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ABSTRACT
To protect Android users, researchers have been analyzing
unknown, potentially-malicious applications by using sys-
tems based on emulators, such as the Google’s Bouncer and
Andrubis. Emulators are the go-to choice because of their
convenience: they can scale horizontally over multiple hosts,
and can be reverted to a known, clean state in a matter of
seconds. Emulators, however, are fundamentally different
from real devices, and previous research has shown how it
is possible to automatically develop heuristics to identify
an emulated environment, ranging from simple flag checks
and unrealistic sensor input, to fingerprinting the hypervi-
sor’s handling of basic blocks of instructions. Aware of this
aspect, malware authors are starting to exploit this funda-
mental weakness to evade current detection systems. Unfor-
tunately, analyzing apps directly on bare metal at scale has
been so far unfeasible, because the time to restore a device
to a clean snapshot is prohibitive: with the same budget, one
can analyze an order of magnitude less apps on a physical
device than on an emulator.
In this paper, we propose BareDroid, a system that

makes bare-metal analysis of Android apps feasible by
quickly restoring real devices to a clean snapshot. We show
how BareDroid is not detected as an emulated analysis en-
vironment by emulator-aware malware or by heuristics from
prior research, allowing BareDroid to observe more poten-
tially malicious activity generated by apps. Moreover, we
provide a cost analysis, which shows that replacing emu-
lators with BareDroid requires a financial investment of
less than twice the cost of the servers that would be run-
ning the emulators. Finally, we release BareDroid as an
open source project, in the hope it can be useful to other
researchers to strengthen their analysis systems.
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1. INTRODUCTION
To analyze potentially-malicious Android apps at scale,

security researchers have developed a variety of virtual-
ized analysis environments, such as Andrubis [34], Google’s
Bouncer [22], Mobile-Sandbox [30], and JoeSandbox [27].
Virtualized environments are the go-to choice because they
are inherently scalable: for example, they can scale horizon-
tally through multi-host parallel execution and, after an app
has been analyzed, the analysis environment can be quickly
reverted to a trusted state in a matter of seconds before
starting the next analysis. This ability of fast restore keeps
the analysis overhead to a minimum.

Unfortunately, malware authors are aware of this trend.
They are exploiting this trend for evasive purposes by cre-
ating malware that collects information about the environ-
ment in which it is being executed, and, if an emulator is
detected, it suppresses its malicious behavior to evade analy-
sis. This evasive behavior is well-known in the security com-
munity [3], and has been observed by researchers in desktop
malware [15,19] as well as in web malware [13,17].

Researchers have recently evaluated virtualized Android
analysis environments [16], and they have found more than
10,000 detection heuristics that an app can use to detect
emulated environment. Some issues they have highlighted
can be easily mitigated. For example, researchers have
found that, to bypass Google’s Bouncer, the OBAD [6]
malware contains a series of checks, such as build.MODEL

=="google_sdk": if these checks trigger, OBAD will not
show any malicious behavior. However, there are classes
of detection heuristics that do not rely on such simple flag
checks; instead, they leverage fundamental differences be-
tween real devices and emulators that are challenging, if not
impossible, to mitigate. These heuristics include checks on
the GPU performance and power consumption profile, and
can leverage minute differences such as how the program-
counter register is updated in QEMU (this method has been



used in [7] to detect Andrubis [34]).
Although Android emulators can be modified to mitigate

some of these heuristics and timing attacks, simultaneously
mitigating all these detection techniques is extremely cum-
bersome and challenging. In fact, such modifications would
require the hypervisor to behave exactly like a real Android
device, and the emulator to realistically simulate a variety
of input signals (e.g., the gyroscopic sensors, accelerome-
ters, magnetometers, mobile/WiFi networks). Moreover, it
is not clear whether it will ever be possible to make the per-
formance discrepancy undetectable. Note also that this is
the attacker’s game: a single imperfection in the mimicking
of a real device would render the emulator detectable, thus
easy to fingerprint and evade.
Despite the significant threat posed by emulator-aware

Android malware (as it can evade all current analysis ap-
proaches), no solution to this problem has been proposed.
In the desktop malware world, a robust approach to evasive
malware has been proposed with bare-metal malware analy-
sis [18, 19]: here, Kirat et al. leverage the IPMI remote-
administration features (to power-cycle the workers) and
iSCSI interface (to attach remote disks to workers) to per-
form the analysis of evasive malware. Unfortunately, it is
not clear how to apply this approach to off-the-shelf An-
droid devices.
In this paper, we present BareDroid, a system that al-

lows for bare-metal malware analysis on off-the-shelf An-
droid devices. BareDroid is designed to scale at a price-
point similar to the one offered by emulators. Our evaluation
shows that analyzing malware on BareDroid costs, in the
worst case, at most twice as much as executing the same
volume of suspicious apps inside X86-accelerated emulators.
To achieve this, BareDroid focuses on providing a fast way
to restore the device to the initial state after each execution,
so to minimize overhead.
We also evaluate BareDroid with existing real-world

emulator-aware malicious apps and the known detection
heuristics that have been developed by the Android secu-
rity research community [16]. In all cases, our system is ef-
fective in eliciting suspicious behaviors that are suppressed
when the analysis is performed on an emulator. Note that
BareDroid’s goal is not to provide a novel malware analy-
sis engine; instead, its goal is to provide a platform on top
of which existing and future analysis engines can perform
malware detection without the risk of being evaded by the
mere presence of an emulator-like environment. This is why,
for the benefit of the security community, we release Bare-
Droid as an open source project [21].
The main contributions of this paper are as follows:

• We design and implement BareDroid, a scalable
bare-metal malware-analysis platform for Android de-
vices, the first infrastructure of this kind.

• We evaluate BareDroid with emulator-aware mal-
ware and the latest emulator detection heuristics, and
we show how they are ineffective when run within our
infrastructure.

• We evaluate the feasibility of using BareDroid in
place of emulator for large-scale analysis of Android
apps, and discuss the cost and implementation aspects
of this approach.

• We release BareDroid as an open source project.

2. ANDROID EMULATOR DETECTION
In this section we summarize the discrepancies that an

Android app can leverage to check whether it is running in
an emulator or on a real device. These discrepancies can be
divided in three categories: static artifacts, dynamic arti-
facts, and hypervisor artifacts.

Static artifacts provide an immediate way to differenti-
ate real devices from emulators. These include the flags
in Android SDK Build class, such as Build.HARDWARE ==

"goldfish". Host properties can also be leveraged: exam-
ples include the mobile device’s IMEI [24] (a unique ID for
GSM devices), the SIM card’s IMSI (a unique ID specific
to the SIM card), the number of cores (emulators typically
have a single core) [16], available peripherals (e.g., no emula-
tor supports USB on-the go), and the network hardware and
its configuration. Static artifacts can typically be removed
by developing more complete emulators, so in principle they
can be mitigated through engineering effort.

In contrast, dynamic artifacts cannot be removed easily
since they are based on the observation that, in an emula-
tor, not all the various interfaces of a real mobile device are
fully functional. For example, an app can check whether
it can receive SMS from the mobile network. Also, sensor
input can be leveraged: current emulators have very lim-
ited support for simulating realistic sensor input (e.g., what
is the current GPS fix? What GPS satellites are visible?).
Moreover, mobile devices contain tens of sensors: they typ-
ically have an accelerometer, gyroscope, GPS, barometer,
camera, GSM/WiFi/Bluetooth/RFC radios, internal ther-
mometer(s), proximity sensors, magnetometers, and volt-
meters (for cores and battery). These sensor readings cannot
be trivially replayed, because they can be influenced by the
app: for example, making the device vibrate has an effect on
the accelerometer, and putting a load on the CPU increases
the internal temperature, the voltage/scaling of the cores,
and the battery drain.

Finally, the hypervisor itself can be fingerprinted. QEMU,
for example, is detectable because of its caching [24] and
scheduling [16] policies. Also, the performance of the GPU
provides a base for side-channel timing attacks [33].

3. BAREDROID

3.1 Goals and Challenges
Our work aims to design and develop a system, Bare-

Droid, that can be used to perform large-scale analysis of
Android apps on real devices. BareDroid should be fast
enough that the hardware cost to achieve a given throughput
(in terms of number of apps that can be analyzed within a
given time slot) is comparable to the cost of doing the same
with emulators.

The first challenge consists in developing a fast restoring
mechanism, so that the initial state (known to be working
and uncompromised) of a device can be restored with a low
overhead. Note that restoring the state of a device is con-
ceptually straightforward. The immediate approach to this
consists in restoring each and every partition of the device
before each analysis. However, this approach is prohibitively
slow (in our experiments, it takes 141 seconds to perform a
full restore on a Nexus 5). Also, whereas efficiently restor-
ing the state of an emulator is simple through the snapshot
restore functionality, it is challenging to achieve the same
speed when restoring real devices.



As our system is meant to scale, another challenge consists
in scheduling the analysis of many apps on multiple devices
and monitoring their hardware status. In emulators, this
task is trivial: in fact, once the analysis on a single device
is robust, generalizing the analysis to multi-device just re-
quires the development of a software driver component to
keep track of the devices and send them the apps to be an-
alyzed.
However, in our experience, we found that the robustness

of real devices is far from ideal. In particular, hardware com-
ponents (e.g., devices, USB cables, USB hubs) significantly
increase the surface for failure. For example, it is not rare
for devices not to boot up properly and for the driver to
be unable to connect and restart the booting process. As
another example, a malfunction of USB hub may not pro-
vide enough power, making the connected devices quickly
exhaust their battery.

3.2 Threat Model
Our system is designed to allow the analysis of malicious

apps. Thus, we assume that an app under analysis might
actively attempt to compromise our infrastructure. In our
threat model, an app can execute arbitrary code on the de-
vice, and it can launch root exploits to perform privilege es-
calation. The only assumption that our system relies upon
is the availability of a kernel-level mechanism to lock a par-
tition (i.e., set its permission as read-only). To achieve this,
we rely on a SELinux policy (refer to Section 4 for the de-
tails): thus, we assume that the SELinux component enforc-
ing this policy cannot be compromised.
We chose this threat model as it provides the best trade-

off between security and performance: in our experience,
the behavior of the vast majority of malicious apps is cov-
ered by this threat model. That being said, depending on
the analysis scenario, malware authors might outgrow this
threat model, and compromise the Android kernel. For this
reason, throughout this paper we also discuss the scenario
in which no components can be fully trusted, and we suggest
several strategies (see Section 6.2 for more details).

3.3 Approach Overview
To be fast, BareDroid needs to quickly restore a device

to its initial uncompromised state. On a device, the data
that needs to be restored can be seen as a list of partitions.
The most immediate solution to restoring is to simply over-
write the partitions with their original content. However, we
have found this to be unacceptably slow; for this reason, in
BareDroid we have opted for a significantly faster, albeit
more complex, approach.
The various partitions on a device have different roles,

and this influences how common it is for a partition to be
modified during the analysis of a given Android app. For ex-
ample, the system partitions, S1, S2, . . . , Sn, are usually not
modified, as they contain the bootloader, the code base for
the recovery mode, and the kernel. On the other hand, the
user partitions, U1, U2, . . . , Un, are almost always modified
during the analysis. In fact, if an app stores even one single
file on the file-system, the user partitions will be modified
and, therefore, they will need to be restored. Even if a parti-
tion is usually not modified, an app could try to alter it. For
example, a malicious app could first gain root privileges (by
launching a root exploit) and then modify system partitions:
In this case, BareDroid will restore these partitions.

In general, it is faster to perform a partition integrity
check, than to overwrite its content with its clean version.
For partitions that are only changed occasionally, the amor-
tized time of performing the integrity check (and a restore
only when needed) is lower than the one that would be taken
by always restoring the partition. However, if a partition is
modified often, it becomes more efficient to always overwrite
its content, skipping the integrity check. This last observa-
tion motivated us to use two different strategies when en-
suring that both system and user partitions are reverted to
a clean state before starting the analysis of a given app.

A functionality already present in an unmodified Android
device is that the “integrity check” of the system partitions
are always performed at boot time: each system partition
contains code that, as one of its tasks, performs an integrity
check on the content of the next partition. That is, partition
S1 checks the integrity of S2, S2 checks S3, and so on. In
other words, as we will discuss in the next section, the boot-
strapping and kernel code contained in the system partitions
already implements several mechanisms to maintain a chain
of trust.

Based on this observation, BareDroid restores only S1

(the root of the chain of trust), and the code contained in
every partition of the S1 → . . . → Sn chain will then verify
the integrity of the other partitions.

Restoring User Partitions. User partitions are often
modified by (both benign and malicious) Android apps. For
this reason, the technique adopted for system partitions is
inefficient, since the integrity check would fail often. A more
efficient solution is to skip the integrity check and directly
restore the user partitions before the analysis of each app.

Similarly to the previous case, restoring all user partitions
is conceptually straightforward: one could just fully rewrite
their content after the analysis of each application. However,
this option is not efficient, especially because, depending on
the device, the user partitions might be quite large (in some
cases, up to few GBs).

To restore user partitions efficiently, we devised the fol-
lowing technique. For each user partition Ui, BareDroid
maintains three different copies: the two working copies U ′

i ,
U ′′

i , and the clean copy Ûi. The two working copies are used
as follows. While partition U ′

i is used to analyze the given
application, a background thread restores partition U ′′

i to
its clean state (starting from a clean copy, Ûi). Then, when
the analysis of an application is over, the role of U ′

i and U ′′
i

is swapped: the partition U ′′
i is used to perform the analysis

of the next application, while, in the meantime, the back-
ground thread restores U ′

i to its clean state.
It is important to observe that, in principle, the integrity

of the clean copy of each userdata partition, Ûi, needs to be
verified before being used to restore U ′

i or U
′′
i . In fact, even if

there are no incentives for doing so, a malicious application
that specifically targets our infrastructure could modify Ûi,
and this could affect all subsequent applications’ analysis. In
this case, we ensure the integrity of this partition by relying
on a kernel-level partition lockdown.

Kernel-level Partition Lockdown. We rely on a kernel-
level mechanism (as discussed in the next section, in our
current implementation we rely on SELinux) that ensures

that the permissions associated to the Ûi partition are set
as read-only. This way, all write attempts to Ûi are blocked.
Clearly, for this mechanism to be effective, the assumption



we made when discussing our threat model needs to hold.
However, for the sake of completeness, in Section 6.2 we
discuss several strategies for those situations in which one
cannot assume to rely on such kernel-level mechanism. Fi-
nally, we note that, in principle, we could have applied the
same protection mechanism for the system partitions as well.
Nonetheless, we opted for not doing so: we believe that if a
malicious application is able to successfully modify the sys-
tem partition on a user’s mobile device, it should have the
same effect on BareDroid, so that the analysis result re-
flects the behavior of the malicious app accurately. Also, our
system relies on a very efficient mechanism to perform the
integrity check of the system partition, and thus the benefit
of avoiding performing an integrity check is negligible.

4. IMPLEMENTATION
In this section we discuss many implementation details

related to our system. First, we provide some technical de-
tails on how the boot process and the chain of trust are
implemented in Android. Then, we will discuss the details
related to how the system and userdata partitions are re-
stored, how their integrity is verified, and how modifications
are prevented. Finally, we discuss several aspects and techni-
cal details on how we used BareDroid to build an in-house
cloud of Android devices, or a phone cloud.

4.1 Android Background

4.1.1 Android Partitions
Android uses several partitions to organize files and folders

on a device. Each of these partitions plays a different role
in the functionality of the device. The main partitions are
the following (additional non-standard partitions can also
be present depending on the phone’s model):

• aboot: it contains the bootloader. The bootloader is
the software component that is in charge of starting the
boot process of the device. The bootloader is usually
written by hardware vendors and typically starts the
execution of the code in either the boot or recovery

partitions (letting the user choose upon boot);

• boot: it enables the phone to boot. It includes the
kernel and the ramdisk;

• recovery: it can be considered as an alternative boot

partition that lets the user boot the device into a recov-
ery console to perform advanced recovery and mainte-
nance operations on it;

• system: it contains the entire operating system, in-
cluding the kernel, the Android framework and user
interface, as well as all the system applications that
come pre-installed on the device;

• userdata: it contains all user’s data, such as user con-
tacts, messages, settings, and user-installed applica-
tions;

• misc: it contains miscellaneous system settings (e.g.,
the OEM lock/unlock switch). Conceptually, the con-
tent of this partition can be viewed as a low-level con-
figuration file for all components involved in the boot-
ing process.

4.1.2 Android Boot Process and Chain of Trust
We now describe the high-level steps that constitute the

boot process in Android. The first step of the Android boot
process is the execution of the Boot ROM code, which then
executes the bootloader in the aboot partition. The boot-
loader is a special program (separated from the Linux kernel)
that is used to properly initialize the memory components
and load the kernel to RAM. By default, the bootloader
verifies that the contents of the boot and recovery parti-
tions have been signed with one of the keys contained in
the embedded keystore (e.g., OEM key). For verifying boot

and recovery partitions, the bootloader attempts to verify
the boot partition using the OEM key first and try other
possible keys only if this verification fails.

Since BareDroid relies on a custom boot partition (to
specify a proper SELinux policy) and on a custom recovery

partition (that is in charge of swapping the role of the two
copies of the userdata partitions) the bootloader tries the
verification using the certificate embedded in the partition
signature.

Typically, the execution moves from the bootloader to the
boot partition. However, by pressing a specific combination
of buttons during the boot (i.e., the power button together
with the “Volume Up” button), a user can access to a boot
menu that allows to start the device in “recovery mode”,
which executes the content of the recovery partition, and to
modify the content of the different partitions using the USB
connection. In addition, in most of the devices, by pressing a
specific combination of buttons for a few seconds, a user can
“hard-reboot” a device (i.e., force the hardware to reboot,
independently from the status of the running software).

During the execution of boot partition’s content, the ker-
nel is responsible for setting up the verification of the system
partition. Due to its large size, the system partition typi-
cally cannot be verified in the same way as the previous
parts, but must instead be verified as it is “being accessed”
through the dm-verity kernel mechanism1. dm-verity is a
kernel driver that verifies each block read from the system

partition against a hash tree created during the setup phase.
The root hash is signed with a certificate stored in the boot
image ramdisk. Note that this certificate can be trusted
since it is verified by the bootloader, as described above.

When a dm-verity error is detected for a given block, an
I/O error is raised and the block with the unexpected con-
tent is made inaccessible to user-space applications. More-
over, in this case, the device must be rebooted, and dm-
verity must be started in logging mode during all subsequent
restarts until any of the verified partitions is re-flashed.
Through the adoption of dm-verity, one can be assured that
the system partition can never be changed (or re-mounted
in read/write mode), because these operations would change
the superblock used to calculate the hash. For this reason,
BareDroid uses the same mechanism to establish a chain
of trust.

4.2 Restoring System Partitions
As we mentioned, we extensively use the dm-verity kernel-

level mechanism to ensure that, at the beginning of the boot
process, the system partition has not been tampered with
during the analysis of a previous application. However, ac-

1https://source.android.com/devices/tech/security/
verifiedboot/index.html



cording to our threat model an application could get root
access and compromise the kernel. So, at least in principle,
it might have a way to tamper with the dm-verity process
itself. For this reason, just before the analysis of each ap-
plication, BareDroid overwrites the content of the boot

(that contains the implementation of the dm-verity mecha-
nism) and the recovery partitions. This ensures that, at
the beginning of each analysis, the system can rely on a
non-compromised dm-verity mechanism (which we use as
the root of our chain of trust), and it can then be used to
determine whether the system partition has been tampered
with (and thus should be re-flashed). Moreover, note that
this is efficient because both these partitions are quite small.

4.3 Restoring User Partitions
As mentioned in the previous section, restoring the full

userdata partition before each application analysis is not
efficient enough, the reason being the large size of these par-
titions (on the 16GB model of the Nexus 5 device, the user-
data partition size is about ∼13GB).
Instead, to speed up the restore process, BareDroid

maintains three versions of the userdata partition (as ex-
plained in Section 3.3). One of them, userdata copy acts
as a clean snapshot of the partition’s content. The other
two, userdata1 and userdata2 play a different role for each
analysis: when userdata1 is used for the analysis of the cur-
rent application, a background thread restores the userdata2
partition by using the userdata copy clean snapshot. For the
analysis of the next application, the roles of the two parti-
tions are swapped: userdata2 is used for the analysis, while
the background thread restores userdata1. As will be dis-
cussed in Section 5, this mechanism significantly improves
the overall overhead of the restoring process.

4.4 Kernel-level Partition Lockdown
Although the mechanism described in the previous sec-

tion significantly improves the performance of the restoring
phase, a malicious application could tamper with the user-
data copy partition to indirectly affect the analysis of the
subsequent applications. In fact, while this partition is ini-
tially mounted as read-only, a malicious application could
simply re-mount it with read/write permission and modify
it.
To mitigate the risk of the attacks described above, Bare-

Droid leverages the use of SEAndroid [29]. SEAndroid
is a project useful to implement a mandatory access con-
trol (MAC) model in Android, by using SELinux to enforce
kernel-level MAC. SELinux policies are expressed at the level
of security contexts. SELinux requires a security context to
be associated with every process (or subject) and resource
(or object), which is used to decide whether access should
be allowed or not.
BareDroid uses a modified version of the AOSP SELinux

policy to protect the integrity of files in the userdata copy
partition. Our policy is designed to specify which processes
can mount and re-mount the partition. In our case, we spec-
ified BareDroid’s update process as the only process that
has read access and can re-mount the userdata copy parti-
tion. Beyond that, writing to block devices, raw I/O, and
mknod() are also locked down.

4.5 Phone Cloud
In the previous sections we have introduced all the tech-

Supervisor

Update_manager
device

Update_manager
recovery

Update_manager

Analysisconfig.cfg devices.info

Figure 1: Architectural overview of the phone cloud

infrastructure.

nical details to enable the use of BareDroid on a device.
However, the device represents just one of the required com-
ponents to develop a bare-metal analysis infrastructure. For
this work, we built an infrastructure (in fact, a cluster of
phones) that is able to manage and coordinate in an auto-
matic way all the steps described in Section 3.3. Our in-
frastructure currently comprises nine devices: eight Nexus
5 32GB with Android 5.1.0 r3, and one Asus Nexus 7 2012
(WiFi) 32GB using Android 5.1.0 r3.

An orchestration software component, which we named
Supervisor, manages and coordinates the analysis of multi-
ple applications. For example, this component is in charge
of rebooting and restoring a device after the analysis of each
application. This component communicates with each phone
through the Android Debug Bridge (ADB). ADB is a ver-
satile command line tool that allows communicating with
an Android device. Furthermore, the Supervisor is physi-
cally connected to the devices through a powered USB hub.
In our experience, the USB hub needs to provide at least
500mAh per port. During one of our stress-tests with a less
powerful USB hub, the batteries of all phones got completely
discharged.

Figure 1 shows an overview of the architecture of our
phone cloud. The following are the components that consti-
tute our system:

Supervisor: It constitutes the front-end of the infrastruc-
ture. It provides a command line interface (CLI) used
to start/stop the analysis and monitor the status of
the various devices;

config.cfg: It is a configuration file that contains informa-
tion about the infrastructure (e.g., where to store logs);

device.info: It is a configuration file that contains infor-
mation (e.g., DeviceId) about the devices used by the
infrastructure;

Analysis: It provides a base class that can be used to im-
plement specific malware analysis techniques.

Update manager: Each device is managed by a dedicated
update manager process. It manages the workflow
of the analysis and triggers the transitions between
states. Depending on the state, the update manager
can start either one of the following two procedures:



Table 1: Time necessary by BareDroid to restore a de-

vice
Restoring step Time (seconds)

restore the recovery partition using ADB 0.963
reboot into recovery mode 8.923
swap userdata partitions 1.976
boot the operating system 19.900

total 31.762

if dm-verity detects errors
in the system partition:

send system partition through ADB 27.927
rewrite system partition 35.233

total 94.922

1. Update manager device, which manages the up-
date of the userdata partition;

2. Update manager recovery, which manages the
swap of the userdata partitions when the device
is in “recovery mode”;

5. EVALUATION
In this section we will evaluate BareDroid under dif-

ferent aspects. First of all, we will measure the time our
system needs to restore a device before starting a new anal-
ysis in the scenarios outlined in Section 3.2. Then, we will
evaluate the cost-effectiveness of BareDroid when com-
pared to both an emulator-based analysis system, and a
system naively restoring a device at every reboot. In ad-
dition, we will demonstrate that BareDroid is resilient to
current state-of-the-art approaches to detect emulators. Fi-
nally, we will show how existing real-world malware samples
are unable to detect our system, allowing dynamic analyses
on them to return more detailed and realistic results.

5.1 Performance Overhead

5.1.1 Device Restoring Time
For our experiments, we used an LG Nexus 5 device with

Android 5.1.0 r3. All reported measures have been aver-
aged on 5 runs of the experiment. Table 1 reports the time
needed by all the steps performed by BareDroid to restore
a device. In total, 31.762 seconds are necessary to restore a
device.
As explained in Section 3.3, if one of the integrity verifi-

cation steps fails, restoring the device obviously takes addi-
tional time. Specifically, if dm-verity detects corruption in
the system partition, 63.797 additional seconds are required,
bringing the total restoring time to 94.922 seconds.
We also tested the time needed to perform a full restore

of a device, without using BareDroid. Recall that with-
out using BareDroid the only feasible way to completely
restore a device’s state is to read using ADB and write on
the device’s flash memory a full clean copy of the recovery,
system, and userdata partitions. This procedure requires
141.268 seconds. Thus, BareDroid’s restore time is 4.44
times faster than the restore time of the vanilla approach.

Table 2: Values used in our cost analysis
Cost per Restore

device/cpu time

BareDroid $349 31.768s
full device restore system $349 141.268s

emulator-based system $300 1s
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Figure 2: Cost analysis of using BareDroid and other

approaches when performing large-scale malware analy-

ses.

5.1.2 Analysis Slowdown
After the completion of the device’s boot, BareDroid

restores a copy of the userdata partition to speedup the
next restore, as explained in Section 3.3. The time required
by this step is 25.351 seconds. This part of the restoration
happens in parallel with the sample analysis. Hence, this
time overhead can be ignored if a sample-analysis run lasts
longer than 25 seconds, which is usually the case in practice.

Moreover, we evaluated if the presence of an underlying
process performing this step slows down an analysis running
on the device. For this, we run the benchmarking app An-
TuTu 2 while the restoring process was running, and while it
was not. The benchmarking application did not report any
significant difference in the two cases. The score reported
by AnTuTu with and without the restore process is 28,353
and 28,355 respectively. For this reason, we believe that
the performance impact caused by the restoring process is
negligible.

5.2 Cost Analysis
Based on the speed and cost of one device, we evaluate

and compare the throughput (in terms of apps per second)
that can be achieved using BareDroid, an emulator-based
system, and a system in which a full restore of a device is
performed every time.

For this evaluation, we assumed that BareDroid is used
with a Nexus 5 device (since this is the device we used to
perform the experiments described in this section), with a
cost per unit of $349 [5]. To evaluate the cost of an emulator-

2www.antutu.com
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Figure 3: Throughput ratio between the different
analyzed systems.

based system, we considered the price of a high-end server
and we evaluated the cost per physical core. We then consid-
ered a scenario in which a physical core and 4GB of RAM are
allocated for each emulator. This implies a cost of $300 [28]
for each running emulator. Note that this is a conserva-
tive assumption, likely to overestimate the performance of
an emulator-based system. In fact, apps run significantly
slower in emulators with respect to when run on real de-
vices and, for this reason, when using an emulator it is usu-
ally necessary to run a given app for a longer amount of time
to achieve comparable results. Finally, we assume that in an
emulator-based system, the restoring time is almost instant
(1 second). Table 2 summarizes the parameters used in our
cost analysis.
Figure 2 assumes a $50,000 equipment investment, and

it shows the throughput in the three considered scenar-
ios, given a desired analysis time. This evaluation shows
how BareDroid achieves a performance that is in-between
an emulator-based system and a system performing a full-
device restore, while, at the same time, offers a realistic exe-
cution environment that cannot easily evaded by emulator-
aware malware. Moreover, the cost overhead necessary to
achieve the same throughput of an emulator-based system
is only about 50% (as shown by the blue dotted line in Fig-
ure 2).
Assuming the same scenario, we also computed the ratio

of the throughput obtained with BareDroid and a system
performing a full restore at every reboot, and the ratio of
the throughput obtained with an emulator-based system and
BareDroid. Figure 3 reports the results. It is interesting
to note how, for analysis times higher than two minutes,
the ratio between the emulator and BareDroid is less than
1.5, whereas the ratio betweenBareDroid and a full-restore
system is always higher than 1.5. We believe these results
clearly show the practicality of using BareDroid.
That being said, it is important to note that our cost

analysis has some limitations. For instance, it does not take
into consideration the power consumption, the extra main-
tenance factors such as the human time spent to setup the

Table 3: Number of file operations generated by ma-

licious samples in BareDroid and in an emulator-based

system. The percentage between file operations detected

by an emulator-based system and BareDroid is written in

parenthesis. The * symbol indicates that the app crashed

upon start, probably due to anti-emulator checks.

Sample Emulator-based system BareDroid

Android.HeHe.1 2 (11.76)% 17
Android.HeHe.2 9 (27.27)% 33
Android.HeHe.3 2 (11.76)% 17
Android.HeHe.4 0* (0.00)% 50
Android.HeHe.5 0* (0.00)% 50
Android.HeHe.6 9 (27.27)% 33

Android Pincer.A 3 (8.82)% 34
OBAD.1 0* (0.00)% 32
OBAD.2 0* (0.00)% 32

total 25 (8.39%) 298

BareDroid infrastructure (e.g., the setup of the Supervisor
machine and the cabling), and the wear of the flash memory
(the program-erase cycles of a NAND flash is typically about
100K). Another limitation of our cost analysis is that it does
not take into account that malware might specifically tar-
get our infrastructure, for example by tampering with the
system partition: in such case, BareDroid’s restore time
would be higher. Although we are currently not aware of
any malicious sample with such capability, future malware
samples could attempt to do so. However, while restoring
the system partition takes more time, it is trivial to detect
such tampering attempts, thus making this kind of advanced
malware easily identifiable.

5.3 Security Evaluation
As discussed throughout the paper, one of the key limi-

tations of modern analysis systems for Android apps is that
they are based on emulators, and can therefore be easily
detected and evaded. In this section, we will discuss the re-
sults of several experiments that highlight the resilience of
BareDroid against these emulation-detection techniques.

We first tested the app developed as part of the paper de-
scribing Morpheus [16]. This app is designed to detect emu-
lators via hundreds of different checks, and it represents the
current state-of-the-art in emulation detection in Android.
As expected, when run in BareDroid, this application did
not detect it was being run within an analysis environment.

As a second experiment, we also tested the resilience of
BareDroid against emulator-detection techniques used by
real-world malicious samples: when these malware samples
detect they are running within an emulator, they do not
perform specific behaviors to avoid detection and hinder re-
verse engineering. To show that BareDroid improves the
analysis of these samples, we designed a prototype analysis
system, and we verified that this analysis elicits more behav-
iors when run in BareDroid compared to when it is run in
an emulator-based system. It is important to note that while
we believe many different malware analysis systems can be
run on top of BareDroid, it would not be possible to run
those analysis approaches that intrinsically rely on system
emulation, such as taint analysis on native code.

Our analysis dynamically stimulates a sample (by using a
manual approach) for 1 minute, and it monitors its behav-



iors. As described in [25, 31], one of the approaches to de-
scribe the behavior of Android malware is to log the system-
calls invoked during the execution, and to then perform out-
of-the-box behavioral analysis. To leverage this approach
without introducing modifications to the kernel or adding
specific components we take advantage of SELinux [29]: In
practice, before the execution of each system call, the kernel
queries SELinux to know whether a given process is autho-
rized to perform the requested operation.
In particular, since, by default, SELinux records only the

denied operations, we modified the SELinux policy to obtain
information about each“granted”system call. The modifica-
tion used to implement our analysis consists in the introduc-
tion of an auditallow rule per each allow rule in order to get
a complete report of the operations performed by an app.
From this report, we extracted information about file opera-
tions and we used it as an empirical measure of the amount
of behaviors performed by the malicious application under
analysis.
We run our experiment on several malicious samples that

were known to be able to detect whether they are executed
within an emulator. In particular, we considered the follow-
ing applications:

• six variants of Android.HeHe [12]. This sample is able
to steal text messages and intercept phone calls;

• one sample of Android Pincer.A [10]. This sample is
able to forward SMS messages and perform other ac-
tions based on commands it receives from a remote
C&C server;

• two variants of OBAD [6]. This sample supports a
wide variety of malicious features and communicates
with a remote C&C server.

The results of our analysis are summarized in Table 3.
Our results show that, globally, the emulator-based sys-
tem detected only 8.39% of the file operations performed
by the analyzed samples in BareDroid. These results show
how emulator-based systems are ineffective in analyzing such
samples. In addition, it is interesting to notice that 4 sam-
ples did not perform any file operation at all when executed
in an emulator-based system.

6. DISCUSSION

6.1 Fingerprinting
As discussed in Section 2, an emulator can be detected us-

ing several techniques. Although it is possible to adopt a set
of countermeasures for some of these techniques (e.g., check-
ing for specific emulator’s properties), it is extremely chal-
lenging, if not outright impossible, to correctly implement
mitigations for some others (e.g., performance and timing
issues). The key observation that makes this aspect prob-
lematic is the following: normal users do not use emulators,
and hence the mere detection of the presence of an emulator
is already enough for a malicious application to fingerprint
and evade all existing analysis systems. We believe Bare-
Droid significantly raises the bar when analyzing evasive
malware applications. In fact, our infrastructure is consti-
tuted by the very same devices that a normal user would
use on a daily basis.

That being said, we note that, even if BareDroid dras-
tically reduces the fingerprinting surface by executing apps
on a very common device class, ad-hoc fingerprinting tech-
niques could still be used to detect the specific devices
running BareDroid. For example, malicious applications
could try to fingerprint a given analysis infrastructure by
checking the device’s MAC address or IMEI number, or
by analyzing the partitions table. However, our proposed
solution pushes malicious applications from attempting to
fingerprint a device class (emulator vs. real device), to at-
tempting to fingerprint a very specific device (e.g., one of
the specific Nexus 5 phone we used). We believe this to
be a much more challenging goal. In fact, mimicking a
different instance of a specific device (another Nexus 5) is
considerably easier than mimicking another device class (as
emulators do). Moreover, fingerprinting the specific device
can be in part mitigated by, for example, reusing some of
the anti-evasion techniques employed by emulator-based dy-
namic analysis systems [22,27,30,34], such as changing, for
each run, the device’s identifiers.

Nonetheless, we acknowledge that some advanced attacks
(such as fingerprinting a specific device from its accelerom-
eters’ imperfections [8], USB charging state, the never-
changing geographic position, the presence of extra parti-
tions, or the process that restores the userdata partition)
will be still effective against BareDroid, and that full un-
detectability is an open research problem.

6.2 Attacks against BareDroid
The implementation details described throughout this

paper assume that kernel security functionalities (e.g.,
SELinux) are not compromised during an analysis. In this
section, we elaborate on how an attacker getting around
them could tamper with the BareDroid infrastructure, and
we propose several countermeasures.

Most importantly, as long as malicious apps are not be
able to tamper with the Boot ROM, the bootloader, the re-
covery partition code, and the dm-verity functionality that
will gain control after reboot, we can exclude that a mali-
cious app can persistently modify the content of most of the
device’s partitions. In other words, as long as the device
reboots normally, the content of the following partitions is
guaranteed to be untampered: aboot (checked by the Boot
ROM), boot (restored at every reboot), system (checked by
dm-verity), recovery (restored at every reboot), userdata
(restored from an on-device copy at every reboot).

When considering a more aggressive threat model in
which, for example, a malicious app could tamper with the
SELinux module, other attacks are possible. For example, a
malicious app could change the copy of the userdata parti-
tion that BareDroid uses during the device’s restore proce-
dure. To defend from this threat, one countermeasure would
be to check the content of the copy of the userdata partition
every a fixed amount of restores (as previously mentioned,
it would be too time consuming to perform the check af-
ter each reboot), where the frequency of this check could
be tuned depending on the security properties that a user
of BareDroid desires. This check could be implemented
in the recovery code by reading the content of this parti-
tion and verifying its hash. In case this verification process
fails, a pristine copy of the userdata partition can then be
copied again in the device (and the analysis’s results per-
formed in between the last two checks would need to be



invalidated). In addition, an attacker could perform specific
attacks against one of the devices used by BareDroid. For
example, an attacker could tamper with the content of the
aboot partition so that the verification step of this parti-
tion (performed by the Boot ROM) would fail: this, in turn,
would make the entire device inoperable.
Even though these attacks can cause, in the worst case, a

monetary loss, BareDroid would functionally act as a ca-
nary, signaling and detecting a very malicious app early on,
and effectively preventing the end users’ devices from get-
ting damaged. In fact, BareDroid can easily detect these
sophisticated attacks by noticing a failure in the restoring
process of a device. Moreover, note that these attacks are
possible only when an application can successfully exploit
a vulnerability in the kernel: since these vulnerabilities are
rare (and very valuable), we believe it is very unlikely that
an attacker would utilize a Linux kernel zero-day, at the
very high risk of being discovered, for the mere purpose of
attacking a malware analysis infrastructure.
Finally, we consider the scenario in which we remove the

assumption that the device is guaranteed to reboot nor-
mally: in other words, the attacker is able to “fake” the
device reboot. In this scenario, all the considerations above
are no longer valid. To deal with this specific attack, Bare-
Droid would need to rely on a separate method (e.g., a
machine that presses the appropriate button combination,
as mentioned in Section 4.1.2), to hard-reboot the device:
although it is not trivial to properly implement this mecha-
nism, it would guarantee taking the device to a known state
(i.e., the boot menu) and re-establish our chain of trust as
previously exposed.

6.3 Alternative Implementations
Alternative implementations of BareDroid are possible.

For instance, with larger modifications, it would be possible
to boot a device using data and code stored in an external
storage, such as a network shared drive, which can be re-
stored easily and fast, similarly to how network boot and
iSCSI technologies can be used in servers. Alternatively,
specific hardware devices could be used to provide IPMI-
like functionality, or rewrite the content of the flash memory
without the need of using the USB connection or the code
contained in the aboot partition.
If fully realized, these approaches would have the advan-

tages of allowing a faster restore and avoiding entirely the
need of on-device code to perform the device’s restore (thus
making completely impossible for an attacker to interfere
with the restoring process). However, using hardware mod-
ifications, instead of commodity devices like those we used
in BareDroid, has two important disadvantages: First, the
cost of a large scale deployment of BareDroid would in-
crease significantly; Second, using ad-hoc devices would in-
crease the fingerprintability of BareDroid since they would
likely introduce several discrepancies with respect to the
commonly-used hardware. Nevertheless, we consider explor-
ing the possibility of using different hardware devices as one
very interesting direction for future work.

7. RELATED WORK

7.1 Sandbox Evasion
The problem of evasion in dynamic malware analysis is

well-known. For desktop platforms, several techniques have

been proposed to detect virtualized and emulated environ-
ments [3, 4, 11, 23, 26]. The main approach to detection is
to find artifacts of the execution environment that are not
present in a hardware-based environment. Initially, the de-
tection techniques were focused on detecting the emulated or
virtualized CPU [11,23,26]. Then, it has expanded to more
generic approach of fingerprinting software, hardware, and
external configurations of the analysis environment [4,17,35].
Even though these techniques are developed for desktop
platforms, the core ideas are still related and applicable to
Android analysis environment. Chen et al. first proposed
a generic taxonomy of evasion techniques used by malware
against dynamic analysis system [4]. The taxonomy pro-
poses abstract groups based on where the artifacts originate
from.

There are a few recent works on Android analysis envi-
ronment detection [16, 24, 33]. Vidas et al. and Petsas et
al. explored several analysis environment artifacts that are
indicative of emulated environment [24, 33]. These environ-
ment artifacts include emulator-specific properties such as
IMEI value, performance timing, properties of attached in-
put devices, and other artifacts that are unique to the spe-
cific analysis environment. Jing et al. developed a system,
called Morpheus, which is capable of automatically finding
several thousands of such artifacts [16]. These artifacts can
be used as heuristics to evade analysis environments.

7.2 Transparent Analysis
Sandbox evasion techniques have been frequently used

by evasive malware in desktop platforms. Mobile mal-
ware is likely to follow a similar trend. For desktop plat-
forms, many transparent malware analysis systems have
been proposed to mitigate the problem of evasive mal-
ware [9, 14, 18, 32]. Cobra [32] proposed mitigation tech-
niques for evasion of debugger-base analysis. Many analysis
systems proposed out-of-the-box analysis approaches to im-
prove transparency [1,14,27]. Ether [9] leveraged hardware-
based virtualization technology to overcome emulator and
software artifacts [9]. BareBox [18] proposed bare metal en-
vironment for transparent analysis and developed techniques
to improve the scalability of the approach. Our approach,
based on a bare-metal environment, is similar to BareBox.
However, to the best of our knowledge, our work is the first
to build an automated system of this kind for Android mal-
ware analysis. In fact, all current state-of-the-art Android
analysis systems are based on emulators [2, 20, 25, 31, 34],
which are known to be easily detectable.

8. CONCLUSIONS
Authors of malicious Android apps have started to finger-

print emulated analysis environments, as a mean to avoid
detection from all popular Android malware detection en-
gines. Despite this trend, apps are currently still being an-
alyzed in emulated environment because executing them on
bare-metal devices in scale has been unfeasible, as one can
only analyze an order of magnitude less apps on bare-metal
then on emulators at the same price-point for the hardware.

In this paper, we designed and implemented BareDroid,
a system that makes the analysis of Android apps on bare-
metal feasible at scale. We have shown that BareDroid
is cost-effective (when compared to emulators) and, at
the same time, cannot be evaded by emulator-aware An-
droid malware. Moreover, we have shown that BareDroid



is not being detected by the latest research on analysis-
environment detection.
The goal of our work is to provide a platform on top

of which existing and future analysis engines can perform
malware detection without the risk of being evaded by the
mere presence of an emulator-like environment. This is why,
for the benefit of the security community, we release Bare-
Droid as an open source project.
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