.

1 Introduction

Web application vulnerabilities, such as cross-site scripting and SQL injection, are one
of the most pressing security problems on the Internet today. In fact, web application
vulnerabilities are widespread, accounting for the majority of the vulnerabilities re-
ported in the Common Vulnerabilities and Exposures database [4]; they are frequent
targets of automated attacks [20]; and, if exploited successfully, they enable serious at-
tacks, such as data breaches [9] and drive-by-download attacks [17]. In this scenario,
security testing of web applications is clearly essential.

A common approach to the security testing of web applications consists of using
black-box web vulnerability scanners. These are tools that crawl a web application to
enumerate all the reachable pages and the associated input vectors (e.g., HTML form
fields and HTTP GET parameters), generate specially-crafted input values that are sub-
mitted to the application, and observe the application’s behavior (e.g., its HTTP re-
sponses) to determine if a vulnerability has been triggered.

Web application scanners have gained popularity, due to their independence from
the specific web application’s technology, ease of use, and high level of automation.
(In fact, web application scanners are often marketed as “point-and-click” pentesting

tools.) In the past few years, they have also become a requirement in several standards,
most notably, in the Payment Card Industry Data Security Standard [15].

Nevertheless, web application scanners have limitations. Primarily, as most testing
tools, they provide no guarantee of soundness. Indeed, in the last few years, several
reports have shown that state-of-the-art web application scanners fail to detect a sig-
nificant number of vulnerabilities in test applications [1, 16, 21, 22, 24]. These reports
are valuable, as they warn against the naive use of web application scanners (and the
false sense of security that derives from it), enable more informed buying decisions,
and prompt to rethink security compliance standards.

However, knowing that web application scanners miss vulnerabilities (or that, con-
versely, they may raise false alerts) is only part of the question. Understanding why

these tools have poor detection performance is critical to gain insights into how current
tools work and to identify open problems that require further research. More concretely,
we seek to determine the root causes of the errors that web application scanners make,
by considering all the phases of their testing cycle, from crawling, to input selection,
to response analysis. For example, some of the questions that we want to answer are:
Do web application scanners correctly handle JavaScript code? Can they detect vulner-
abilities that are “deep” in the application (e.g., that are reachable only after correctly
submitting complex forms)? Can they precisely keep track of the state of the applica-
tion?

To do this, we built a realistic web application, called WackoPicko, and used it to
evaluate eleven web application scanners on their ability to crawl complex web appli-
cations and to identify the associated vulnerabilities. More precisely, the WackoPicko
application uses features that are commonly found in modern web applications and that
make their crawling difficult, such as complex HTML forms, extensive JavaScript and
Flash code, and dynamically-created pages. Furthermore, we introduced in the applica-
tion’s source code a number of vulnerabilities that are representative of the bugs com-
monly found in real-world applications. The eleven web application scanners that we
tested include both commercial and open-source tools. We evaluated each of them un-
der three different configuration settings, corresponding to increasing levels of manual
intervention. We then analyzed the results produced by the tools in order to understand
how the tools work, how effective they are, and what makes them fail. The ultimate
goal of this effort is to identify which tasks are the most challenging for black-box
vulnerability scanners and may require novel approaches to be tackled successfully.

The main contributions of this paper are the following:

– We performed the most extensive and thorough evaluation of black-box web appli-
cation vulnerability scanners so far.

– We identify a number of challenges that scanners need to overcome to success-
fully test modern web applications both in terms of crawling and attack analysis
capabilities.

– We describe the design of a testing web site for web application scanners that com-
poses crawling challenges with vulnerability instances. This site has been made
available to the public and can be used by other researchers in the field.

– We analyze in detail why the web application vulnerability scanners succeed or fail
and we identify areas that need further research.

2 Background

Before discussing the design of our tests, it is useful to briefly discuss the vulnerabilities
that web application scanners try to identify and to present an abstract model of a typical
scanner.

2.1 Web Application Vulnerabilities

Web applications contain a mix of traditional flaws (e.g., ineffective authentication and
authorization mechanisms) and web-specific vulnerabilities (e.g., using user-provided
inputs in SQL queries without proper sanitization). Here, we will briefly describe some
of the most common vulnerabilities in web applications (for further details, the inter-
ested reader can refer to the OWASP Top 10 List, which tracks the most critical vulner-
abilities in web applications [13]):

– Cross-Site Scripting (XSS): XSS vulnerabilities allow an attacker to execute ma-
licious JavaScript code as if the application sent that code to the user. This is the
first most serious vulnerability of the OWASP Top 10 List, and WackoPicko in-
cludes five different XSS vulnerabilities, both reflected and stored.

– SQL Injection: SQL injection vulnerabilities allow one to manipulate, create or
execute arbitrary SQL queries. This is the second most serious vulnerability on the
OWASP Top 10 List, and the WackoPicko web application contains both a reflected
and a stored SQL injection vulnerability.

– Code Injection: Code injection vulnerabilities allow an attacker to execute arbi-
trary commands or execute arbitrary code. This is the third most serious vulnera-
bility on the OWASP Top 10 List, and WackoPicko includes both a command line
injection and a file inclusion vulnerability (which might result in the execution of
code).

– Broken Access Controls: A web application with broken access controls fails to
properly define or enforce access to some of its resources. This is the tenth most
serious vulnerability on the OWASP Top 10 List, and WackoPicko has an instance
of this kind of vulnerability.

2.2 Web Application Scanners

In abstract, web application scanners can be seen as consisting of three main modules: a
crawler module, an attacker module, and an analysis module. The crawling component
is seeded with a set of URLs, retrieves the corresponding pages, and follows links and
redirects to identify all the reachable pages in the application. In addition, the crawler
identifies all the input points to the application, such as the parameters of GET requests,
the input fields of HTML forms, and the controls that allow one to upload files.

The attacker module analyzes the URLs discovered by the crawler and the corre-
sponding input points. Then, for each input and for each vulnerability type for which the
web application vulnerability scanner tests, the attacker module generates values that
are likely to trigger a vulnerability. For example, the attacker module would attempt
to inject JavaScript code when testing for XSS vulnerabilities, or strings that have a
special meaning in the SQL language, such as ticks and SQL operators, when testing

for SQL injection vulnerabilities. Input values are usually generated using heuristics or
using predefined values, such as those contained in one of the many available XSS and
SQL injection cheat-sheets [18, 19].

The analysis module analyzes the pages returned by the web application in response
to the attacks launched by the attacker module to detect possible vulnerabilities and to
provide feedback to the other modules. For example, if the page returned in response to
input testing for SQL injection contains a database error message, the analysis module
may infer the existence of a SQL injection vulnerability.

3 The WackoPicko Web Site

A preliminary step for assessing web application scanners consists of choosing a web
application to be tested. We have three requirements for such an application: it must
have clearly defined vulnerabilities (to assess the scanner’s detection performance), it
must be easily customizable (to add crawling challenges and experiment with different
types of vulnerabilities), and it must be representative of the web applications in use
today (in terms of functionality and of technologies used).

We found that existing applications did not satisfy our requirements. Applications
that deliberately contain vulnerabilities, such as HacmeBank [5] and WebGoat [11], are
often designed to be educational tools rather than realistic testbeds for scanners. Others,
such as SiteGenerator [10], are well-known, and certain scanners may be optimized to
perform well on them. An alternative then is to use an older version of an open-source
application that has known vulnerabilities. In this case, however, we would not be able
to control and test the crawling capabilities of the scanners, and there would be no way
to establish a false negative rate.

Therefore, we decided to create our own test application, called WackoPicko. It
is important to note that WackoPicko is a realistic, fully functional web application.
As opposed to a simple test application that contains just vulnerabilities, WackoPicko
tests the scanners under realistic conditions. To test the scanners’ support for client-
side JavaScript code, we also used the open source Web Input Vector Extractor Teaser
(WIVET). WIVET is a synthetic benchmark that measures how well a crawler is able
to discover and follow links in a variety of formats, such as JavaScript, Flash, and form
submissions.

3.1 Design

WackoPicko is a photo sharing and photo-purchasing site. A typical user of WackoPicko
is able to upload photos, browse other user’s photos, comment on photos, and purchase
the rights to a high-quality version of a photo.
Authentication. WackoPicko provides personalized content to registered users. Despite
recent efforts for a unified login across web sites [14], most web applications require
a user to create an account in order to utilize the services offered. Thus, WackoPicko
has a user registration system. Once a user has created an account, he/she can log in to
access WackoPicko’s restricted features.
Upload Pictures. When a photo is uploaded to WackoPicko by a registered user, other
users can comment on it, as well as purchase the right to a high-quality version.

Comment On Pictures. Once a picture is uploaded into WackoPicko, all registered
users can comment on the photo by filling out a form. Once created, the comment
is displayed, along with the picture, with all the other comments associated with the
picture.
Purchase Pictures. A registered user on WackoPicko can purchase the high-quality
version of a picture. The purchase follows a multi-step process in which a shopping
cart is filled with the items to be purchased, similar to the process used in e-commerce
sites. After pictures are added to the cart, the total price of the cart is reviewed, discount
coupons may be applied, and the order is placed. Once the pictures are purchased, the
user is provided with links to the high-quality version of the pictures.

Search. To enable users to easily search for various pictures, WackoPicko provides a
search toolbar at the top of every page. The search functionality utilizes the tag field
that was filled out when the picture was uploaded. After a query is issued, the user is
presented with a list of all the pictures that have tags that match the query.

Guestbook. A guestbook page provides a way to receive feedback from all visitors to
the WackoPicko web site. The form used to submit feedback contains a “name” field
and a “comment” field.
Admin Area. WackoPicko has a special area for administrators only, which has a dif-
ferent login mechanism than regular users. Administrators can perform special actions,
such as deleting user accounts, or changing the tags of a picture.

3.2 Vulnerabilities

The WackoPicko web site contains sixteen vulnerabilities that are representative of vul-
nerabilities found in the wild, as reported by the OWASP Top 10 Project [13]. In the
following we provide a brief description of each vulnerability.

3.2.1 Publicly Accessible Vulnerabilities A number of vulnerabilities in WackoPicko
can be exploited without first logging into the web site.

Reflected XSS: There is a XSS vulnerability on the search page, which is accessible
without having to log into the application. In fact, the query parameter is not sanitized
before being echoed to the user. The presence of the vulnerability can be tested by
setting the query parameter to <script>alert(’xss’)</script>. When this
string is reflected to the user, it will cause the browser to display an alert message. (Of
course, an attacker would leverage the vulnerability to perform some malicious activity
rather than alerting the victim.)
Stored XSS: There is a stored XSS vulnerability in the guestbook page. The comment
field is not properly escaped, and therefore, an attacker can exploit this vulnerability by
creating a comment containing JavaScript code. Whenever a user visits the guestbook
page, the attack will be triggered and the (possibly malicious) JavaScript code executed.
Session ID: The session information associated with administrative accounts is han-
dled differently than the information associated with the sessions of normal users. The
functionality associated with normal users uses PHP’s session handling capabilities,
which is assumed to be free of any session-related vulnerabilities (e.g., session fixation,
easily-guessable session IDs). However the admin section uses a custom session cookie

to keep track of sessions. The value used in the cookie is a non-random value that is
incremented when a new session is created. Therefore, an attacker can easily guess the
session id and access the application with administrative rights.

Weak password: The administrative account page has an easily-guessable username
and password combination: admin/admin.

Reflected SQL Injection: WackoPicko contains a reflected SQL injection in the user-
name field of the login form. By introducing a tick into the username field it is possi-
ble to perform arbitrary queries in the database and obtain, for example, the usernames
and passwords of all the users in the system.

Command Line Injection: WackoPicko provides a simple service that checks to see
if a user’s password can be found in the dictionary. The password parameter of the
form used to request the check is used without sanitization in the shell command: grep
ˆ<password>$ /etc/dictionaries-common/words. This can be exploited
by providing as the password value a dollar sign (to close grep’s regular expression),
followed by a semicolon (to terminate the grep command), followed by extra com-
mands.

File Inclusion: The admin interface is accessed through a main page, called index.php.
The index page acts as a portal; any value that is passed as its page parameter will be
concatenated with the string “.php”, and then the resulting PHP script will be run. For
instance, the URL for the admin login page is /admin/index.php?page=login.
On the server side, index.php will execute login.php which displays the form. This
design is inherently flawed, because it introduces a file inclusion vulnerability. An at-
tacker can exploit this vulnerability and execute remote PHP code by supplying, for
example, http://hacker/blah.php%00 as the page parameter to index.php.
The %00 at the end of the string causes PHP to ignore the “.php” that is appended
to the page parameter. Thus index.php will download and execute the code at http:
//hacker/blah.php.

Unauthorized File Exposure: In addition to executing remote code, the file inclusion
vulnerability can also be exploited to expose local files. Passing /etc/passwd%00

as the “page” GET parameter to index.php of the admin section will cause the contents
of the /etc/passwd file to be disclosed.

Reflected XSS Behind JavaScript: On WackoPicko’s home page there is a form that
checks if a file is in the proper format for WackoPicko to process. This form has two
parameters, a file parameter and a name parameter. Upon a successful upload, the name
is echoed back to the user unsanitized, and therefore, this represents a reflected vulner-
ability. However, the form is dynamically generated using JavaScript, and the target of
the form is dynamically created by concatenating strings. This prevents a crawler from
using simple pattern matching to discover the URL used by the form.

Parameter Manipulation: The WackoPicko home page provides a link to a sample
profile page. The link uses the “userid” GET parameter to view the sample user (who
has id of 1). An attacker can manipulate this variable to view any profile page without
having a valid user account.

3.2.2 Vulnerabilities Requiring Authentication A second class of vulnerabilities in
WackoPicko can be exploited only after logging into the web site.

Stored SQL Injection: When users create an account, they are asked to supply their
first name. This supplied value is then used unsanitized on a page that shows other users
who have a similar first name. An attacker can exploit this vulnerability by creating a
user with the name “’ ; DROP users;#” then visiting the similar users page.
Directory Traversal: When uploading a picture, WackoPicko copies the file uploaded
by the user to a subdirectory of the upload directory. The name of the subdirectory
is the user-supplied tag of the uploaded picture. A malicious user can manipulate the
tag parameter to perform a directory traversal attack. More precisely, by pre-pending
“../../” to the tag parameter the attacker can reference files outside the upload di-
rectory and overwrite them.
Multi-Step Stored XSS: Similar to the stored XSS attack that exists on the guestbook,
comments on pictures are susceptible to a stored XSS attack. However, this vulnerabil-
ity is more difficult to exploit because the user must be logged in and must confirm the
preview of the comment before the attack is actually triggered.
Forceful Browsing: One of the central ideas behind WackoPicko is the ability of users
to purchase the rights to high-quality versions of pictures. However, the access to the
links to the high-quality version of the picture is not checked, and an attacker who
acquires the URL of a high-quality picture can access it without creating an account,
thus bypassing the authentication logic.
Logic Flaw: The coupon system suffers from a logic flaw, as a coupon can be applied
multiple times to the same order reducing the final price of an order to zero.
Reflected XSS Behind Flash: On the user’s home page there is a Flash form that asks
the user for his/her favorite color. The resulting page is vulnerable to a reflected XSS
attack, where the “value” parameter is echoed back to the user without being sanitized.

3.3 Crawling Challenges

Crawling is arguably the most important part of a web application vulnerability scanner;
if the scanner’s attack engine is poor, it might miss a vulnerability, but if its crawling en-
gine is poor and cannot reach the vulnerability, then it will surely miss the vulnerability.
Because of the critical nature of crawling, we have included several types of crawling
challenges in WackoPicko, some of which hide vulnerabilities.
HTML Parsing. Malformed HTML makes it difficult for web application scanners to
crawl web sites. For instance, a crawler must be able to navigate HTML frames and be
able to upload a file. Even though these tasks are straightforward for a human user with
a regular browser, they represent a challenge for crawlers.
Multi-Step Process. Even though most web sites are built on top of the stateless HTTP
protocol, a variety of techniques are utilized to introduce state into web applications.
In order to properly analyze a web site, web application vulnerability scanners must be
able to understand the state-based transactions that take place. In WackoPicko, there are
several state-based interactions.
Infinite Web Site. It is often the case that some dynamically-generated content will
create a very large (possibly infinite) crawling space. For example, WackoPicko has the
ability to display a daily calendar. Each page of the calendar displays the agenda for a
given day and links to the page for the following day. A crawler that naively followed
the links in the WackoPicko’s calendar would end up trying to visit an infinite sequence
of pages, all generated dynamically by the same component.

Name Version Used License Type Price

Acunetix 6.1 Build 20090318 Commercial Standalone $4,995-$6,350
AppScan 7.8.0.0 iFix001 Build: 570 Security

Rules Version 647
Commercial Standalone $17,550-$32,500

Burp 1.2 Commercial Proxy £125 ($190.82)
Grendel-Scan 1.0 GPLv3 Standalone N/A
Hailstorm 5.7 Build 3926 Commercial Standalone $10,000
Milescan 1.4 Commercial Proxy $495-$1,495
N-Stalker 2009 - Build 7.0.0.207 Commercial Standalone $899-$6,299
NTOSpider 3.2.067 Commercial Standalone $10,000
Paros 3.2.13 Clarified Artistic License Proxy N/A
w3af 1.0-rc2 GPLv2 Standalone N/A
Webinspect 7.7.869.0 Commercial Standalone $6,000-$30,000

Table 1: Characteristics of the scanners evaluated.

Authentication. One feature that is common to most web sites is an authentication
mechanism. Because this is so prevalent, scanners must properly handle authentication,
possibly by creating accounts, logging in with valid credentials, and recognizing actions
that log the crawler out. WackoPicko includes a registration and login system to test the
scanner’s crawlers ability to handle the authentication process correctly.
Client-side Code. Being able to parse and understand client-side technologies presents
a major challenge for web application vulnerability scanners. WackoPicko includes vul-
nerabilities behind a JavaScript-created form, as well as behind a Flash application.
Link Extraction. We also tested the scanners on WIVET, an open-source benchmark
for web link extractors [12]. WIVET contains 54 tests and assigns a final score to a
crawler based on the percent of tests that it passes. The tests require scanners to analyze
simple links, multi-page forms, links in comments and JavaScript actions on a variety
of HTML elements. There are also AJAX-based tests as well as Flash-based tests. In
our tests, we used WIVET version number 129.

4 Experimental Evaluation

We tested 11 web application scanners by running them on our WackoPicko web site.
The tested scanners included 8 proprietary tools and 3 open source programs. Their cost
ranges from free to tens of thousands of dollars. We used evaluation versions of each
software, however they were fully functional. A summary of the characteristics of the
scanners we evaluated is given in Table 1.

We ran the WackoPicko web application on a typical LAMP machine, with Apache
2.2.9, PHP 5.2.6, and MySQL 5.0.67. We enabled the allow url fopen andallow -

url include PHP options and disabled the magic quotes option. We ran the
scanners on a machine with a Pentium 4 3.6GHz CPU, 1024 MB of RAM, and Mi-
crosoft Windows XP, Service Pack 2.

4.1 Setup

The WackoPicko server used in testing the web vulnerability scanners was run in a
virtual machine, so that before each test run the server could be put in an identical
initial state. This state included ten regular users, nine pictures, and five administrator
users.

Name Reflected
XSS

Stored XSS Reflected
SQL
Injection

Command-
line
Injection

File
Inclusion

File
Exposure

XSS via
JavaScript

XSS via
Flash

Acunetix INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL
AppScan INITIAL INITIAL INITIAL INITIAL INITIAL
Burp INITIAL MANUAL INITIAL INITIAL INITIAL MANUAL
Grendel-Scan MANUAL CONFIG
Hailstorm INITIAL CONFIG CONFIG MANUAL
Milescan INITIAL MANUAL CONFIG
N-Stalker INITIAL MANUAL MANUAL INITIAL INITIAL MANUAL
NTOSpider INITIAL INITIAL INITIAL
Paros INITIAL INITIAL CONFIG MANUAL
w3af INITIAL MANUAL INITIAL INITIAL MANUAL
Webinspect INITIAL INITIAL INITIAL INITIAL INITIAL MANUAL

Table 2: Detection results. For each scanner, the simplest configuration that detected a vulnera-

bility is given. Empty cells indicate no detection in any mode.

Each scanner was run in three different configuration modes against WackoPicko,
with each configuration requiring more setup on the part of the user. In all configuration
styles, the default values for configuration parameters were used, and when choices
were required, sensible values were chosen. In the INITIAL configuration mode, the
scanner was directed to the initial page of WackoPicko and told to scan for all vulnera-
bilities. In the CONFIG setup, the scanner was given a valid username/password com-
bination or login macro before scanning. MANUAL configuration required the most
work on the part of the user; each scanner was put into a “proxy” mode and then the
user browsed to each vulnerable page accessible without credentials; then, the user
logged in and visited each vulnerability that required a login. Additionally a picture
was uploaded, the rights to a high-quality version of a picture were purchased, and a
coupon was applied to the order. The scanner was then asked to scan the WackoPicko
web site.

4.2 Detection Results

The results of running the scanners against the WackoPicko site are shown in Table 2
and, graphically, in Figure 1. The values in the table correspond to the simplest config-
uration that discovered the vulnerability. An empty cell indicates that the given scanner
did not discover the vulnerability in any mode. The table only reports the vulnerabilities
that were detected by at least one scanner. Further analysis of why the scanners missed
certain vulnerabilities is contained in Sections 4.3 and 4.4.

The running time of the scanners is shown in Figure 3. These times range from 74
seconds for the fastest tool (Burp) to 6 hours (N-Stalker). The majority of the scanners
completed the scan within a half hour, which is acceptable for an automated tool.

4.2.1 False Negatives One of the benefits of developing the WackoPicko web ap-
plication to test the scanners is the ability for us to measure the false negatives of the
scanners. An ideal scanner would be able to detect all vulnerabilities. In fact, we had
a group composed of students with average security skills analyze WackoPicko. The
students found all vulnerabilities except for the forceful browsing vulnerability. The
automated scanners did not do as well; there were a number of vulnerabilities that were
not detected by any scanner. These vulnerabilities are discussed hereinafter.

Session ID: No scanner was able to detect the session ID vulnerability on the admin
login page. The vulnerability was not detected because the scanners were not given a
valid username/password combination for the admin interface. This is consistent with
what would happen when scanning a typical application, as the administration interface
would include powerful functionality that the scanner should not invoke, like view,
create, edit or delete sensitive user data. The session ID was only set on a successful
login, which is why this vulnerability was not detected by any scanner.

Weak Password: Even though the scanners were not given a valid username/password
combination for the administrator web site, an administrator account with the combina-
tion of admin/admin was present on the system. NTOSpider was the only scanner that
successfully logged in with the admin/admin combination. However, it did not report
it as an error, which suggests that it was unable to detect that the login was successful,
even though the response that was returned for this request was different from every
other login attempt.

Parameter Manipulation: The parameter manipulation vulnerability was not discov-
ered by any scanner. There were two causes for this: first, only three of the scanners
(AppScan, NTOSpider, and w3af) input a different number than the default value “1”
to the userid parameter. Of the three, only NTOSpider used a value that successfully
manipulated the userid parameter. The other reason was that in order to successfully
detect a parameter manipulation vulnerability, the scanner needs to determine which
pages require a valid username/password to access and which ones do not and it is clear
that none of the scanners make this determination.

Stored SQL Injection: The stored SQL injection was also not discovered by any
scanners, due to the fact that a scanner must create an account to discover the stored
SQL injection. The reasons for this are discussed in more detail in Section 4.4.4.

Directory Traversal: The directory traversal vulnerability was also not discovered
by any of the scanners. This failure is caused by the scanners being unable to upload
a picture. We discuss this issue in Section 4.4.2, when we analyze how each of the
scanners behaved when they had to upload a picture.

Multi-Step Stored XSS: The stored XSS vulnerability that required a confirmation
step was also missed by every scanner. In Section 4.4.5, we analyze how many of the
scanners were able to successfully create a comment on a picture.

Forceful Browsing: No scanner found the forceful browsing vulnerability, which is
not surprising since it is an application-specific vulnerability. These vulnerabilities are
difficult to identify without access to the source code of the application [2].

Logic Flaw: Another vulnerability that none of the scanners uncovered was the logic
flaw that existed in the coupon management functionality. Also in this case, some do-
main knowledge about the application is needed to find the vulnerability.

 0%

 20%

 40%

 60%

 80%

 100%

A
cu

n
et

ix

A
p
p
sc

an

B
u
rp

G
re

n
d
el

−
S

ca
n

H
ai

ls
to

rm

M
il

es
ca

n

N
−

S
ta

lk
er

N
T

O
S

p
id

er

P
ar

o
s

w
3
af

W
eb

in
sp

ec
t

False negatives

Detection in MANUAL mode

Detection in CONFIG mode

Detection in INITIAL mode

Fig. 1: Detection performance (true positives and false negatives) of the evaluated scan-
ners.

Name INITIAL CONFIG MANUAL
Acunetix 1 7 4
AppScan 11 20 26
Burp 1 2 6
Grendel-Scan 15 16 16
Hailstorm 3 11 3
Milescan 0 0 0
N-Stalker 5 0 0
NTOSpider 3 1 3
Paros 1 1 1
w3af 1 1 9
Webinspect 215 317 297

Table 3: False positives.

4.2.2 False Positives The total number of false positives for each of the scanning
configurations are show in Table 3. The number of false positives that each scanner
generates is an important metric, because the greater the number of false positives, the
less useful the tool is to the end user, who has to figure out which of the vulnerabilities
reported are actual flaws and which are spurious results of the analysis.

The majority of the false positives across all scanners were due to a supposed
“Server Path Disclosure.” This is an information leakage vulnerability where the server
leaks the paths of local files, which might give an attacker hints about the structure of
the file system.

An analysis of the results identified two main reasons why these false positives
were generated. The first is that while testing the application for file traversal or file
injection vulnerabilities, some of the scanners passed parameters with values of file
names, which, on some pages (e.g., the guestbook page), caused the file name to be
included in that page’s contents. When the scanner then tested the page for a Server
Path Disclosure, it found the injected values in the page content, and generated a Server
Path Disclosure vulnerability report. The other reason for the generation of false pos-
itives is that WackoPicko uses absolute paths in the href attribute of anchors (e.g.,
/users/home.php), which the scanner mistook for the disclosure of paths in the

Milescan

Grendel-Scan

Webinspect

NTOSpider

w3afParos

Hailstorm

Acunetix

AppScan

Burp N-Stalker

Fig. 2: Dominates graph.

 0

 2,000

 4,000

 6,000

 8,000

 10,000

A
cu

n
et

ix

A
p
p
sc

an

B
u
rp

G
re

n
d
el

−
S

ca
n

H
ai

ls
to

rm

M
il

es
ca

n

N
−

S
ta

lk
er

N
T

O
S

p
id

er

P
ar

o
s

w
3
af

W
eb

in
sp

ec
t

R
u
n
n
in

g
 T

im
e

(S
ec

o
n
d
s)

27,103

INITIAL

CONFIG

Fig. 3: Scanner Running Times

local system. Webinspect generated false positives because of both the above reasons,
which explains the large amount of false positives produced by the tool.

Some scanners reported genuine false positives: Hailstorm reported a false XSS vul-
nerability and two false PHP code injection vulnerabilities, NTOSpider reported three
false XSS vulnerabilities and w3af reported a false PHP eval() input injection vul-
nerability.

4.2.3 Measuring and Comparing Detection Capabilities Comparing the scanners
using a single benchmark like WackoPicko does not represent an exhaustive evaluation.
However, we believe that the results provide insights about the current state of black-
box web application vulnerability scanners.

One possible way of comparing the results of the scanners is arranging them in a
lattice. This lattice is ordered on the basis of strict dominance. Scanner A strictly domi-

nates Scanner B if and only if for every vulnerability discovered by Scanner B, Scanner
A discovered that vulnerability with the same configuration level or simpler, and Scan-
ner A either discovered a vulnerability that Scanner B did not discover or Scanner A
discovered a vulnerability that Scanner B discovered, but with a simpler configuration.
Strictly dominates has the property that any assignment of scores to vulnerabilities must
preserve the strictly dominates relationship.

Figure 2 shows the strictly dominates graph for the scanners, where a directed edge
from Scanner A to Scanner B means that Scanner A strictly dominates Scanner B.
Because strictly dominates is transitive, if one scanner strictly dominates another it also
strictly dominates all the scanners that the dominated scanner dominates, therefore, all
redundant edges are not included. Figure 2 is organized so that the scanners in the top
level are those that are not strictly dominated by any scanners. Those in the second level
are strictly dominated by only one scanner and so on, until the last level, which contains
those scanners that strictly dominate no other scanner.

Some interesting observations arise from Figure 2. N-Stalker does not strictly dom-
inate any scanner and no scanner strictly dominates it. This is due to the unique combi-
nation of vulnerabilities that N-Stalker discovered and missed. Burp is also interesting

Name Detection INITIAL
Reachability

CONFIG
Reachability

MANUAL
Reachability

XSS Reflected 1 0 0 0
XSS Stored 2 0 0 0
SessionID 4 0 0 0
SQL Injection Reflected 1 0 0 0
Commandline Injection 4 0 0 0
File Inclusion 3 0 0 0
File Exposure 3 0 0 0
XSS Reflected behind
JavaScript

1 3 3 0

Parameter Manipulation 8 0 0 0
Weak password 3 0 0 0
SQL Injection Stored Login 7 7 3 3
Directory Traversal Login 8 8 6 4
XSS Stored Login 2 8 7 6
Forceful Browsing Login 8 7 6 3
Logic Flaws - Coupon 9 9 8 6
XSS Reflected behind flash 1 9 7 1

Table 4: Vulnerability scores.

Name Score

Acunetix 14
Webinspect 13
Burp 13
N-Stalker 13
AppScan 10
w3af 9
Paros 6
Hailstorm 6
NTOSpider 4
Milescan 4
Grendel-Scan 3

Table 5: Final ranking.

due to the fact that it only dominates two scanners but no scanner dominates Burp be-
cause it was the only scanner to discover the command-line injection vulnerability.

While Figure 2 is interesting, it does not give a way to compare two scanners where
one does not strictly dominate the other. In order to compare the scanners, we assigned
scores to each vulnerability present in WackoPicko. The scores are displayed in Table 4.
The “Detection” score column in Table 4 is how many points a scanner is awarded based
on how difficult it is for an automated tool to detect the existence of the vulnerability. In
addition to the “Detection” score, each vulnerability is assigned a “Reachability” score,
which indicates how difficult the vulnerability is to reach (i.e., it reflects the difficulty
of crawling to the page that contains the vulnerability). There are three “Reachabil-
ity” scores for each vulnerability, corresponding to how difficult it is for a scanner to
reach the vulnerability when run in INITIAL, CONFIG, or MANUAL mode. Of course,
these vulnerability scores are subjective and depend on the specific characteristics of
our WackoPicko application. However, their values try to estimate the crawling and
detection difficulty of each vulnerability in this context.

The final score for each scanner is calculated by adding up the “Detection” score
for each vulnerability the scanner detected and the “Reachability” score for the con-
figuration (INITIAL, CONFIG and MANUAL) used when running the scanner. In the
case of a tie, the scanners were ranked by how many vulnerabilities were discovered in
INITIAL mode, which was enough to break all ties. Table 5 shows the final ranking of
the scanners.

4.3 Attack and Analysis Capabilities

Analyzing how each scanner attempted to detect vulnerabilities gives us insight into
how these programs work and illuminates areas for further research. First, the scanner
would crawl the site looking for injection points, typically in the form of GET or POST
parameters. Once the scanner identifies all the inputs on a page, it then attempts to
inject values for each parameter and observes the response. When a page has more
than one input, each parameter is injected in turn, and generally no two parameters are

injected in the same request. However, scanners differ in what they supply as values of
the non-injected parameters: some have a default value like 1234 or Peter Wiener,
while others leave the fields blank. This has an impact on the results of the scanner, for
example the WackoPicko guestbook requires that both the name and comment fields
are present before making a comment, and thus the strategy employed by each scanner
can affect the effectiveness of the vulnerability scanning process.

When detecting XSS attacks, most scanners employed similar techniques, some
with a more sophisticated attempt to evade possible filters than others. One particularly
effective strategy employed was to first input random data with various combinations of
dangerous characters, such as / ,",’,<, and >, and then, if one of these combina-
tions was found unchanged in the response, to attempt the injection of the full range of
XSS attacks. This technique speeds up the analysis significantly, because the full XSS
attack is not attempted against every input vector. Differently, some of the scanners took
an exhaustive approach, attempting the full gamut of attacks on every combination of
inputs.

When attempting a XSS attack, the thorough scanners would inject the typical
<script> alert(’xss’) </script> as well as a whole range of XSS attack
strings, such as JavaScript in a tag with the onmouseover attribute, in an img, div
or meta tag, or iframe. Other scanners attempted to evade filters by using a different
JavaScript function other than alert, or by using a different casing of script, such
as ScRiPt.

Unlike with XSS, scanners could not perform an easy test to exclude a parameter
from thorough testing for other Unsanitized Input vulnerabilities because the results of
a successful exploit might not be readily evident in the response. This is true for the
command-line injection on the WackoPicko site, because the output of the injectable
command was not used in the response. Burp, the only scanner that was able to suc-
cessfully detect the command line injection vulnerability, did so by injecting ‘ping

-c 100 localhost‘ and noticing that the response time for the page was much
slower than when nothing was injected.

This pattern of measuring the difference in response times was also seen in detecting
SQL injections. In addition to injecting something with a SQL control character, such
as tick or quote and seeing if an error is generated, the scanners also used a time-delay
SQL injection, inputting waitfor delay ’0:0:20’ and seeing if the execution
was delayed. This is a variation of the technique of using time-delay SQL injection to
extract database information from a blind SQL vulnerability.

When testing for File Exposure, the scanners were typically the same; however one
aspect caused them to miss the WackoPicko vulnerability. Each scanner that was look-
ing for this vulnerability input the name of a file that they knew existed on the system,
such as /etc/passwd on UNIX-like systems or C:\boot.ini for Windows. The
scanners then looked for known strings in the response. The difficulty in exploiting the
WackoPicko file exposure was including the null-terminating character (%00) at the
end of the string, which caused PHP to ignore anything added by the application after
the /etc/passwd part. The results show that only 4 scanners successfully discovered
this vulnerability.

The remote code execution vulnerability in WackoPicko is similar to the file ex-
posure vulnerability. However, instead of injecting known files, the scanners injected

Name Reflected XSS Stored XSS Reflected SQL
Injection

Command-line
Injection

File Inclusion /
File Exposure /
Weak password

XSS Reflected
- JavaScript

INITIAL CONFIG MANUAL
Acunetix 496 638 498 613 779 724 544 709 546 495 637 497 198 244 200 670 860 671
AppScan 581 575 817 381 352 492 274 933 628 189 191 288 267 258 430 0 0 442
Burp 256 256 207 192 192 262 68 222 221 68 68 200 125 316 320 0 0 178
Grendel-Scan 0 0 44 1 1 3 14 34 44 1 1 3 2 2 5 0 0 2
Hailstorm 232 229 233 10 205 209 45 224 231 180 160 162 8 204 216 153 147 148
Milescan 104 0 208 50 0 170 75 272 1237 0 0 131 80 0 246 0 0 163
N-Stalker 1738 1162 2689 2484 2100 3475 2764 1022 2110 2005 1894 1987 1437 2063 1824 1409 1292 1335
NTOSpider 856 679 692 252 370 370 184 5 5 105 9 9 243 614 614 11 13 13
Paros 68 68 58 126 126 110 151 299 97 28 28 72 146 146 185 0 0 56
w3af 157 157 563 259 257 464 1377 1411 2634 140 142 253 263 262 470 0 0 34
Webinspect 108 108 105 631 631 630 297 403 346 164 164 164 239 237 234 909 909 0

Name Parameter Manipulation Directory
Traversal

Logic Flaw Forceful
Browsing

XSS Reflected
behind flash

Acunetix 2 0 2 35 1149 37 0 0 5 0 0 206 1 34 458
AppScan 221 210 222 80 70 941 0 0 329 0 0 71 0 0 243
Burp 192 194 124 68 68 394 0 0 314 0 0 151 0 0 125
Grendel-Scan 3 3 6 1 1 3 0 0 6 0 0 1 0 0 3
Hailstorm 3 143 146 336 329 344 131 132 5 102 102 105 0 0 143
Milescan 105 0 103 8 0 163 0 0 1 0 0 60 0 0 68
N-Stalker 1291 1270 1302 22 2079 4704 0 0 3 0 0 2 0 0 1315
NTOSpider 107 115 115 11 572 572 0 11 11 0 0 0 0 11 11
Paros 72 72 72 14 14 0 0 0 114 0 0 70 0 0 60
w3af 128 128 124 31 30 783 0 0 235 0 0 270 0 0 119
Webinspect 102 102 102 29 29 690 0 8 3 0 118 82 0 0 97

Table 6: Number of accesses to vulnerable web pages in INITIAL, CONFIG, and MANUAL

modes.

known web site addresses. This was typically from a domain the scanner’s developers
owned, and thus when successfully exploited, the injected page appeared instead of the
regular page. The same difficulty in a successful exploitation existed in the File Ex-
posure vulnerability, so a scanner had to add %00 after the injected web site. Only 3
scanners were able to successfully identify this vulnerability.

4.4 Crawling Capabilities

The number of URLs requested and accessed varies considerably among scanners, de-
pending on the capability and strategies implemented in the crawler and attack compo-
nents. Table 6 shows the number of times each scanner made a POST or GET request to
a vulnerable URL when the scanners were run in INITIAL, CONFIG, and MANUAL
mode. For instance, from Table 6 we can see that Hailstorm was able to access many
of the vulnerable pages that required a valid username/password when run in INITIAL
mode. It can also be seen that N-Stalker takes a shotgun-like approach to scanning; it
has over 1,000 accesses for each vulnerable URL, while in contrast Grendel-Scan never
had over 50 accesses to a vulnerable URL.

In the following, we discuss the main challenges that the crawler components of the
web application scanners under test faced.

4.4.1 HTML The results for the stored XSS attack reveal some interesting character-
istics of the analysis performed by the various scanners. For instance, Burp, Grendel-
Scan, Hailstorm, Milescan, N-Stalker, and w3af were unable to discover the stored XSS

vulnerability in INITIAL configuration mode. Burp and N-Stalker failed because of de-
fective HTML parsing. Neither of the scanners correctly interpreted the <textarea>
tag as an input to the HTML form. This was evident because both scanners only sent the
name parameter when attempting to leave a comment on the guestbook. When run in
MANUAL mode, however, the scanners discovered the vulnerability, because the user
provided values for all these fields. Grendel-Scan and Milescan missed the stored XSS
vulnerability for the same reason: they did not attempt a POST request unless the user
used the proxy to make the request.

Hailstorm did not try to inject any values to the guestbook when in INITIAL mode,
and, instead, used testval as the name parameter and Default text as the
comment parameter. One explanation for this could be that Hailstorm was run in the
default “turbo” mode, which Cenzic claims catches 95% of vulnerabilities, and chose
not to fuzz the form to improve speed.

Finally, w3af missed the stored XSS vulnerability due to leaving one parameter
blank while attempting to inject the other parameter. It was unable to create a guestbook
entry, because both parameters are required.

4.4.2 Uploading a Picture Being able to upload a picture is critical to discover the
Directory Traversal vulnerability, as a properly crafted tag parameter can overwrite
any file the web server can access. It was very difficult for the scanners to successfully
upload a file: no scanner was able to upload a picture in INITIAL and CONFIG modes,
and only AppScan and Webinspect were able to upload a picture after being showed
how to do it in MANUAL configuration, with AppScan and Webinspect uploading 324
and 166 pictures respectively. Interestingly, Hailstorm, N-Stalker and NTOSpider never
successfully uploaded a picture, even in MANUAL configuration. This surprising result
is due to poor proxies or poor in-application browsers. For instance, Hailstorm includes
an embedded Mozilla browser for the user to browse the site when they want to do so
manually, and after repeated attempts the embedded browser was never able to upload a
file. The other scanners that failed, N-Stalker and NTOSpider, had faulty HTTP proxies
that did not know how to properly forward the file uploaded, thus the request never
completed successfully.

4.4.3 Client-side Code The results of the WIVET tests are shown in Figure 4. An-
alyzing the WIVET results gives a very good idea of the JavaScript capabilities of
each scanner. Of all the 54 WIVET tests, 24 required actually executing or understand
JavaScript code; that is, the test could not be passed simply by using a regular expres-
sion to extract the links on the page. Webinspect was the only scanner able to complete
all of the dynamic JavaScript challenges. Of the rest of the scanners, Acunetix and
NTOSpider only missed one of the dynamic JavaScript tests. Even though Hailstorm
missed 12 of the dynamic JavaScript tests, we believe that this is because of a bug in the
JavaScript analysis engine and not a general limitation of the tool. In fact, Hailstorm was
able to correctly handle JavaScript on the onmouseup and onclick parametrized
functions. These tests were on parametrized onmouseout and onmousedown func-
tions, but since Hailstorm was able to correctly handle the onmouseup and onclick
parametrized functions, this can be considered a bug in Hailstorm’s JavaScript parsing.
From this, it can also be concluded that AppScan, Grendel-Scan, Milescan, and w3af

perform no dynamic JavaScript parsing. Thus, Webinspect, Acunetix, NTOSpider, and
Hailstorm can be claimed to have the best JavaScript parsing. The fact that N-Stalker
found the reflected XSS vulnerability behind a JavaScript form in WackoPicko suggests
that it can execute JavaScript, however it failed the WIVET benchmark so we cannot
evaluate the extent of the parsing performed.

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

W
eb

in
sp

ec
t

A
cu

n
et

ix

N
T

O
S

p
id

er

H
ai

ls
to

rm

w
3

af

A
p

p
sc

an

M
il

es
ca

n

G
re

n
d

el
−

S
ca

n

B
u

rp

P
ar

o
s

N
−

S
ta

lk
er

%
 o

f
W

IV
E

T
 T

es
ts

 P
as

se
d

Fig. 4: WIVET results.

In looking at the WIVET results,
there was one benchmark that no scan-
ner was able to reach, which was behind
a Flash application. The application had a
link on a button’s onclick event, how-
ever this link was dynamically created at
run time. This failure shows that none
of the current scanners processes Flash
content with the same level of sophisti-
cation as JavaScript. This conclusion is
supported by none of the scanners dis-
covering the XSS vulnerability behind a
Flash application in WackoPicko when in
INITIAL or CONFIG mode.

Name Successful Error
Acunetix 0 431
AppScan 1 297
Burp 0 0
Grendel-Scan 0 0
Hailstorm 107 276
Milescan 0 0
N-Stalker 74 1389
NTOSpider 74 330
Paros 0 176
w3af 0 538
Webinspect 127 267

Table 7: Account creation.

4.4.4 Authentication Table 7 shows the at-
tempts that were made to create an account on
the WackoPicko site. The Name column is the
name of the scanner, “Successful” is the number
of accounts successfully created, and “Error” is
the number of account creation attempts that were
unsuccessful. Note that Table 7 reports the results
of the scanners when run in INITIAL mode only,
because the results for the other configurations
were almost identical.

Table 7 shows the capability of the scanners to
handle user registration functionality. As can be
seen from Table 7, only five of the scanners were
able to successfully create an account. Of these,
Hailstorm was the only one to leverage this ability to visit vulnerable URLs that re-
quired a login in its INITIAL run.

Creating an account is important in discovering the stored SQL injection that no
scanner successfully detected. It is fairly telling that even though five scanners were
able to create an account, none of them detected the vulnerability. It is entirely possible
that none of the scanners actively searched for stored SQL injections, which is much
harder to detect than stored XSS injections.

In addition to being critically important to the WackoPicko benchmark, being able
to create an account is an important skill for a scanner to have when analyzing any web
site, especially if that scanner wishes to be a point-and-click web application vulnera-
bility scanner.

4.4.5 Multi-step Processes In the WackoPicko web site there is a vulnerability that
is triggered by going through a multi-step process. This vulnerability is the stored XSS
on pictures, which requires an attacker to confirm a comment posting for the attack to
be successful. Hailstorm and NTOSpider were the only scanners to successfully create
a comment on the INITIAL run (creating 25 and 1 comment, respectively). This is
important for two reasons: first, to be able to create a comment in the INITIAL run,
the scanner had to create an account and log in with that account, which is consistent
with Table 7. Also, all 25 of the comments successfully created by Hailstorm only
contained the text Default text, which means that Hailstorm was not able to create
a comment that exploited the vulnerability.

All scanners were able to create a comment when run in MANUAL configuration,
since they were shown by the user how to carry out this task. However, only AppScan,
Hailstorm, NTOSpider, and Webinspect (creating 6, 21, 7, and 2 comments respec-
tively) were able to create a comment that was different than the one provided by the
user. Of these scanners only Webinspect was able to create a comment that exploited the
vulnerability, <iFrAmE sRc=hTtP://xSrFtEsT .sPi/> </iFrAmE>, how-
ever Webinspect failed to report this vulnerability. One plausible explanation for not
detecting would be the scanners’ XSS strategy discussed in Section 4.3. While test-
ing the text parameter for a vulnerability, most of the scanners realized that it was
properly escaped on the preview page, and thus stopped trying to inject XSS attacks.
This would explain the directory traversal attack comment that AppScan successfully
created and why Hailstorm did not attempt any injection. This is an example where the
performance optimization of the vulnerability analysis can lead to false negatives.

4.4.6 Infinite Web Sites One of the scanners attempted to visit all of the pages of the
infinite calendar. When running Grendel-Scan, the calendar portion of WackoPicko had
to be removed because the scanner ran out of memory attempting to access every page.
Acunetix, Burp, N-Stalker and w3af had the largest accesses (474, 691, 1780 and 3094
respectively), due to their attempts to exploit the calendar page. The other scanners used
less accesses (between 27 and 243) because they were able to determine that no error
was present.

5 Lessons Learned

We found that the crawling of modern web applications can be a serious challenge for
today’s web vulnerability scanners. A first class of problems we encountered consisted
of implementation errors and the lack of support for commonly-used technologies. For
example, handling of multimedia data (image uploads) exposed bugs in certain proxy-
based scanners, which prevented the tools from delivering attacks to the application
under test. Incomplete or incorrect HTML parsers caused scanners to ignore input vec-
tors that would have exposed vulnerabilities. The lack of support for JavaScript (and
Flash) prevented tools from reaching vulnerable pages altogether. Support for well-

known, pervasive technology should be improved.
The second class of problems that hindered crawling is related to the design of mod-

ern web applications. In particular, applications with complex forms and aggressive
checking of input values can effectively block a scanner, preventing it from crawling

the pages “deep” in the web site structure. Handling this problem could be done, for
example, by using heuristics to identify acceptable inputs or by reverse engineering the
input filters. Furthermore, the behavior of an application can be wildly different de-
pending on its internal “state,” i.e., the values of internal variables that are not explicitly
exposed to the scanner. The classic example of application state is whether the current
user is logged in or not. A scanner that does not correctly model and track the state of an
application (e.g., it does not realize that it has been automatically logged out) will fail
to crawl all relevant parts of the application. More sophisticated algorithms are needed

to perform “deep” crawling and track the state of the application under test.

Current scanners fail to detect (or even check for) application-specific (or “logic”)
vulnerabilities. Unfortunately, as applications become more complex, this type of vul-
nerabilities will also become more prevalent. More research is warranted to automate

the detection of application logic vulnerabilities.
In conclusion, far from being point-and-click tools to be used by anybody, web

application black-box security scanners require a sophisticated understanding of the
application under test and of the limitations of the tool, in order to be effective.

6 Related Work

Our work is related to two main areas of research: the design of web applications for
assessing vulnerability analysis tools and the evaluation of web scanners.
Designing test web applications. Vulnerable test applications are required to assess
web vulnerability scanners. Unfortunately, no standard test suite is currently available
or accepted by the industry. HacmeBank [5] and WebGoat [11] are two well-known,
publicly-available, vulnerable web applications, but their design is focused more on
teaching web application security rather than testing automated scanners. SiteGenera-
tor [10] is a tool to generate sites with certain characteristics (e.g., classes of vulnerabili-
ties) according to its input configuration. While SiteGenerator is useful to automatically
produce different vulnerable sites, we found it easier to manually introduce in Wacko-
Picko the vulnerabilities with the characteristics that we wanted to test.

Evaluating web vulnerability scanners. There exists a growing body of literature on
the evaluation of web vulnerability scanners. For example, Suto compared three scan-
ners against three different applications and used code coverage, among other metrics,
as a measure of the effectiveness of each scanner [21]. In a recent follow-up study,
Suto [22] assessed seven scanners and compared their detection capabilities and the
time required to run them. Wiegenstein et al. ran five unnamed scanners against a cus-
tom benchmark [24]. Unfortunately, the authors do not discuss in detail the reasons for
detections or spidering failures. In their survey of web security assessment tools, Cur-
phey and Araujo reported that black-box scanners perform poorly [3]. Peine examined
in depth the functionality and user interfaces of seven scanners (three commercial) that
were run against WebGoat and one real-world application [16]. Kals et al. developed a
new web vulnerability scanner and tested it on about 25,000 live web pages [7]. Since
no ground truth is available for these sites, the authors cannot discuss false negative
rate or failures of their tool. More recently, AnantaSec released an evaluation of three
scanners against 13 real-world applications, three web applications provided by the
scanners vendors, and a series of JavaScript tests [1]. While this experiment assesses a

large number of real-world applications, only a limited number of scanners are tested
and no explanation is given for the results. In addition, Vieira et al. tested four web
scanners on 300 web services [23]. They also report high rates of false positives and
false negatives.

In comparison, our work, to the best of our knowledge, performs the largest evalu-
ation of web application scanners in terms of the number of tested tools (eleven, both
commercial and open-source), and the class of vulnerabilities analyzed. In addition, we
discuss the effectiveness of different configurations and levels of manual intervention,
and examine in detail the reasons for a scanner’s success or failure.

Furthermore, we provide a discussion of challenges (i.e., critical limitations) of cur-
rent web vulnerability scanners. While some of these problem areas were discussed
before [6, 8], we provide quantitative evidence that these issues are actually limiting
the performance of today’s tools. We believe that this discussion will provide useful
insight into how to improve state-of-the-art of black-box web vulnerability scanners.

7 Conclusions

This paper presented the evaluation of eleven black-box web vulnerability scanners.
The results of the evaluation clearly show that the ability to crawl a web application and
reach “deep” into the application’s resources is as important as the ability to detect the
vulnerabilities themselves.

It is also clear that although techniques to detect certain kinds of vulnerabilities are
well-established and seem to work reliably, there are whole classes of vulnerabilities
that are not well-understood and cannot be detected by the state-of-the-art scanners. We
found that eight out of sixteen vulnerabilities were not detected by any of the scanners.

We have also found areas that require further research so that web application vul-
nerability scanners can improve their detection of vulnerabilities. Deep crawling is vital
to discover all vulnerabilities in an application. Improved reverse engineering is neces-
sary to keep track of the state of the application, which can enable automated detection
of complex vulnerabilities.

Finally, we found that there is no strong correlation between cost of the scanner and
functionality provided as some of the free or very cost-effective scanners performed as
well as scanners that cost thousands of dollars.

Acknowledgments

This work has been supported by the National Science Foundation, under grants CCR-
0524853, CCR-0716095, CCR-0831408, CNS-0845559 and CNS-0905537, and by the
ONR under grant N000140911042.

References

1. AnantaSec: Web Vulnerability Scanners Evaluation (January 2009),

http://anantasec.blogspot.com/2009/01/web-vulnerability--

scanners-comparison.html

2. Balzarotti, D., Cova, M., Felmetsger, V., Vigna, G.: Multi-module Vulnerability Analysis of

Web-based Applications. In: Proceedings of the ACM conference on Computer and Com-

munications Security (CCS). pp. 25–35 (2007)

3. Curphey, M., Araujo, R.: Web Application Security Assessment Tools. IEEE Security and

Privacy 4(4), 32–41 (2006)

4. CVE: Common Vulnerabilities and Exposures. http://www.cve.mitre.org

5. Foundstone: Hacme Bank v2.0. http://www.foundstone.com/us/resources/

proddesc/hacmebank.htm (May 2006)

6. Grossman, J.: Challenges of Automated Web Application Scanning. In: BlackHat Windows

Security Conference (2004)

7. Kals, S., Kirda, E., Kruegel, C., Jovanovic, N.: SecuBat: A Web Vulnerability Scanner. In:

Proceedings of the International World Wide Web Conference (2006)

8. McAllister, S., Kruegel, C., Kirda, E.: Leveraging User Interactions for In-Depth Testing

of Web Applications. In: Proceedings of the Symposium on Recent Advances in Intrusion

Detection (2008)

9. Open Security Foundation: OSF DataLossDB: Data Loss News, Statistics, and Research.

http://datalossdb.org/

10. Open Web Application Security Project (OWASP): OWASP SiteGenerator. http://www.

owasp.org/index.php/OWASP\ SiteGenerator
11. Open Web Application Security Project (OWASP): OWASP WebGoat Project.

http://www.owasp.org/index.php/Category:OWASP WebGoat Project

12. Open Web Application Security Project (OWASP): Web Input Vector Extractor Teaser.

http://code.google.com/p/wivet/

13. Open Web Application Security Project (OWASP): OWASP Top Ten Project. http://

www.owasp.org/index.php/Top 10 (2010)

14. OpenID Foundation: OpenID. http://openid.net/

15. PCI Security Standards Council: PCI DDS Requirements and Security Assessment Proce-

dures, v1.2 (October 2008)

16. Peine, H.: Security Test Tools for Web Applications. Tech. Rep. 048.06, Fraunhofer IESE

(January 2006)

17. Provos, N., Mavrommatis, P., Rajab, M., Monrose, F.: All Your iFRAMEs Point to Us. In:

Proceedings of the USENIX Security Symposium. pp. 1–16 (2008)

18. RSnake: Sql injection cheat sheet. http://ha.ckers.org/sqlinjection/

19. RSnake: XSS (Cross Site Scripting) Cheat Sheet. http://ha.ckers.org/xss.html

20. Small, S., Mason, J., Monrose, F., Provos, N., Stubblefield, A.: To Catch a Predator: A Nat-

ural Language Approach for Eliciting Malicious Payloads. In: Proceedings of the USENIX

Security Symposium (2008)

21. Suto, L.: Analyzing the Effectiveness and Coverage of Web Application Security Scanners

(October 2007), case Study

22. Suto, L.: Analyzing the Accuracy and Time Costs of Web Application Security Scanners

(Feb 2010)

23. Vieira, M., Antunes, N., Madeira, H.: Using Web Security Scanners to Detect Vulnerabilities

in Web Services. In: Proceedings of the Conference on Dependable Systems and Networks

(2009)

24. Wiegenstein, A., Weidemann, F., Schumacher, M., Schinzel, S.: Web Application Vulnera-

bility Scanners—a Benchmark. Tech. rep., Virtual Forge GmbH (October 2006)

