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Abstract. Malicious code (malware) is used to steal sensitive data, to
attack corporate networks, and to deliver spam. To silently compromise
systems and maintain their access, malware developers usually apply ob-
fuscation techniques that result in a massive amount of malware variants
and that can render static analysis approaches ineffective. To address the
limitations of static approaches, researchers have proposed dynamic anal-
ysis systems. These systems usually rely on a sandboxing environment
that captures the system calls performed by a program under analysis.
In this paper, we propose a novel approach to capture and model mal-
ware behavior that is based on the monitoring of the data values that
a certain subset of instructions writes to memory during program ex-
ecution. We have implemented a malware clustering component and a
component to detect code reuse between different malware families. To
validate our proposed techniques, we analyzed 16,248 malware samples.
We found that our techniques produce clusters with high accuracy, as
well as interesting cases of code reuse among malicious programs.

1 Introduction

Malicious software (malware) is a significant threat for cyber security. Current
malware operations vary from stealing sensitive data to attacking critical infras-
tructures. Today’s malware employs many different ways to propagate, including
social engineering techniques to deceive a user to click on e-mail attachments,
and drive-by download attacks that exploit web browsers and their plug-ins In
addition, obfuscation techniques are a powerful tool to render static malware
analysis approaches ineffective and to decrease detection from signature based
scanning. To address this problem, researchers have proposed dynamic analysis
systems, which rely on the observed runtime activities (behavior) for detection
and classification. To capture and model the behavior of malicious code, dy-
namic analysis systems typically rely on system calls. They treat the program
as a black box and capture activity at a relatively high level. For example, two
programs might be very different “inside” but might yield the same, visible ef-
fect to the “outside” by invoking the same system calls. While this might not
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be an immediate problem for malware detectors, it makes it hard to distinguish
between different malware families.

To address the limitations of system-call-based detection and classification,
this paper proposes a novel approach to capture and model program (malware)
behavior. We record a trace that contains all the values that (a certain subset
of) instructions write. These writes can go either to a destination register or a
memory location. By looking at the intermediate data values that a computation
produces, we analyze the execution of a program at a much finer level of granu-
larity than by simply observing system calls. The main intuition is that by using
the data values, we can produce a very detailed profile that captures the activ-
ity of individual functions. Also, data values are tied very closely to the purpose
(semantics) of a computation, and, hence, are not as easy to disguise as the code
that performs the computation. Malware authors have introduced many ways in
which code can be altered so that syntactically different instructions implement
the same algorithm (e.g., dead code insertion, register renaming, instruction sub-
stitution). However, when an algorithm computes something, we would expect
that, at certain points, the results (and temporary values) for this computation
hold specific values. Our goal is to leverage these values to identify (possibly
different) code that “computes the same thing.” The main contributions of this
paper are the following: (I) we introduce a novel approach to capture and model
behavior from dynamically analyzed malware that is based on the sequence of
values that a program writes to memory or registers; (II) we describe a two-step
procedure to decide wheter two execution traces are similar and leveraged it to
implement malware clustering and code reuse identification.

2 Data Value Traces

In this section, we discuss how we build data value traces to capture the activity
of a (malware) program. To obtain these traces, we developed a prototype system
that runs malware samples in an emulated environment. The prototype was de-
veloped using PyDBG [13]. This provides us with tight control of the debugging
process. Also, PyDBG provides features to hide its debugging activity, which is
useful to foil most malware attempts to detect the analysis environment.

We use our prototype to record an ordered sequence of instructions that mod-
ify at least one register or memory value; that is, we are only interested in instruc-
tions that write to memory. For each of these instructions, we store the numeric
value(s) of all memory locations and registers to which this instruction writes
(typically, this is one). For instance, if a malware sample executes the instruc-
tion sub esp,0x58, we will log in our trace the line sub esp,0x58; 0x12ff58,
which corresponds to the instruction and the new value written to register %esp,
which is 0x12ff58 in this example (assuming that the initial value of %esp was
0x12ffb0). When the malware process terminates or a timeout is reached, we also
take a snapshot of the content of the malware’s executable (code) segments. This
information is needed later to identify code reuse between malware samples, but
it is not required to identify similarity between samples.
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To collect the sequence of executed instructions, our system runs the sample
in single-step debugging mode. More precisely, we single step through the code
within the malware executable (and all code dynamically generated by the mal-
ware). However, calls that are made to standard operating system libraries are
not logged, nor are the instructions executed inside these libraries. Fortunately,
the system dynamically-loaded libraries (DLLs) are loaded into the memory re-
gion ranging from 0x70000000 to 0x78000000 (in Microsoft Windows XP). This
speeds up the monitoring process and makes the resulting traces smaller. Also,
it focuses the data collection on the actual malicious code.

To increase the efficiency of the collection process and to minimize the size
of the traces, we only log a selected subset of instructions related to logic and
arithmetic operations, namely: add, adc, sub, sbb, mul, imul, div, idiv, neg,
xadd, aaa, cmpxchg, aad, aam, aas, daa, das, not, xor, and, or. We focus on
these instructions because we are mostly interested in characterizing computa-
tions that the malware performs. Such computations will almost always involve
arithmetic and logic instructions. Other instructions, such as data move or stack
manipulation routines, are mostly used to prepare the environment for a compu-
tation, and hence, are less characteristic than the values that emerge directly as
the result of a computation. We decided to remove the arithmetic instructions
inc and dec, as they are typically involved in simple counters, which reveal little
information about the data that is being computed. We also decided to remove
instructions from the trace when they write the value 0, as this constant is not
very characteristic of a particular computation.

We apply one last transformation to convert a sequence of instructions into
the final data value trace. This transformation works by moving a sliding window
of length two over the instruction sequence. For the two instructions in the
window, we extract the two data values that these instructions write, one value
for each instruction, and aggregate then into a pair of values – a bigram. After
the bigram is appended to the data value trace, we advance the sliding window
by one instruction. The reason for transforming the sequence of instructions (or
written) values into bigrams is the following: If we would compare simple traces
of individual values, it is more likely that two values in two traces match by
accident. By combining subsequent values into pairs, we add a simple form of
context to individual data values. We found that this extra context significantly
lowers the fraction of coincidental matches and improves the separation between
different program executions.

3 Comparing Traces

As discussed in the previous section, we capture the activity of a malware pro-
gram by collecting a trace that consists of a sequence of bigrams of data values
that this program has written. For a number of applications (such as malware
classification and clustering), we require a technique to determine whether the
activities of two malware samples are similar. To perform this comparison, we
have developed a two-step algorithm. This algorithm operates on two data value
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traces as input and outputs a similarity measure S that ranges from 0 (com-
pletely different) to 1 (identical).

3.1 Step 1: Quick Comparison

The goal of the first step is to decide whether two traces are similar enough
to warrant a further, more detailed comparison. This step works by creating a
small “identifier” for each trace. This identifier is based on the k least-frequent
bigrams that appear in a trace. The underlying assumption behind this choice
is that if two samples are variants of each other, they should share some specific
features or attributes that are particular to their family. Thus, we can discard
the most common bigrams, which can appear within many different families, and
focus on the specifics of a certain family’s fingerprint. We have experimentally
determined that a value of k = 100 yields good results.

More formally, we state our approach as follows. Let IDM1 and IDM2 be
the k least-frequent bigrams from traces produced by malware samples M1

and M2. We compare these two malware identifiers by applying the Jaccard

index(J(IDM1
, IDM2

) =
IDM1

∩IDM2

IDM1
∪IDM2

, 0 ≤ J ≤ 1). If, and only if, the Jaccard

index (ranging from 0 to 1) is greater than the empirically established threshold
of 0.34, we move to the second step. Otherwise, the result of this computation
is used as the similarity value (which indicates low similarity).

3.2 Step 2: Full Similarity Computation

In the next step, we compute the overlap of the entire two traces. More specifi-
cally, we compute the longest common subsequence (LCS) between them. Sup-
pose that T1 and T2 are different data value traces and that L1 and L2 are their
lengths, respectively. The similarity between the two traces is then calculated

as C(M1,M2) = LCS(T1,T2)
min(L1,L2)

. We chose the longest common subsequence over

the longest common substring to tolerate small differences in the computations.
Moreover, we note that using a standard LCS algorithm can be computationally
expensive. We addressed this by calculating the LCS based on the GNU diff tool
(http://en.wikipedia.org/wiki/Diff) output. Our experiments, evaluating
a standard LCS implemented in C++ and our approximate LCS computation
showed that we could accomplish faster results using our approach — in some
cases ≈500× faster — with no significant loss of accuracy.

The original diff tool has the nice property that it inserts “barriers” while
computing the longest common subsequences present in a textual input. Our
diff-based LCS approach, referred from now on as eDiff, enhances this capabil-
ity by (i) marking the regions that differ between two traces and (ii) by mapping
the shared subsequences to the original instructions in the respective execution
traces. As a result, we know exactly what malware code produced similar memory

4 To choose this threshold (T ), we performed tests with an increment of 0.1 for the
range 0.0 < T ≤ 0.5

http://en.wikipedia.org/wiki/Diff
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writes. This will be useful for identifying code reuse, as explained in Section 5.2.
To map value traces back to instructions, we simply link the bigram values in
the value traces to the raw instructions that produced those values.

4 Applications

In this section, we discuss two applications that we built on top of our malware
trace similarity technique. The first application is clustering; the idea is to group
samples that show similar activity based on their value traces. The second ap-
plication uses the data value traces to find cases of code reuse. That is, we want
to find cases in which malware samples that belong to different families share
one or more snippets of identical code.

4.1 Clustering

The input to the malware clustering application are a set of N data value traces,
one trace for each of the N samples to be clustered. The goal is to find groups
of malware samples that are similar. Clustering is implemented in two steps:
pre-clustering and inter-cluster merging.
Pre-clustering: The goal of the pre-clustering step is to quickly generate an
initial clustering and avoid having to perform N2/2 comparisons. To accomplish
this, we sequentially process each of the N samples, one after another (in random
order), as follows: Each new sample is compared to all cluster leaders (explained
below), using the similarity computation described in the previous section. When
the trace for the new sample exhibits more than 70% similarity with one or
more cluster leaders, this sample is merged with the existing cluster for which
the similarity is highest. Otherwise, the sample (and its trace) is put into a new
cluster, and this sample also becomes the cluster leader. When merging a trace
with an existing cluster, we need to elect a new cluster leader (a cluster leader is
basically the trace that is selected to represent the entire cluster). For this, we
must make a selection between the existing cluster leader and the new trace. We
select the longer trace as the new leader. We do this to increase the probability
that a sample, whose behavior is similar to the activity of malware in a cluster,
is properly matches with that cluster. In other words, by selecting the longest
trace as the cluster leader, a new trace has more chances to find a long, common
subsequence. By removing from the comparison computation all except one trace
for each cluster, we greatly reduce the required number of comparisons.
Inter-cluster merging: The pre-clustering step results in a set of initial clusters
whose traces share at least 70% similarity. However, due to the nature of the
quick comparison (first step of the similarly comparison), there can be clusters
that should be merged but are not. That is, it is possible that two traces are
actually quite similar, yet their least-frequent bigrams are too different to pass
the threshold. In this case, there are different clusters containing malware from
the same family, and it is desirable to merge these clusters. The merging step
is applied to the output of the pre-clustering step so as to generate a reduced
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amount of clusters. To this end, we perform a pairwise comparison between all
cluster leaders, using our eDiff algorithm. If their similarity is greater than the
same 70% threshold defined previously, the clusters are merged.

4.2 Code Reuse Identification

When comparing two traces, our algorithm not only computes a general simi-
larity (overlap) score but also determines which parts of the traces are identical.
When we find a stretch of values that are identical between two traces generated
by executing different samples, we might naturally ask the question whether
these values were produced by similar code. This would allow us to identify code
that is shared between samples that are otherwise different.

To identify code reuse, when eDiff compares two data value traces, it stores
for each element (bigram) in the traces whether this element is unique to the
trace or shared between both traces. For instance, let us assume that we have two
traces. One contains the three bigrams: (0x1,0x2), (0x2,0x4), and (0x4,0x5);
the other contains the four bigrams: (0x1,0x2), (0x2,0x7), (0x7,0x4), and
(0x4,0x5). In this case, eDiff would find that the first and last element in each
trace are shared, while the middle one(s) are unique (to each trace). To find code
reuse, we check both traces for the presence of at least four consecutive elements
that are shared. The threshold of four was empirically determined and allows us
to find shared code roughly at the function level. A higher threshold would be
possible when we want to find longer parts of shared code. A lower threshold
often yields accidental matches that do not reflect true code reuse.

Next, we require a mechanism to “map back” values in a data value trace to
the instructions that produced them. This can be done easily because we retain
the original instruction sequences that were recorded during dynamic analysis.
To find the code in the malware program that contains the “shared instructions”
we generate a regular expression pattern, which is then matched against the
dumped code segment. When a match is found, we consider the resulting code
block as a candidate for reuse. All matches that are found for each trace are
compared, and when we find a sequence of identical code of a minimum length,
we identify the code snippet as reused between malware samples.

5 Preliminary Experiments

We performed an initial set of experiments using 16,248 execution traces that
produced promising results. These traces were obtained from the analysis of
Windows PE32 executable programs and they represent a diverse and recent set
of different malware families that are currently active in the wild.5

5.1 Malware Clustering

The evaluation of the quality of a clustering algorithm is a complicated task [5],
as clustering results are often not objectively right or wrong but depend on a

5 For a complete list of MD5 sums of the samples, please contact the authors.
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number of factors, such as the metrics used to calculate the distances among
samples and clusters, the final amount of clusters generated, the chosen heuris-
tics, etc. We used three different ways to obtain a reference clustering, based
on [9]: one from the static analysis of malware [4], one from the dynamic anal-
ysis of malware [2], and the last one based on anti-virus (AV) labels from AVG
(http://www.avg.com), Avira (http://www.avira.com) and F-Prot (http://
www.f-prot.com). These AV labels were relabeled so that only the general iden-
tifier for each family remains (e.g., Trojan.Zbot-4955 became “zbot”).

After we generated the reference clustering sets, we borrowed the precision
and recall metrics from [2] to measure the quality of our clustering results. The
product of the values obtained from the overall precision and recall can be used
to measure the overall clustering quality (Q = P × R). For the reference clus-
tering based on AV labels, we measured the quality of our clustering scheme by
defining the level of agreement related to the labels assigned to each sample in
a cluster. Perdisci et al. [11] proposed to use two indexes (cohesion and sepa-
ration) to validate their HTTP-based malware behavioral clustering. However,
their approach “attenuates the effect of AV label inconsistency” due to the way
the Cohesion Index is defined (there is a “gap” and a “distance” value that
causes a boost in cohesion). To avoid this boost, we define a simpler level of
agreement A for a cluster j, calculated as:

Aj =

∑
N∈AV

maxlbl∈LabelsN
(frequency(lbl))

[|Tj |∗|AV |]

where AV is the number of AV vendors, LabelsN is the set of the assigned
labels and their related frequencies for each AV engine for each cluster (N =
avg, avira, fprot), Tj is the total amount of samples in the cluster.
Reduced dataset. Before we applied our clustering technique to the entire
dataset, we ran preliminary tests using a smaller subset, which consisted of
1,000 random samples. Those initial tests were important to experiment with and
determine different threshold parameters. In particular, we varied the similarity
threshold for the second step of the algorithm from 0 to 100% (incrementing
by 10% after each iteration) and observed the highest quality, i.e., the average
between the obtained static and behavioral quality values, for the similarity
threshold of 70%. Moreover, the AV labels’ level-of-agreement value for this
threshold is also very high (0.894).
Full dataset. Based on the results of the preliminary tests, we defined a simi-
larity threshold of 70% for the eDiff process. We continued to use the initially-
established Jaccard index threshold of 0.3 for the quick comparison. The amount
of clusters produced by the two reference clustering sets for the 16,248 samples
with traces were 7,900 clusters for the static approach and 3,410 for the be-
havioral one. Our approach produced 7,793 clusters that were compared to the
reference clustering sets, generating the precision values of 0.758 and 0.846 and
the recall values of 0.81 and 0.572 for the static and behavioral reference, respec-
tively. Calculating the AV labels’ level-of-agreement for our clustering yielded
0.871. These values yield average results of 0.843, 0.652, and 0.656 for precision,
recall, and quality, respectively.

http://www.avg.com
http://www.avira.com
http://www.f-prot.com
http://www.f-prot.com
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5.2 Code Reuse

To look for code reuse in samples that likely belong to different malware fami-
lies, we only check pairs of malware clusters that are sufficiently different. More
precisely, based on the clustering results obtained in the previous step, we look
for pairs of clusters that have a similarity score between 10% and 30%. We
identified 974 pairs of clusters that fulfill this requirement. We discovered 15
pairs (involving ten different clusters) that share code between them. More pre-
cisely, we found seven different blocks of code that seem to be reused among
samples. We sent the ten representatives (one for each cluster) to VirusTotal
(http://www.virustotal.com). Looking at the results, we noticed that the
most common label assigned to them refers to different Trojan malware that
all seem to attack online games (and, apparently, shared code to do so).

6 Related Work

Dynamic malware analyzers, such as [8] and [15], operate at the system call
level and currently do not log the low-level values of an execution (memory and
registers). Ether [3] performs both instruction and system call tracing to analyze
malware in a transparent way by using hardware virtualization extensions, but
it has several of prerequisites on the type of operating system, architecture and
platform, which can limit its use. Indeed, we can divide malware classification
techniques according to how the traces were obtained — i.e., through either
static or dynamic analysis — and to the type of behavior gathered — i.e., either
lower-level or assembly-related data or higher-level or system call information.
Static Analysis Approaches. Shankarapani et al. [14] propose two detec-
tion methods to recognize known malware variants without the need of new
AV signatures: SAVE, which generates signatures based on a malware sample
API calls sequence through the static analysis of its executable, and MEDiC,
in which the signature of a malware sample is part of its disassembled code.
SAVE performs an optimal alignment algorithm before applying similarity mea-
sure functions (cosine, extended Jaccard, and Pearson correlation). This kind of
algorithm does not scale well if there are too many sequences or if the sequences
are very large. For files whose size is among ≈500 Bytes to ≈1000 Bytes, the de-
tection time can be in a range of few seconds (considering just one executable).
Kinable and Kostakis [7] performed a study of malware classification based on
call graph clustering, where they measured the similarity of call graphs that were
extracted from malicious binaries through matches that try to minimize the edit
distance between a pair of graphs. The authors conclude that it is difficult to
partition malware samples in well-defined clusters using k-means based algo-
rithms, chosing the DBSCAN algorithm to cluster some sets, the larger having
1,050 samples. They state that this larger set had 72% correct clusters. Zhang
and Reeves [16] propose a method to detect malware variants that uses auto-
mated static analysis to extract the executable file semantics. These semantic
templates are characterized based on the system calls executed by a malware

http://www.virustotal.com
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sample and used in a weighted pattern matching algorithm that computes the
degree of similarity between two code fragments.

Dynamic Analysis Approaches. Park et al. [10] present a classification method
that uses a directed behavioral graph extracted from system calls through dy-
namic analysis. The generated directed graphs from two malware samples are
compared computing the maximal common subgraph between them and the size
of this subgraph is used as the similarity metric. Bailey et al. [1] developed a
method based on the behavior extracted from a malware sample after executing
it in a virtualized environment. This behavior is considered the malware’s fin-
gerprint and represents the set of actions that changed the system state, such as
files written, processes created, registry keys modified, and network connection
attempts. The tests were performed on a dataset of 3,700 samples from which
the fingerprints were extracted. The normalized compression distance (NCD)
was used as a similarity metric, and the pairwise single-linkage hierarchical clus-
tering algorithm was used for classification purposes. Rieck et al. [12] propose the
use of machine learning techniques on malware behaviors composed of changes
that occurred in a target system in term of API function calls. They ran their ex-
periments on more than 10,000 malware samples divided into 14 families labeled
by AV software. The behavioral profiles obtained from dynamic analysis serve
as a basis to feature extraction and use the vector space model and the bag of
words techniques. After that, the Support Vector Machines method is applied to
the feature sets for classification purposes. Bayer et al. [2] present a scalable clus-
tering approach to classify malware samples based on the behavior they present
while attacking a system. Dynamic analysis is used to generate the behavioral
profiles — sequences of enriched and generalized information abstracted from
system call data. The similarity metric used in their work is the Jaccard index,
which is then used as an input to the LSH clustering method. Very recently, Jang
et al. [6] introduced BitShred, an algorithm for fast malware clustering. In this
paper, the authors present a new way to efficiently simplify and cluster features
from inputs such as (static) code bytes and (dynamic) system call traces.

7 Conclusions

In this paper, we empirically demonstrated that the values stored in memory
and registers after write operations can be used to detect and cluster malware in
families. We also presented a different approach to perform the similarity score
calculation that is simple and effective when applied to the malware problem.
We compared the results from more than 16 thousand malware samples executed
and processed in our prototype system to three reference clustering sets — static,
behavioral (dynamic), and AV labeling — and our produced clustering reached
an average precision value of 0.843 for the first two sets and a level of agreement
value of 0.871 for the last one. Finally, we showed that our classification process
can also be used to verify for code reuse, which helps to investigate the sharing
of functions in different families of malware.
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