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Abstract. The steadily increasing number of malware variants is a sig-
nificant problem, clogging the input queues of automated analysis tools.
The generation of malware variants is made easy by automatic packers
and polymorphic engines, which produce by encryption and compression
a multitude of distinct versions. A great deal of time and resources could
be saved by prioritizing samples to analyze, either, to avoid the repeated
analyses of variants and focus on innovative malware, or, on the con-
trary, to re-analyze variants and have better insights on their evolution.
Unfortunately, indexing in malware analysis tools and repositories relies
on executable digests (hashes) that strongly differ for each variant.

In this paper, we present a robust filter to quickly determine when a
malware program is similar to a previously-seen sample. Compared to
previous work, our similarity measure does not require the costly task
of preliminary unpacking, but instead, operates directly on packed code.
Our approach exploits the fact that current packers use compression and
weak encryption schemes that do not break, in the packed versions, all
the similarities existing between the original versions of two programs. In
addition, we introduce a packer detection technique that is able to dis-
tinguish between different levels of protection, such as unpacked, com-
pressed, encrypted, and multi-layer encrypted code. This allows us to
optimize the sensitivity of the similarity measure accordingly. We eval-
uated our approach on a large malware repository containing 795,000
samples. Our results show that the similarity measure is highly effective
in filtering out malware variants, even after re-packing, and can reduce
the number of samples that need to be analyzed by a factor of 3 to 5.

1 Introduction

Malware authors release an ever-increasing number of malware samples. Over-
whelmed by the quantity (up to several thousands per day), malware analysts
cannot rely on manual analysis to examine the characteristics and behavior of
new malware samples. As a result, analysts use automated dynamic analysis
tools such as Anubis [1], CWSandbox [2], Norman Sandbox [3], or ThreatEx-
pert [4]. These tools monitor the execution of malware samples in a controlled
environment and provide a detailed report of their activity (e.g., interactions



with processes, files, the registry, or the network). The drawback of the dynamic
approach mainly lies in the execution time, especially considering that the in-
strumented environments used to confine malware are usually slower than “real”
execution environments. A minimal execution time is hard to determine, but,
usually, it takes several minutes before a malware sample performs enough sus-
picious operations to allow for a correct characterization of its behavior, plus the
time necessary to revert the instrumented environment in a clean state.

Throwing more hardware at the problem offers only temporary relief, consid-
ering the growing number of variants produced by malware authors. Moreover,
this approach is wasteful, as a majority of the released malware samples are
simple variations of existing ones. It would be preferable to manage analysis pri-
orities and spend the available resources, either on previously unseen malware,
or, on similar variants to obtain insights on their evolution, such as finding new
control servers for bots [19]. To this end, a technique is needed to quickly deter-
mine whether a submitted sample is similar to one that was analyzed before.

Different static approaches have been explored to address the problem of
malware similarity. In [10], the authors introduce a distance-based approach that
uses the edit distance between instruction sequences, whereas the approaches de-
scribed in [13] and [26] rely on the cosine vector distance over n-gram distribu-
tions of instructions. Other approaches replace the one-to-one distance function
with more complex classification algorithms [18, 21, 25]. In [7] and [11], the au-
thors introduce a graph-based approach, which compares graph representations
extracted from the disassembled code. Some of these systems are computation-
ally expensive. More importantly, all these previous approaches require that the
malicious code is unpacked and disassembled first. Unfortunately, existing generic
unpackers rely on a dynamic instrumentation of executables [12, 17, 22], and thus
also suffer from performance limitations due to the code execution.

In this paper, we present an efficient, static technique that can identify sam-
ples that are similar to those previously analyzed, without the need to execute
them. That is, our similarity measure is directly computed over packed and
encrypted samples. This is possible because existing packers and their compres-
sion/encryption algorithms retain some of the properties present in the original
code. Thus, two packed executables, produced by a certain packer, are likely to
remain similar (in certain ways) if they were originally similar. The work clos-
est to our proposed filter is peHash [27], a system that also attempts to detect
duplicate malware samples without executing them. To this end, peHash lever-
ages the structural information extracted from malware samples, such as the
number, size, permission settings, and Kolmogorov complexity of the sections
in a PE executable.While this approach makes peHash efficient, its reliance on
ephemeral features is not robust, and it can be trivially confused. Our similarity
measure, on the other hand, is based on properties directly derived from the
code (content) of the malware program, and hence, is more tamper resistant.

To summarize, our contributions are the following:

– We introduce an efficient and robust similarity measure for malware samples.
The measure operates directly on the packed code section(s) of the program.



– We present a packer detection method that can also identify the type of al-
gorithm: compression, encryption, multi-layer encryption. The detected type
is used to automatically configure the sensitivity of the similarity measure.

– We discuss prefiltering methods to select samples candidate for comparison.
Prefiltering relies on efficient heuristics to quickly discard irrelevant samples.

– We have evaluated our techniques over a large malware repository (795,000
samples). Our experiments demonstrate that our similarity measure is effec-
tive in filtering out packed variants obtained from the an original malware.
The system reduces the number of samples to analyze by a factor of 3 to 5.

2 Similarity and packing

Techniques to compute the static code similarity between malware samples face
the same problems as static malware detection techniques: the packers and muta-
tion engines that are widely used by malware writers to evade signature detection
also blur the similarity between malware variants. According to [17], the percent-
age of malware that is packed has grown steadily, up to more than 80% of the
samples currently found in the wild. Packers were first used to reduce the size of
executables by compression. To hinder reverse engineering further, encryption
was soon combined to compression. Encryption makes unpacking more difficult
and, from the point of view of the malware authors, it increases the number of
variants that can be generated by simply changing the encryption key. Recently,
protections based on virtualization were introduced, where the original program
is translated into virtual instructions that are then executed by an embedded
virtual machine. In this work, we did not try to address virtualization-based
packers, such as Themida or VMProtect, because they have complete control
over the mapping between real and virtual instructions. In these conditions,
code similarities at the binary level are hard to preserve.

In general, compression and encryption severely hinder any similarity com-
putation on executables because the content of code sections is modified, both
in terms of byte sequences and statistical properties. To better understand the
ways in which current packers modify the body of an executable, we manually
examined (reverse engineered) a number of popular tools frequently used by
malware authors. A first, important observation is the limited number of algo-
rithms that are at the core of current packers. For compression, dictionary-based
approaches are the most widely used (mostly LZ77 ), sometimes combined with
entropy and range encoders. For encryption, reversible arithmetic operations
(such as add/sub, rol/ror, xor with 8-bits or 32-bits keys) are the most com-
monly used techniques. The use of stronger cryptographic algorithms (such as
RC4, DES, or AES ) is rare because these algorithms are much slower and need
to be reimplemented to avoid using easily-detected cryptographic APIs.

Table 1 presents the key algorithms used by packers, as well as their impact on
the data contained in the sections of the program: ‘alignment” indicates whether
a byte-aligned data block remains aligned after packing, “sequences” discusses
the effects of packing on the order of bytes (or regions) in the original program,



Table 1. Impact of the different packing algorithms on the binary content.

Dictionary Principle Most-frequent bytes (or blocks) are replaced by relative references
Compression to previous occurrences.
e.g. LZ77 Alignment Byte alignment is preserved by uncompressed blocks and references.
is used in Sequences Order of incompressible blocks is preserved. Relative references
LZO(PolyEnE), are interleaved in between; their inter-space is bound by the size
NRV (UPX). of the reference window.

Distribution Distribution is flattened because frequent blocks are replaced
by references that tend to introduce infrequent byte values.

Entropy Principle Most-frequent bytes (or blocks) are encoded by symbols
Encoding (bit strings) of smaller size.
e.g. Huffman Alignment Byte alignment is destroyed by the shortened symbols.
is combined Sequences Byte blocks are replaced by shorter symbols but their sequence
with LZ77 for is preserved.
deflate(gzip). Distribution Distribution is destroyed due to lost alignment, but can be

reconstructed over the encoded symbols.

Range Principle Most-frequent bytes (or blocks) are replaced by a single integer
Encoding range representation.
e.g. Encoding Alignment Byte alignment is destroyed by the shortened integer ranges.
is combined Sequences Sequences are shortened, but order remains.
with LZ77 for Distribution Distribution is destroyed due to lost alignment, but can be
LZMA(NsPack). reconstructed over the encoded ranges.

Arithmetic Principle Blocks of bytes are independently encrypted using reversible
Encryption arithmetic operations.
e.g. PolyEnE Alignment Byte alignment is preserved by the key and blocks.
uses 32-bit xor, Sequences Sequences are preserved, except that blocks are replaced by their
add/sub, rot/rol encrypted values.
for encryption. Distribution n-gram distribution is permuted, where n is the size of the

encryption block.

Key/Operation Principle A different encryption key/operation is used for each new block.
Variation Alignment Byte alignment is preserved by the key and blocks.
e.g. Sequences If variation is cyclic, repeated blocks at the same relative position
Yoda’s Cryptor in the cycle have the same encrypted value, otherwise, sequences
uses a cycle of are lost by the variable encryption.
xor, add/sub, Distribution If variation is cyclic, the effect is identical to encryption of larger
rot/rol. blocks (encryption block length is equal to the cycle length).

Multi-layer Principle The entire input is encrypted multiple times.
Encryption Alignment Byte alignment is preserved by the key and the byte blocks.
e.g. tElock uses Sequences If layers are aligned with same size of encryption blocks, effect is
multiple layers equivalent to a single encryption, otherwise, overlaps are
of 8-bit xor equivalent to key variations.
encryptions. Distribution If layers are aligned with same size of encryption blocks, effect is

equivalent to a single encryption, otherwise, overlaps are
equivalent to key variations.

“distribution” characterizes how the distribution of bytes (or n-grams) in the
original binary is altered by the packing process. By combining compression and
encryption, packers tend to destroy all similarity between an original executable
and its packed version. However, looking closer at Table 1, we observe that some
information is preserved both by compression and weak encryption algorithms.

Compression Algorithms. Dictionary-based packers preserve certain incom-
pressible parts of the original program, while they compact other parts by re-
placing entire sub-sequences with references (relative offsets) to previously-seen,
uncompressed occurrences of the same sub-sequence. If two executables are sim-
ilar before packing, their incompressible parts will be mostly similar. As for the
compressed parts, one can expect that most of the relative offsets point to simi-
lar positions. Dictionary-based algorithms align both uncompressed regions and
offsets on byte boundaries. Entropy encoders operate by replacing frequent bytes
(or blocks) with shorter symbols. The lengths of these symbols are typically not
a multiple of a byte, and hence, the byte alignment is destroyed. This also sig-
nificantly alters the byte distribution. However, when considering the encoded
symbols, their distribution is identical to the byte (block) distribution of the
data before encoding. Similar considerations hold for range encoders.

Encryption algorithms. The reversible arithmetic operations used by a ma-
jority of crypters only achieve a simple substitution of the byte blocks in the
original code. Arithmetic encryption results in a permutation of the distribution



Fig. 1. Architecture of our similarity filter.

of the original n-grams but the alignment of bytes is not affected. Most of these
crypters do not implement any chaining to strengthen their algorithm. Based on
the packers we have studied, only a few crypters were actually offering position-
dependent encryptions: these crypters apply a short cyclical variation of the key
or the arithmetic operation but no chaining.

The important conclusion that can be drawn from the previous observations
is that packers preserve certain properties of the original code. Compressors tend
to alter the byte alignment. However, when considering the compressed symbols,
some sequences are incompressible by dictionary-based compression and refer-
ences to compressed sequences are deterministically determined. Compressors
thus preserve similarity because originally similar programs result in similar
compressed data, and, consequently, similar symbol distributions. Crypters do
not alter the byte alignment. However, they create a permutation of the distri-
bution of bytes (blocks) in the original program, where the permutation depends
on the encryption key. In the next section, we will discuss how we can leverage
these insights to perform similarity computations directly on packed code.

3 A similarity measure for packed executables

The filter that we introduce in this paper is designed to detect malware programs
that are similar to previously-seen samples. Leveraging this filter, we can prior-
itize submissions to dynamic analysis systems according to the samples novelty.

To compute the similarity between two (malware) programs, we compute the
distance between their code signals. A code signal is a bigram distribution over
the raw bytes of the code section, but extracted in a way to compensate for
the modifications (noise) introduced by packers (Section 2). An overview of the
system is presented in Fig. 1. We keep a database of previously-analyzed malware
programs that stores, for each sample, its code signal. Whenever a new sample
arrives, its code signal is extracted. We then compute the distance of this signal
with respect to those stored within the database (Section 3.1). If this distance is
below a certain threshold, a similar sample already exists in the database, and no
further analysis is performed. If the distance is above the threshold, the sample
is submitted for further analysis and the database is updated accordingly.

To increase the speed and precision of the system, two additional steps are
introduced. First, we use a packer detector that automatically configures the



distance sensitivity, based on the type of packing used (Section 3.2). Second, the
distances are not computed for all samples in the database. Instead, a prefilter
selects likely candidates to reduce the number of comparisons (Section 3.3).

3.1 Extracting and comparing code signals

We employ code signals to characterize the executable section of a binary, and
to determine the distance of binaries, from one to another. A code signal is a
distribution of byte bigrams (pairs of subsequent bytes), extracted in a particular
way from a program’s code segment. One reason for operating directly on the
raw bytes of the malware code is speed. Neither disassembly nor any other
interpretation of the bytes is required. A second reason is that the similarity
measure must be packer-agnostic, meaning that the measure should work directly
on the packed code, which cannot be disassembled. To handle packed code, we
introduce two specific transformations during the code signal extraction.

Extracting code signals. As discussed in Section 2, when similar programs
are compressed or encrypted by current packers, the resulting binaries share
certain similarities that “shine through” the packing process. We exploit these
similarities using two transformations to respectively address the previously-
identified problems of alignment destruction and distribution permutation.

1) Bit-shifting window: To recover from the destruction of the byte alignment,
a bit-shifting window is used to extract bigrams, instead of the traditional byte-
shifting window. The process is shown in Fig. 2. Using a byte-shift, any local
difference between two similar streams of compressed data is likely to result in a
disalignment because compressed symbols have sizes that are not byte-aligned.
The importance of the bit-shift thus lies in its capacity to resynchronize two
similar compressed streams with the correct alignment.

2) Sorted distribution: Once all bigrams are extracted from a malware’s code sec-
tion, we compute the bigram frequencies. Their distribution is then normalized
by dividing these frequencies by the total number of bigrams in order to obtain
a probability distribution. To address the possible, additional encryption of the
code by simple arithmetic operations, the distribution is sorted by decreasing or-
der of probability values. As mentioned in Section 2, for simple block encryption
algorithms (without chaining), the n-gram distribution of the encrypted code is
simply a permutation of the original distribution; in these cases, sorting the bi-
gram distribution can perfectly recover the similarity between samples that was
obscured by encryption. This technique was originally introduced in anomaly
detection to detect similar attack payloads, possibly encrypted [15].

In our case, only a partial recovery of the distribution is possible because of
the bit-shifting window used to extract bigrams: the bit-shifting is required to
handle compression (and the alignment issues compression introduces). However,
looking at the extracted bigram distributions, we find that only a small fraction
of bigrams are frequent enough to contribute significantly to the code distribution
(these are predominant bigrams). The remaining bigrams have a very small



Fig. 2. Bigram extraction by bit shifting window.

Let us consider a 4-byte value X = X1X2. X is encrypted by a function E as follows:
X′ = E(X,K) with K = K1K2 and X′ = X′1X

′
2.

E is xor: Relation between encrypted values and inputs:
X′1 = X1 ⊕K1 and X′2 = X2 ⊕K2

No diffusion between bits of of X1 and bits of X2.
E is addition: Relation between encrypted values and inputs:

X′1 = X1 +K1 + carry and carry,X′2 = X2 +K2

If carry = 0, no diffusion between upper bits of X1 and lower bits of X2.
If carry = 1, only the rightmost bits of X1 are impacted by the encryption of X2.

E is rotation: Rotation diffuses overflowing bits from one side to the opposite side.
Still, particular keys do not properly achieve diffusion:
If K = α16 and α is even then: X′1 = X1 and X′2 = X2

If K = α16 and α is odd then: X′1 = X2 and X′2 = X1

Fig. 3. Diffusion between upper and lower bytes for arithmetic encryption operations.

probability compared to these frequent (predominant) bigrams, and they are
in the long tail of the distribution. As expected, the predominant bigrams are
those bigrams that are aligned on instruction boundaries or on the boundaries
of compressed/encrypted symbols. The bigrams with small frequencies typically
correspond to bigrams that overlap adjacent instructions or symbols.

In our experiments, we found that only about 7% of the bigrams are fre-
quent enough to contribute to the code distribution. If we restrict our view of
the bigram distributions to these predominant bigrams, the sorting process is
still efficient in recovering the significant part of the distribution. In cases where
the size of the encryption blocks is equal to or smaller than the size of the bi-
grams, the predominant bigrams are simply permuted. If blocks are of a larger
size than bigrams, the quality of the recovery for these predominant bigrams
depends on the extent to which the encryption operation on a large block can be
approximated as separate (independent) encryption operations on sub-blocks.
When this approximation holds, the original probability of a bigram is divided
between a limited number of encrypted bigrams, depending on the relative posi-
tion of the bigram to the key. For example, the original probability of a bigram
X, after encryption by xor with a 32-bit key K = K1K2, will be always divided
between X ⊕K1 and X ⊕K2. The approximation in separate encryptions actu-
ally depends on the diffusion achieved by encryption between the bits of different
sub-blocks. Fig. 3 discusses different conditions under which certain arithmetic
operations do not achieve diffusion.

This technique is designed to address the simple encryption algorithms used
by current packers. On the other hand, it does not the address standard encryp-



tion algorithms, such as AES or RSA, used in contexts where the security of the
data is critical and stronger cryptography is required.

Comparing code signals. The comparison between code signals is performed
using Pearson’s χ2 test:

χ2 =

216−1∑
i=0

(oi − ri)
2

ri
where ri > 0 (1)

where oi are elements of the distribution extracted from the submitted sample,
and ri are elements of the reference distribution from the candidate samples.
The cases where ri = 0 were ignored since, as previously seen, they correspond
to negligible bigrams that are not contributing significantly to the distribution.

We did consider a number of other similarity measures (such as the cosine
vector distance), but we found that the χ2 test yielded the best results in terms
of precision and performance. Moreover, we investigated weighting mechanisms,
such as the inverse document frequency. Unfortunately, such mechanisms do
not improve the results since compression and encryption make any a priori
hypothesis about the statistical frequency of bigrams unreliable.

The χ2 measure is computed between the distributions of the submitted
sample and the first candidate. If the test value remains below a given threshold
τ , the two samples are considered similar. Otherwise, the test is repeated with
the next candidate. Whenever a similarity is found with one of the candidate
samples, the comparison process is stopped, and the reference to the existing
sample is returned. If no similarity is found, the comparison process is continued
until the set of candidate samples is exhausted.

The actual value for the threshold τ is selected based on two factors. First, the
threshold provides a mechanism to adjust the sensitivity of the filter, and hence,
to control the trade-off between false negatives and false positives. In our use
case, a false negative (failing to recognize that a similar sample is already in the
database) is much less problematic than a false positive (incorrectly concluding
that a similar sample is already in the database). This is because, in case of a
false negative, a duplicate sample is analyzed, which results in a small waste
of resources. In case of a false positive, a new, and possibly interesting sample,
is incorrectly discarded. The second factor is the output of the packer detector
(discussed in the next section). We use a set of different thresholds that are
optimized according to the packing level of the tested program.

3.2 Packer detection

As explained in Section 2, packers modify the byte distribution of the code. In
particular, packing often leads to a “flatter” distribution. In case of compression,
frequent values are replaced by references or short symbols. In case of encryption,
the same, frequent byte value might be mapped to different, encrypted values.
Flatter distributions can lead to false positives, because the similarity values
returned by the χ2 test decrease (compared to unpacked samples). The similarity
threshold should thus be reduced accordingly when checking packed executables.



Fig. 4. Statistical tests for packer detection.
T1: Uncertainty test. Code entropy.
T2: Uniformity test. χ2 test between the code and an equiprobable distribution.
T3: Run test. Longest sequence of identical bytes in the code.
T4: 1st-order dependency test. Autocorrelation coefficient of the code at lag 1.

Type Test series Detection criterion

Packers T1 : H ≥ t1 packed if T1 = true

Compressors T2 : U < t2 compressed if packed ∧
T3 : lgth(run) ≤ t3 no more than one of T2,T3,T4 = true
T4 : |ACC| < t4a

Crypters T2 : U < t2 encrypted if packed ∧
T3 : lgth(run) ≤ t3 two or more of T2,T3,T4 = true
T4 : |ACC| < t4a

Multi-layer crypters T4 : |ACC| < t4b multi-layer if encrypted ∧ T4 = true

To detect packed executables, we leverage the fact that a flattened distribu-
tion makes packed code similar to random data. Thus, the statistical properties
used to assess random generators can be used to detect packed executables, and
classify their type of protection: compression, single and multi-layer encryption.

Packer detection and classification. To detect packers and to identify the
type of protection, we introduce four statistical tests in Fig. 4. These tests are
performed over the raw bytes in the actual code section or the packed code
section (depending on whether the sample is packed).

The entropy-based test T1 is the traditional test used to detect packed ex-
ecutables. A high entropy value constitutes a significant sign of randomness.
Thus, whenever T1 yields a code entropy value above an experimentally deter-
mined threshold, the sample is considered packed. For all packed samples, we
use three additional tests T2, T3, and T4 to determine more precisely the type
of packing. These tests were originally designed for assessing random number
generators [23]. Here, we apply them in a novel context.

The uniformity-based test T2 and the run-based test T3 are primarily em-
ployed to distinguish between compressed and encrypted code. When an encryp-
tion algorithm uses input blocks that span multiple bytes, one particular (byte)
value in the original code is likely mapped to several different, encrypted values
in the packed code, depending on the relative positions of the bytes in the en-
crypted block. Thus, the distribution of encrypted code is closer to a uniform
distribution than compressed code (a larger specter of observed bigrams with a
levelled frequency), a property checked by T2. Moreover, some compression algo-
rithms (especially dictionary-based approaches) can produce sequences (runs) of
identical bytes, something that is unlikely for crypters. As a result, the presence
of longer runs of identical bytes is an indication of compression.

Finally, executable code is known to have a first-order dependency [21]. This
dependency between consecutive bytes is partially destroyed by compression and
encryption. In the case of multi-layer crypters, the boundaries between different
layers introduce additional discontinuities. These discontinuities are detected by
testing the autocorrelation coefficient (ACC) of the code T4. Fig. 4 explains how
our four tests are combined to identify the level of packing. Thresholds t1, t2,
t3, t4a, t4b are experimentally determined in the evaluation section.



Fig. 5. Finding the plain/packed code section.

Locating packed code. The four statistical tests have to be performed on the
“normal” text (code) segment for unprotected executables or on the section that
holds the packed code. Since packers modify the sections of executables, the risk
is to perform the test over the section that contains the loader. Fig. 5 shows
our heuristic to find the section that contains the packed data. Notice that the
identified section is later used to extract the code signal.

3.3 Fast prefilter

Computing the similarity of a new malware sample with respect to those al-
ready stored in the database is potentially costly when the number of samples
increases. To reduce the necessary similarity computations, but also to reduce
potential false positives due to random collisions between code signals, we apply
a prefilter to select only a subset of candidate samples for further consideration.
This prefilter step uses fast heuristics to discard non-similar samples based on
straightforward observations. More precisely, the prefilter uses two sequential
heuristics: a first heuristic based on the size of samples, and a second heuristic
based on the structural information contained within the programs’ PE headers.

Size-based filtering. An immediate criterion of similarity between PE exe-
cutables is their size. When malware writers produce variants of their original
code, these variants tend to be of similar size. Of course, the size of samples
derived from the same original source code might change because of compilation
parameters, small modifications to the code, and, most importantly, because of
packing. Taking into account these factors, we compute, for a new sample, a
range with limits that are a fixed percentage above and below this sample’s size.
The prefilter then selects candidate samples whose size falls within this range.
If no candidate is found, the sample is considered new.

PE-characteristic-based filtering. Further criteria of similarity between ex-
ecutables are their structural characteristics. In the PE format, the header con-
tains important information about the executable’s layout, both on disk and in
memory, and meta-information about the compilation process. However, only
a subset of these features is useful for prefiltering: we only consider features
that provide sufficient differentiation between executables while being robust to
packing (that is, features that are not modified by packers). The 16 features we
selected are presented later in Table 5. The prefilter computes the Hamming
distance between the PE features of a new (incoming) sample and the features



of all candidates that were selected by the first heuristic. When the distance
is larger than a threshold, the corresponding database sample is discarded. All
remaining samples become candidates for the similarity measure computation.

4 Evaluation

The filter presented in previous sections was implemented and used to process
samples submitted to an automated, dynamic malware analysis system. The
evaluation was carried out in two steps. For the first step, we used our filter on
known samples for which ground truth was available (Section 4.1). The goal of
this first step was to establish the similarity thresholds and configure the packer
detector as well as the prefiltrer. For the second step, we applied the filter to
a large collection of malware samples that were provided to us by the authors
of Anubis [1] (Section 4.2). The goal of this second step was to verify that the
precision is maintained in real-world conditions, when the filter is exposed to a
large number of diverse malware samples and packers. We also took advantage
of this second step to study the scalability and the robustness of our approach.

4.1 Experiments on known samples

We started our experiments with two data sets. The first set, S1, contained
384 PE executables, mostly taken from the system directory of a Windows XP
installation. It also contained open-source software, such as OpenOffice, and free
shareware, such as mIRC. All programs in S1 were unpacked and served as
examples of dissimilar (unrelated) binaries.

The second set, S2, contained 65 bots, whose source code was made available
to us. These bots belong to two malware families: SdBot (23 samples) and rBot
(42 samples). The SdBot samples were further classified as versions 4 and 5,
while the rBot samples span five versions ranging from 3 to 7. Since the samples
in S2 are related to various degrees, we could leverage this data set as labeled
ground truth to study the precision of our similarity measure. Any other malware
family with a version history could have been used for this configuration.

Packer detection. To assess our packer detection technique, we selected seven
packers, based on their popularity with malware writers: UPX, FSG, NsPack,
WinUPack, Yoda’s Cryptor, PolyEnE and tElock. We also added instances of the
Allaple worm as a representative example for polymorphic malware; its engine
uses techniques similar to packing. Table 2 provides an overview of these pack-
ers, covering the compression and encryption algorithms they implement: four
compressors, two crypters, and two multi-layer crypters. Looking at prevalences,
these eight packers cover 86% of the packed samples from the Anubis data set.

We first packed each of the 384 executables from S1 with the 7 packers, and
then added 120 Allaple samples. This set of packed executables was used to verify
the rate of False Negatives (FN) of the technique. The unpacked versions of these
executables were then included to the data set in order to verify the rate of False
Positives (FP). Training over a small subset of this data set, we obtained the



Table 2. Specifications of the tested packers.

Table 3. Detection/classification of packers.

Name Unpacked Packed Compr. Crypt. MLCrypt.

Unpacked 99.74% 00.26% 00.26% 00.00% 00.00%

FSG 18.18% 81.82% 81.55% 00.00% 00.27%
UPX 03.04% 96.94% 96.10% 00.56% 00.28%
NsPack 12.11% 87.89% 87.63% 00.26% 00.00%
WinUPack 13.84% 86.16% 83.55% 02.09% 00.52%
Compressors 11.80% 88.20% 87.21% 00.72% 00.27%

YodaCryptor 17.99% 82.01% 06.08% 74.87% 01.06%
PolyEne 06.01% 93.99% 28.98% 62.14% 02.87%
Crypters 12.00% 88.00% 17.53% 68.51% 01.96%

tElock 04.84% 95.16% 00.57% 70.94% 23.65%
Allaple 00.00% 100.0% 00.00% 72.22% 27.78%
Multi-layers 02.42% 97.58% 00.28% 71.58% 25.72%

Packed 08.74% 91.26% N/A N/A N/A

following thresholds that optimize the trade-off between FN and FP: t1 = 4.73,
t2 = 0.0012, t3 = 2, t4a = 0.005, t4b = 0.002 c.f. Fig. 4, Section 3.2.

The detection results for the remaining samples (test set) are presented as a
confusion matrix in Table 3. One can see that the detector is able to distinguish
very well between unpacked and packed executables: the detection rate for un-
packed samples is 99.74%, while it is over 91% on average for packed programs.
Furthermore, our statistical tests were able to correctly distinguish, in more than
80% of the cases, between compressors and crypters. The lowest classification
rate was achieved for multi-layer crypters. The reason is that encrypting the
same executable multiple times does not necessarily result in stronger encryp-
tion. In particular, several layers of xor encryption are basically equivalent to a
single layer. It is important to observe though that a misclassification only leads
to the use of a suboptimal threshold, but it does not prevent the system from
computing correct similarity results.

When putting our detection results into the context of related work, our
technique provides fine-grained distinctions between different types of packing
without making use of packer-specific signatures or features. Systems such as [16]
relying on pure entropy, or [20] relying on structural properties of the executable,
only distinguish between packed and regular code. More advanced systems such



as [8] or [24] can precisely classify packers by name using randomness profiles.
However, these systems need to be trained for each individual packer that should
be recognized, something that our system, providing a coarser-grained distinc-
tion, does not require because it relies on information theoretic metrics that
extend to any other packer that uses similar algorithms.

Tuning the filter granularity. The goal of the next experiment is to select
suitable filter thresholds. For this, we turned our attention to S2, the set of 65
classified bot samples. More precisely, to build our configuration set, these 65
bots, together with all benign 384 programs from S1, were packed with all seven
packers and submitted to the filter.

TH = nb similar samples flagged as similar
+ nb unique samples flagged as unique

nb submitted samples

FH = nb dissimilar samples flagged as similar
nb submitted samples

M = nb similar samples flagged as dissimilar
nb submitted samples

Granularity levels:
(f)− two samples are similar if

they belong to the same family

(v)− two samples are similar if

they belong to the same family

and have the same version

To measure the filter precision, we use the following metrics: (i) the rate
of True Hits, TH, which correspond to the cases where the filter successfully
discards similar samples, or forwards new, unique samples to the analysis tool;
(ii) the rate of False Hits (or false positives), FH, which correspond to the cases
where new samples are discarded even though they are novel (these errors are
critical, because they may result in a loss of interesting information); (iii) the
rate of Misses (or false negatives), M , which correspond to cases where samples
are forwarded to further analysis even though they should have been discarded
(these errors are less severe, because they only result in unnecessary analyses).

In Table 4, we present the results of our experiments for two different sets of
thresholds. The first set of thresholds corresponds to what we refer to as family
granularity. That is, the thresholds are set with the aim of recognizing as similar
two samples when they belong to the same malware family. That is, a sample
that belongs to rBot version 5.0 should be considered similar to an rBot version
6.0. The thresholds were found by an optimization process that maximizes the
rate of true hits while maintaining the rate of false hits under 0.5%. The rate
of false hits is the most critical factor because it eventually corresponds to the
potential loss of information we tolerate by not running a unique sample.

With family granularity, we observe 95.2% of true hits on average, with only
4.5% misses and, more importantly, only 0.3% of false hits. The rate of true hits
indicates to which extent similarity is preserved by packers, even after the minor
modifications brought to the code of the different versions. Unsurprisingly, the
best results are observed for compressors, because their packing process is de-
terministic. On the other hand, the filter does not achieve 100% detection in the
case of crypters because the size of the encryption key is typically 32-bits, which
is twice the bigram size. In this case, as we have seen, the similarity preserva-
tion depends on some bias of the encryption algorithm. The worst results are
obtained for Yoda’s Cryptor, because this crypter uses a cycle of different en-



Table 4. Precision of the similarity measure for various packers.

Family granularity thresholds Version granularity thresholds
Packer Thrsh. TH(f) FH(f) M(f) TH(v) FH(v) M(v) Thrsh. TH(v) FH(v) M(v)

None 0.0020 99.8% 00.2% 00.0% 94.2% 05.8% 00.0% 0.0012 98.0% 00.2% 01.8%
FSG 0.0018 99.6% 00.4% 00.0% 91.5% 08.5% 00.0% 0.0008 94.2% 00.4% 05.4%
UPX 0.0018 91.8% 00.2% 08.0% 89.9% 02.1% 08.0% 0.0008 91.1% 00.4% 08.5%
NsPack 0.0018 99.4% 00.2% 00.4% 93.6% 06.0% 00.4% 0.0008 94.7% 00.2% 05.1%
WinUPack 0.0018 99.2% 00.4% 00.4% 93.6% 06.0% 00.4% 0.0008 94.7% 00.2% 05.1%
YodaCryptor 0.0015 89.3% 00.0% 10.7% 90.4% 00.2% 09.4% 0.0006 90.2% 00.0% 09.8%
PolyEne 0.0015 90.0% 00.4% 09.6% 90.6% 01.2% 08.2% 0.0006 89.8% 00.4% 09.8%
tElock 0.0013 96.1% 00.6% 03.3% 95.1% 02.9% 02.0% 0.0004 91.8% 00.2% 08.0%
Allaple 0.0013 92.2% 00.0% 07.8% 82.2% 10.0% 07.8% 0.0004 76.6% 00.0% 23.4%

Average - 95.2% 00.3% 04.5% 91.3% 04.7% 04.0% - 91.3% 00.2% 08.5%

Table 5. PE Header characteristics selected for comparison.

Location Name H card Name H card
DOS Header AddressNewExeHeader 1.87 13
NT Header Characteristics 0.67 7
Optional (min/maj)LinkerVersion 0.68 6 CodeBase 0.93 6
Header ImageBase 0.44 5 (min/maj)OSVersion 0.43 4

(min/maj)ImageVersion 0.46 4 (min/maj)SubsystemVersion 0.45 4
Subsystem 0.22 2 DllCharacteristics 0.75 7
SizeStackReserve 0.31 4 SizeStackCommit 0.44 5

cryption operations and keys per block. The cycling operations make encryption
position-dependent, thus explaining the higher rate of misses.

Depending on the desired level of granularity, it might be preferable to an-
alyze different versions of the same malware family. In this case, the family
granularity thresholds are too loose. This can be seen by looking at the false
hit rates for malware versions, denoted as FH(v), which reaches 4.7% when
using family granularity thresholds. To differentiate between different malware
versions, we created a second set of tighter thresholds (referred to as version
granularity). It can be seen that, using these thresholds, FH(v) drops to 0.2%.
However, we also have to accept that the rate of misses increases. Notice that
misses remain tolerable because they only imply re-running an existing sample,
without potential loss of interesting information.

We also examined the precision of our system when analyzing the polymor-
phic worm Allaple, which was a major issue in 2007-2008, polluting malware
repositories with thousands of mutated variants. The experiments have been
run over two versions, namely Allaple.b and Allaple.e. The results are also given
in Table 4. The worm variants are accurately detected in more than 92% of the
cases, with a good distinction between versions.

Configuring the prefilter. The size range that constitutes the first heuristic of
the prefilter was configured so that the variants of a given program fall within this
range, while it remains tight enough so that the number of irrelevant candidates
remain minimal. Considering the packed versions of the bot variants from S2,
the maximum size variation that we observed was 4.4%, which corresponds to a
lower bound of 95.6% and a higher bound of 104.4% of the original size.

To find the best structural features to constitute the second heuristic of the
prefilter, we again examined the original and packed versions of the samples



from S1. For all PE header fields, we verified that they were resilient to packing,
and that they were distinguishing enough (sufficient number of different values,
card, and high entropy, H). Table 5 provides the list of 16 selected features that
are compared by Hamming distance with a threshold of 0.

4.2 Large scale experiments

The experiments with known samples allowed us to analyze the accuracy of our
filter, tune detection thresholds, and configure the prefilter. In the next step,
we performed a large-scale experiment with 794,665 malware samples that were
submitted to the Anubis analysis tool in 2009. For each of these samples, we had
at our disposal behavioral information (execution traces) and a reference clus-
tering [6]. This clustering partitioned the malware programs into 91,522 different
groups sharing similar runtime activity.

Precision and scalability. We applied our filter to the entire data set of
almost 795 thousand malware samples. To evaluate the filter precision, we use
the aforementioned metrics: True Hits (TH), False Hits (FH), and Misses (M).

A problem for this experiment was the fact that we did not have ground truth
available (such as source code or reliable malware labels). To address this, we
introduced a reference classification based on the behavioral and structural infor-
mation of executables. More precisely, we leveraged the behavioral clusters [6]:
we considered two samples as similar when they produced similar behaviors,
and hence, ended up in the same behavioral cluster. The behavior similarity was
computed using the Jaccard distance between their execution traces. Unfortu-
nately, the execution of malware programs is not deterministic and can change
depending on the environment, time, or the availability of network resources
(such as C&C servers). As a result, similar samples might end up in different
behavioral clusters. Thus, to improve the reference clustering, we also considered
structural characteristics of the malware programs. More precisely, we checked
whether the executable sections of two programs share the same name, size, po-
sition in memory, and hash of the sections’ contents. We considered two samples
as similar when at least 90% of their structural information is identical and they
share more than 70% of their behavior.

Precision. Table 6 shows the filter precision for three sets of thresholds. The first
two correspond to the thresholds for family and version granularities, respec-
tively, while the third is an extra set with more conservative thresholds. These
three sets represent different trade-offs between reducing unnecessary analysis
runs (TH) and the risk of discarding potentially interesting samples (FH).

For the first thresholds, the filter achieves a true hit rate of more than 90%.
That is, more than 90% of similar (irrelevant) samples are correctly discarded.
This leads to a reduction of the amount of overall analysis runs by a factor of
almost five – saving a significant amount of valuable resources. This is paid for by
a false hit rate of 0.7%. When the thresholds are more conservative, the number
of incorrectly discarded samples (FH) is reduced to 0.3%. This, however, also
lowers the hit rate, and thus, the reduction factor that can be achieved.



Table 6. Filter accuracy for selected thresholds
(U-Unpacked, C-Compressed, E-Encrypted, MLE-Multi-Layer Enc.)

Similarity Thresholds Family accuracy Version accuracy Misses Reduction
U C E MLE TH(f) FH(f) TH(u) FH(u) M Factor
0.0020 0.0018 0.0015 0.00130 91.1% 00.7% 89.8% 02.0% 09.2% 4.84
0.0012 0.0008 0.0006 0.00040 84.6% 00.5% 83.8% 01.3% 14.9% 3.79
0.0005 0.0003 0.0002 0.00008 74.4% 00.3% 74.0% 00.7% 25.3% 2.71

Fig. 6. Database growth. Fig. 7. Time/Submission.

Fig. 8. Prefilter reduction.

We then analyzed the False Hits produced by our filter in more detail. We
found that incorrect similarities can be explained either by the failure of the
heuristic to find the section containing the packed code (∼10% of FH), or, in most
cases, by the misclassification of samples that, although they belong to different
families, are part of the same class of malware (∼90% of FH). The heuristic failed
mainly on very small executables where the packed code was negligible compared
to the loader code. The misclassification mainly happened for fake anti-virus
software and IRC bots, probably because they share substantial portions of
code. For this analysis, we used the malware labels produced by more than 40
AV scanners (run by VirusTotal [5]). We declared a false hit every time less than
5 scanners would agree on the family name.

With respect to misses, we found that most cases were caused by similar
samples that exhibit similar dynamic behavior but were protected by different
packers. For a given executable, the filter tends to create a new database entry
for each different packer (type) used to protect this binary.

Scalability. To understand the scalability of our approach, we first examined
the growth of the sample database. According to Figure 6, the database size



increases sub-linearly with the number of submissions. Figure 7 shows a linear
increase of the computation time with the number of entries. The computation
time for similar samples is lower because, as soon as a similar entry is found, the
computation stops. In the worst case, for unique samples, the filter takes no more
than 300ms. This is 1,200 times faster than the 6 minutes required to execute a
sample within Anubis. Considering the observed slowdown in the increase of the
database size, the system should scale at least to tens of millions of samples.

The prefilter plays an important role in these performances. In Figure 8, it
can be seen that the two heuristics reduce the candidate set to less than 1% of
the database samples. Moreover, the figure shows that the prefilter maintains its
effectiveness independently of the size of the database.

Robustness of the filter. In the next step, we compare our approach to exist-
ing techniques that aim to detect similarities between malware binaries without
analyzing their runtime behavior. To this end, we reimplemented peHash [27].
This tool operates mostly on structural characteristics of malware samples, and
hence, does not require unpacking or disassembling the code beforehand. To un-
derstand how much the precision of our filter suffers because it has to operate
on packed code (bytes) instead of disassembled instructions, we implemented a
second version of our filter, where the bigram distribution (code signal) is not
computed over the raw (and possibly packed) bytes, but over bigrams of disas-
sembled instructions. This technique is similar to Vilo [26]. Finally, to compare
with an alternative approach to detect malware similarity, we used an existing
tool that operates on control flow graphs [14].

In the following, we refer to the four systems under examination as: Filter for
our tool, peHash, Disasm for the disassembled version of Filter, and Graph. To
experiment with these systems, we selected a subset of 18,645 samples from our
real-world data set, where the corresponding unpacked binaries were available,
as a byproduct of their execution in a dynamic analysis environment.

Attacker model. Here, we assume an attacker who develops a packer that oper-
ates directly on executables. That is, the packer is given a binary, and it has to
output variants that cannot be recognized as similar. This is realistic because
malware authors typically distribute their malware programs as binaries, using
third-party packers to produce new variants on the fly.

The need to operate on binaries imposes certain constraints; in particular, the
memory layout of the executable must be preserved. Otherwise, addresses in the
code or data sections would not resolve properly, and the program would crash.
To work around this problem, the attacker would have to perfectly disassemble
any input binary, which is extremely difficult in practice. Given this limitation,
the attacker can perform structure-based operations leaving the original code
untouched (1−4), and content-based operations that modify the code (5):

(1) Modifying access permissions of sections.
(2) Changing the size of sections on disk only.
(3) Injecting random data within the padding spaces.
(4) Appending sections at the end of the memory image.
(5) Compressing and/or encrypting code/data sections.



Table 7. Compared robustness
to structural modifications.

Modifications peHash Filter
Section permissions 7.8% 99.8%
Size of sections 42.5% 98.4%
Random data 37.8% 80.8%
Appended sections 0.0% 84.6%

Table 8. Compared precision and runtime.

Systems TH FH M Time
No prerequisite on the code
Distance-based(Filter) 80.8% 00.7% 18.5% 6 min
Hash-based(peHash) 81.1% 00.6% 18.3% 9 min
Unpacked and disassembled code (∗ without unpacking)
Distance-based(Disasm) 84.3% 00.5% 15.2% 239 min∗

Graph-based(Graph) 83.4% 00.4% 16.2% 847 min∗

Table 9. Compared robustness summary.

Modifications Disasm Graph peHash Filter
Modifying section permissions 3 3 5 3
Changing section sizes 3 3 5 3
Injecting data in sections 3 3 5 *
Appending new sections 3 3 5 *
Compression 5 5 3 3
Arithmetic encryption 5 5 3 3
Chained encryption 5 5 5 5
Strong encryption 5 5 5 5

Structure-based robustness. To examine the techniques robustness to structure-
based modifications, we developed an obfuscation tool that can apply all four
structural modifications defined within our attacker model. Using this tool, we
generated four kinds of variants for the 18,645 samples in our test set, and
submitted them to peHash and our Filter. We did not test Disasm and Graph
against the obfuscated binaries since these tools ignore structural information.

Table 7 presents the percentages of similar variants correctly identified for
each type of modification. Overall, our approach is significantly more robust
than peHash. This is not surprising since peHash focuses on structural informa-
tion, which is easy to tamper with. Our Filter, on the other hand, relies on the
statistical properties of the code, which are harder to change.

Table 7 also shows that our system considered as different a number of sam-
ples that should have been recognized as similar. The first, and main, reason
was that the sizes of the binaries were changed by the obfuscator so that they
exceeded the size range of the prefilter. To handle this issue, we can increase
the size range that the prefilter accepts, at the expense of a small performance
penalty. The second reason, far less frequent, was that our heuristic to identify
the packed code section (see Figure 5) was misled.

Content-based robustness. All packers apply some form of content-based obfus-
cation, by compression or some simple form of encryption. Since Disasm and
Graph work only on unpacked samples, such simple transformations would al-
ready be sufficient to render them useless. However, in this section, we explore
the precision of these systems when operating on unpacked binaries, compared
to our Filter and peHash that operate on the corresponding packed versions.

For this experiment, we submitted the packed and unpacked versions of our
18,645 samples to all four systems. Table 8 compares the results, both in terms
of precision and runtime. PeHash performs quite similarly to our approach, but
at the significant expense of structural robustness, as was discussed previously.
Disasm and Graph, which operate on unpacked executables, do not achieve a
significantly better accuracy; in fact, the overall differences are minimal. This is



encouraging because it shows that our Filter, working on packed code, produces
almost the same results as tools that require unpacking and disassembling the
malicious code. Moreover, the runtime of these tools is an order of magnitude
larger, even when the unpacking time is not included.

These satisfying results are mainly explained by the fact that packers still rely
on weak encryption algorithms. These results may no longer hold if packers start
using stronger encryption algorithms such as AES or RSA, or, at least, design
more clever algorithms such as in the case of blending attacks [9]. Blending
attacks manipulate content, starting from an initial attack payload, until the
payload satisfies a given distribution. In our case, blending attacks could be
used to craft similar malware code distributions, making the filter ineffective.
In their paper, the authors suggest the possibility of crafting the distribution
by substitution operations and padding. In our case, the padding is however
limited by the boundaries of the binary sections. To conclude this discussion
about the filter robustness, Table 9 provides a summary view that compares the
robustness of the four different systems that we examined with respect to our
attacker model: 3 if the system is robust, 5 otherwise. The stars (*) in the table
correspond to modifications to which the system is not entirely robust.

5 Conclusion

In this paper, we introduced an accurate, robust, and efficient technique for de-
tecting similarity between malware samples. We leverage the fact that current
malware packers only employ compression and weak encryption, and, therefore,
information about the original program can be extracted from a packed binary.
Unlike previous work [7, 11, 13, 26], our technique is thus able to directly operate
on packed binaries, avoiding the costly unpacking process. By doing this, our sys-
tem is able to filter submissions to malware repositories or automated dynamic
analysis tools. Large-scale experiments with almost 795,000 malware samples
demonstrate that the filter achieves a significant reduction of the samples that
need to be analyzed, with only a small amount of false positives.
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