
Grab ’n Run: Secure and Practical
Dynamic Code Loading for Android Applications

Luca Falsina 1

luca.falsina@mail.polimi.it
Yanick Fratantonio 2

yanick@cs.ucsb.edu
Stefano Zanero 1

stefano.zanero@polimi.it
Christopher Kruegel 2

chris@cs.ucsb.edu
Giovanni Vigna 2

vigna@cs.ucsb.edu
Federico Maggi 1

federico.maggi@polimi.it
1 Politecnico di Milano 2 UC Santa Barbara

Milano, Italy Santa Barbara, CA, USA

ABSTRACT
Android introduced the dynamic code loading (DCL) mech-
anism to allow for code reuse, to achieve extensibility, to
enable updating functionalities, or to boost application start-
up performance. In spite of its wide adoption by developers,
previous research has shown that the secure implementation
of DCL-based functionality is challenging, often leading to
remote code injection vulnerabilities. Unfortunately, previ-
ous attempts to address this problem by both the academic
and Android developers communities are affected by either
practicality or completeness issues, and, in some cases, are
affected by severe vulnerabilities.

In this paper, we propose, design, implement, and test
Grab ’n Run, a novel code verification protocol and a series
of supporting libraries, APIs, and tools, that address the
problem by abstracting away from the developer many of
the challenging implementation details. Grab ’n Run is
designed to be practical: Among its tools, it provides a drop-
in library, which requires no modifications to the Android
framework or the underlying Dalvik/ART runtime, is very
similar to the native API, and most code can be automatically
rewritten to use it. Grab ’n Run also contains an application-
rewriting tool, which allows to easily port legacy or third-
party applications to use the secure APIs developed in this
work.

We evaluate the Grab ’n Run library with a user study,
obtaining very encouraging results in vulnerability reduction,
ease of use, and speed of development. We also show that the
performance overhead introduced by our library is negligible.
For the benefit of the security of the Android ecosystem, we
released Grab ’n Run as open source.

Categories and Subject Descriptors
[Security and privacy]: Software and application security–
Software security engineering
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1. INTRODUCTION
The wide adoption of smartphones pushed software devel-

opers to develop an incredibly high number of applications,
and the official market for Android currently hosts more
than one million apps [3]. The great success of the platform,
which dominates the rivals with an 85% market share [11],
and the ease in monetization contributed to create a market
with a multitude of applications for each category of inter-
est. Moreover, the fierce competition pushes developers to
constantly add more features and functionalities.

To implement some of these functionalities in a reliable and
performance-savvy way, applications make extensive use of
dynamic code loading (DCL). Similar in spirit to the notion
of shared libraries, DCL allows an application to load (and
execute) code that is not part of its static, initial code base.
This additional piece of code is loaded at runtime (thus the
term “dynamic”), and it might not necessarily be present
in the application package at installation time: In fact, the
additional code could be retrieved, once again at runtime,
from a remote network endpoint.

Unfortunately, it is well-known that DCL can be abused by
malicious applications [7, 8, 9, 14], mainly to evade static and
dynamic analysis systems. As documented by Poeplau et al.
[9], this technique is also often used by benign applications,
for a variety of reasons including code reuse, extensibility, self-
upgrade functionality, and to boost the overall performance.

Although these are all legitimate motivations, Poeplau et al.
also show that it is really challenging to implement DCL
functionality in a secure way. Indeed, the authors identified
severe vulnerabilities related to incorrect usage of DCL in
very popular games, advertisement frameworks, and code
platforms. According to their measurement on the Google
Play Store, 16% of the top 50 applications were affected by
similar vulnerabilities, potentially affecting several millions
of users: In the worst case, a vulnerable implementation
of DCL can lead to remote code injection, one of the most
dangerous vulnerability classes.

Existing Solutions. Previous academic works have pro-



posed solutions to address this problem. For example, [9]
proposed a series of modifications to the Android framework
and the introduction of a “verification service” in charge of
vetting any code component (both full-fledged APKs and
additional code modules in form of raw Dalvik bytecode).
Unfortunately, this solution is not very practical. In fact, this
approach requires non-trivial modifications to the Android
framework, and its adoption in the short-term is even less
likely when considering the massive fragmentation of the
different Android versions [13]. Another limitation is that
the developers would need to go through a time-consuming
vetting process for each of the additional components, thus
defeating one of the main use cases of DCL — the ability for
a developer to flexibly deploy additional components to her
application. Another relevant work is by Vidas and Christin
[12], who address the sub-problem of secure code retrieval
by relying on a lightweight PKI-like infrastructure backed by
the domain name system, which essentially uses the reverse
of the package-name string as the lookup key to retrieve the
signing certificate—referred by a TXT record. Although such
work clearly constitutes a step forward, it is not comprehen-
sive, because it does not prevent other classes of errors that
might introduce a vulnerability (e.g., storing the securely
retrieved code in an unsafe location on the file system). Also,
their scheme is not always practical because of the package
name restrictions. We discuss these limitations and their
implications in more details in Section 8.

The high request for a practical mechanism to use DCL
also pushed the open-source community to develop Dynami-
cLoadAPK [10], a very popular library with more than one
thousands “stars” on GitHub. Unfortunately, even if this li-
brary eases the implementation of DCL mechanisms, the risk
for a developer to introduce severe security vulnerabilities
is still really high. In fact, as a case in point, upon a quick
investigation, we identified a severe security vulnerability in
the library itself: DynamicLoadAPK stores the code to be
loaded on the external storage of the device (e.g., SD card),
which is writable by any application with the WRITE_EXTER-

NAL_STORAGE permission [6]. This opens the host application
to code injection attacks. While fixing this specific bug might
be trivial, there are still a number of aspects that a user
of this library would need to take care of: For instance, it
still leaves up to the developer the task of safely retrieve the
code, and to perform the integrity checks required to verify
whether it has been tampered with. Also, the discovery of
such a vulnerability in the library itself reinforces the intu-
ition that securely implementing a functionality based on
DCL is challenging.

Proposed Solution. With the goal of allowing developers
to fully leverage the power of DCL in a secure and practical
way, we designed, implemented, and tested Grab ’n Run,
a novel code verification protocol and a series of support-
ing libraries, APIs, and components. To the best of our
knowledge, this is the first toolset of its kind.

Grab ’n Run is secure because the design of its APIs
removes from the developer the excessive burden of thinking
about all the security aspects, by abstracting away all the
implementation details that are known to be challenging to
be securely implemented. In other words, the adoption of
our APIs avoids, by design, the introduction of a broad class
of security vulnerabilities related to the usage of DCL (e.g.,
the ones described in [9]).

We believe Grab ’n Run also to be practical. In fact, the

library we developed is thought as a drop-in Java library
for Android, which requires no modifications to the Android
framework or the underlying Dalvik/ART runtime. More-
over, the exposed API is very similar to the native ones, with
which the developers are already familiar. For these reasons,
we believe that our library could immediately benefit the An-
droid developers community thanks to its negligible adoption
barrier. To lower the burden of adoption even more, we also
developed an application-rewriting tool, which aims to assist
a developer to port existing apps to use our newly-developed
library. At its core, this component operates directly on
Dalvik bytecode, and it therefore does not require access to
the source code of the original app. Thus, our work allows
a developer to automatically secure not only her code base,
but also legacy, third-party, and untrusted libraries.

Experimental Evaluation. To evaluate Grab ’n Run, we
first performed a user study to assess the security and practi-
cality benefits brought to the developers by the Grab ’n Run
library. To this end, we asked 12 Android developers to
implement a functionality based on DCL, first by using the
standard Android API, and then by using Grab ’n Run li-
brary. In both cases, we told the participants that we would
have evaluated their performance under several aspects—
mainly the security aspect. The results are strikingly dif-
ferent: When using the native APIs, all of the developers
introduced one or more vulnerability. Instead, when using
the Grab ’n Run API, all of them were able to implement
the very same functionality in a secure way. Moreover, no
developers expressed any concerns about the practicality of
the Grab ’n Run library, even when we specifically asked for
their feedback about this aspect. Finally, we measured the
(negligible) speed overhead introduced by our library under
several caching assumptions.

Original Contributions. In summary:

• We designed a code verification protocol, and then imple-
mented it in a library and a series of tools, including an
application-rewriting tool, that allow secure and practical
implementation of a DCL functionality, easy porting of
existing apps, and smooth adoption by developers.

• We conducted a user study with 12 Android developers
and empirically showed the security benefits and practi-
cality of Grab ’n Run. Indeed, none of the participants
introduced security vulnerabilities when using our library,
and all of them agreed on it being practical.

• Since we believe Grab ’n Run library to be the first of
its kind, in the spirit of open science and for the benefit
of the security of the Android ecosystem, we released it
as fully open source 1, accompanied with documentation,
tutorials, proof-of-concepts, and usage examples.

2. DYNAMIC CODE LOADING
This section provides background information on DCL, the

common implementation patterns, and the security pitfalls
highlighted by previous research.

2.1 Usage in Benign Applications
Benign applications often make use of DCL, for a variety

of purposes [9]. Here, we list the principal ones.

1http://grabnrun.org

http://grabnrun.org


Code reuse. Applications often use third-party libraries
(e.g., Adobe Air, codecs). As a technique to reduce the size
of application packages (APKs), developers can opt to not
embed those libraries in the APKs, but to store them in a
common location, shared among different applications, and
load them at runtime by means of dynamic code loading.

Improving App Startup Performance. Complex appli-
cations that comprise several libraries can rely on DCL to
postpone the loading of (some of) such libraries to when
they are actually used. This technique can increase the
performance of the application when started.

Extensibility. Applications use DCL to modularly extend
their functionality. For example, several games or apps
offer the possibility to purchase additional levels or premium
features via in-app billing: These additional components
are often distributed as additional code that is dynamically
loaded.

Self upgrade. Several libraries (e.g., advertising frame-
works) wish their updates to be decoupled from the updates
of the hosting application, so as to enable continuous deploy-
ment. Moreover, in Android, the default update-distribution
mechanism conflicts with modern development practices,
where small updates are released frequently: Even if the user
sets the phone to install updates automatically, the phone
would always provide notifications, which negatively affect
the user’s experience.

2.2 Implementation Patterns & Vulnerabilities
In this section we describe the three main conceptual steps

needed to implement a generic DCL functionality, discussing
the most common errors that developers commit for each
step:

1. Code Retrieval. The application needs to retrieve the
code component to be dynamically loaded. In the most
general case, this component is fetched from a network
endpoint. In case the code component is stored within
the original application package or within an already-
installed application, then this phase could trivially consist
in retrieving the code component from its original bundle.

Vulnerabilities. The most common mistake is to fetch
the component over a plaintext protocol (most often, via
HTTP as opposed to HTTPS). The problem is that an at-
tacker could perform a man-in-the-middle (MITM) attack
and actively tamper with the content of the transmission.
This is not a real issue if the application properly verifies
that the downloaded content has not been tampered with.
However, Poeplau et al. [9] showed that most applications
fail to do that.

2. Code Storage. The application needs to store the code
component on the file system. This is necessary because
of a limitation of the current Android framework API,
which does not allow to load code directly from memory.

Vulnerabilities. Many applications often store the just-
fetched component in a world-writable location on the
file system (e.g., the SD card). This allows any malicious
application (with the required permission) to modify the
stored code component, and to subsequently execute ar-
bitrary code within the context of the target application:
the malicious code would hence obtain all permissions
and data of the target application, and it would be able
to execute actions on its behalf.

3. Code Loading and Verification. The application
needs to initialize the Android framework library respon-
sible to handle the loading operation, and it is then ready
to actually load the code component. A security-conscious
developer would also verify, through an integrity check,
that the code about to be loaded is an exact copy of the
component retrieved in the first step.

Vulnerabilities. Ensuring end-to-end code integrity and
authenticity is known to be a challenging problem. To
make things worse, the current Android framework API
does not require (nor even encourage) the developers to at
least think about this critical aspect, thus causing many
developers to implement DCL without even attempting
to verify the integrity of the code they are about to load.

3. THREAT MODEL
In this section, we describe the threat model considered

for this work, and we discuss what we assume an attacker
can do, and what is instead outside our scope.

The goal for a generic attack against our framework is to
execute arbitrary code within the context of a target appli-
cation. To achieve this, an attacker can target and exploit
vulnerabilities in the three different components of our sce-
nario:

1. Device. We assume that the attacker can execute code
on the user’s device, by means of a previously-installed
application under the attacker’s control. We assume that
such application has read or write access on the storage
of the device (e.g., internal storage or SD card). However,
we also assume that the application does not have root
privileges, as that would make the attacker’s goal trivially
achievable.

2. Network Communication Channel. We assume that
the attacker can mount arbitrary MITM attacks over
all unencrypted connections (e.g., HTTP). At the same
time, we assume that the attacker cannot tamper with
encrypted connections (e.g., HTTPS).

3. Remote Server(s). We assume that the attacker cannot
compromise a remote server controlled by the developer
of the target application. As we will discuss later, if the
application relies on more than one remote server, our
framework is robust even if the attacker compromises all
but one of them. This is because our system uses the
remote server as the root (or, in other terms, trusted
element) of a chain of trust to check the integrity of the
code that the application dynamically loads.

4. GRAB ’N RUN OVERVIEW
In this section we discuss the goals of our work and the main

challenges. Then, we present our code verification protocol,
and we discuss how we used it as a basis to implement a
library to perform DCL securely. Finally, we present the
“repackaging tool,” which allows a developer to adapt third-
party, potentially-vulnerable libraries to use our library.

4.1 Design Goals & Challenges
The first goal of our work consists in designing a new

library that, by design, ensures that developers of Android
applications implement functionality based on DCL in a
secure way. To this end, we aimed at designing a novel code



verification protocol, and at using it as a basis to develop a
new library based on it.

As a second goal, we want this library to be practical, even
for developers that are not security experts. For this reason,
we aimed to design our library as a drop-in, developer-friendly
Java library that replaces the standard Android API with-
out requiring any complex code modification beyond trivial
refactoring (e.g., function calls renaming). The development
of such a library is challenging. First, it is well-known that,
when striving for security, practicality is usually affected.
Second, benign apps use DCL for a variety of purposes and
in very different ways. Thus, our design needed to support a
number of different use cases.

Our third goal is to make this library usable also when DCL
functionality are implemented within third-party libraries. In
other words, we want to help developers to migrate existing,
potentially vulnerable code bases to use our library. This
aspect presents the following challenges: the process needs
to be automatic; developers might not be security experts;
the source code of these third-party libraries is usually not
available. To this end, we developed a “repackaging tool”
that takes as input the Dalvik bytecode of an existing code
base, and it is able to automatically rewrite it so that it uses
our newly-developed API instead of using the less-secure
native Android API.

4.2 Code Verification Protocol
Our verification protocol focuses on avoiding that, by de-

sign, a careless or inexperienced developer may make common
mistakes when implementing a DCL-based functionality. For
completeness, we consider the most generic case, which con-
sists in an application that dynamically load code retrieved
at runtime from a remote network endpoint. Our protocol is
constituted by five different steps. Figure 1 shows a graph-
ical representation of the five steps in action, by using an
example of how our code verification protocol can be used
by an application to dynamically load a library (in the ex-
ample, located in a “Code repository,” not necessarily under
the control of the developer). The remainder of this section
describes these five steps in details, and thoroughly discusses
the motivation behind our design choices, their implications,
and how they prevent the many possible attacks.

Device Code repository Code developer 
website

Step 1: Code Retrieval
HTTP or HTTPS

Step 2: Code Storage
in app-private directory

Step 3: Certificate 
Location Resolution

Step 4: Certificate Retrieval

HTTPS only

Step 5: Signature 
Verification

saved in app-private directory

Load code if valid
(return null otherwise)

Figure 1: Sequence diagram of a simple use case
of remote DCL. The diagram shows interactions be-
tween the application running on a device, the code
repository, which hosts the dynamically loaded code,
and the developer’s website hosting the certificate.

Step 1: Code Retrieval. The developer specifies the
resource that the application needs to dynamically load. The
developer can specify two kind of resources: local or remote.
If the resource is local, the developer needs to specify a
(local) file path, and the retrieval step is skipped (since the
code component is already stored on the device). If the
resource is remote, the developer needs to specify a URL,
and the application will then retrieve the code component
(via HTTP or HTTPS, depending on the URL). Note that
our protocol allows the retrieval of code through HTTP. This
provides flexibility to the developer and, in some cases, also
performance improvements. Note that this choice does not
introduce a security vulnerability, since the integrity of each
component is verified before it is loaded and executed by
the application (see Step 5). That is, even if an attacker
succeeds in mounting a MITM attack, she will not be able
to achieve arbitrary code execution within the context of
the application. Moreover, note that the attacker cannot
successfully mount an attack even in the scenario where
she previously compromised the server hosting the code
component.

Step 2: Code Storage. In order to securely store the
retrieved code components, our protocol places them in an
application-private directory, which an external, potentially-
malicious application cannot tamper with. This is important
since, even if the integrity of the retrieved code component is
verified in Step 5, an attacker might exploit a race condition
(between the integrity check and the code loading step) to
invalidate the result of the integrity check. This choice also
allows us to have a trusted cache, so that we do not need to
perform an integrity check on code components that have
already been verified.

Step 3: Certificate Location Resolution. To verify the
integrity of the code components that need to be dynamically
loaded, our library requires that each of these components
is cryptographically signed. In turn, to establish the au-
thenticity of this signature, our library needs to retrieve the
certificate of the developer that signed and published a given
code component. To specify the location of a certificate, the
developer has two options: she can either (1) construct a
URL by reversing the package name of the target class to
load, or (2) she can specify a static mapping (through a con-
figuration option) between the package name of the resource
to be loaded and the remote location of the associated certifi-
cate. Although the first method is very simple, it might not
grant enough flexibility in certain scenarios, since it requires
the developer to satisfy tight constraints on web domain
names. We believe our second option to be the sweet spot
between flexibility and practicality: it requires a little extra
effort from the developer, but it makes the deployment much
easier. From a security point of view, both these methods
are equivalent: In either case, the mapping is stored in the
code and memory of the application. Thus, according to
our threat model, an external, malicious application cannot
tamper with this important component of our protocol.

Step 4: Certificate Retrieval. Since the certificate lo-
cated during the previous step acts as the single trusted
element of our system, we require it to be retrieved through a
secure connection (e.g., through HTTPS), which, according
to our threat model, a malicious attacker cannot tamper
with. Once the certificate is fetched, our approach requires
to store it into an application-private folder (similarly to



the downloaded code components), so that an attacker can-
not tamper with it. Also in this case, we introduce caching
strategies to avoid to repeatedly fetch the same certificate
multiple times.

Note how our current solution proposes to store these
certificates remotely, on a network endpoint, as opposed to
store them within the application itself. On the one hand, this
choice offers more flexibility to a developer, since she has the
possibility to easily revoke and replace the valid certificates.
On the other hand, this choice requires Internet connectivity
to fetch the certificates. As a technique to minimize the
impact of this choice, our approach fetches all the needed
certificates just after the installation of the application — in
case of a regular installation through Google Play, the device
is guaranteed to have network connectivity. Nonetheless, we
note that, in certain scenarios, storing all the certificates
locally could be a viable solutions and, for this reason, we
plan to implement support for this solution as well.

Step 5: Signature Verification. Our system checks the
integrity of each code component before it is dynamically
loaded. The integrity check is implemented by verifying the
signature against the retrieved certificate. If the signature
of any of the entries does not match, the entire code compo-
nent is rejected, and our library aborts the operation. This
effectively prevents the application to inadvertently load and
execute untrusted code. Moreover, for performance reasons,
we designed a caching strategy to benefit from the results of
previous signature verifications, so that each container needs
to be verified only once, independently from the number of
load operations on it.

We note that our protocol assumes that it is the developer’s
responsibility to (1) properly sign the code to be dynami-
cally loaded, and (2) define a proper mapping between code
component and certificates. Since developers are already
accustomed to the concept of code signing (as this is required
by the Android release procedure of non-dynamically-loaded
code), we believe this is a small burden for developers. More-
over, both the code signing and certificate creation steps can
be easily automated and integrated into software develop-
ment tools. This intuition is confirmed by the results of our
user study, discussed in Subsection 6.1.

4.3 Repackaging Tool
In this section we present the high-level details of our app

repackaging tool. This tool takes as input an application
that implements a DCL-based functionality using the native
API, and it returns, as output, a semantically equivalent
application, in a way that all the DCL-based functionality
are ported to use our Grab ’n Run library.

Our repackaging tool works in five main steps. Here we
present the high-level goal of each of them, while we discuss
the technical details in the next section.

1. Unpacking. The tool unpacks the application package
(APK), parses its manifest, and disassembles its clas-

ses.dex, which contains the Dalvik bytecode of the ap-
plication.

2. Manifest Update. The manifest is modified to ensure
it includes additional permissions required by our library.

3. Call Site Identification. The tool identifies all the
locations in the code that performs DCL. This is done by
scanning the application’s bytecode and by looking for
the invocation (through the invoke bytecode instruction)

of a DCL native API (e.g., loadClass). We refer to these
code locations as sensitive call sites.

4. Patching. For each of the call site, the tool patches the
bytecode such that our library is used instead. This patch-
ing follows the package-to-certificate mapping specified
by the user. Note that it is possible to automatically and
reliably patch the application bytecode as the interface of
our API is very similar to the interface of the native one.

5. Reassembly. Finally, the tool reassembles the appli-
cation bytecode and manifest in a new APK. This new
application is semantically equivalent to the original one,
but all its DCL-related functionality are now guarded by
our code verification protocol.

5. GRAB ’N RUN IMPLEMENTATION
In this section we present the two tools that we developed

as a proof-of-concept for our approach: the first one is a
library, which implements our code verification protocol,
as described in Subsection 4.2, whereas the second one is
the repackaging tool that follows the procedure outlined in
Subsection 4.3.

5.1 The SecureDexClassLoader API
We implemented Grab ’n Run in an open-source Java

library, compatible with both the Android Development Tool
(ADT), and the Android Studio (AS) IDE, as a drop-in tool
that developers can easily plug-in in their Android projects.
Our library is online since Nov 26, 2014, with the goal of
helping developers to implement DCL securely. Since then,
more than 250 GitHub users have already put a “star” on
our repository, and more than 30 developers have forked it.

This section describes an implementation of the code veri-
fication protocol. In our proof-of-concept library, we imple-
mented a new version of DexClassLoader, which we called
SecureDexClassLoader. We chose this API since it is one
of the most commonly used to load code dynamically (as
documented by [9], 5.01% out of 1,632 popular applications
with more than one million downloads made use of this API),
as well as one whose use is often misunderstood by developers
(the same source measured that 37,35% of the applications in
the previous group were affected by a security vulnerability).

Original API. More in the details, DexClassLoader, which
was introduced in APIv3 (and is still present unmodified
as of APIv21), can load classes from external DEX (Dalvik
EXecutable) files stored in APK or JAR archives. As exem-
plified in Listing 1, the DexClassLoader constructor requires
a list of URIs pointing to such code containers stored on the
device’s file-system. Next, this API retrieves the code and
caches its optimized version (i.e., ODEX in case of Dalvik,
ELF in case of ART) into a local directory also provided
by the developer as input, on which no restriction on the
accesses is enforced. Finally, by invoking the loadClass()

method, the developer can dynamically load any class im-
plemented within the code container. Note that, by design,
DexClassLoader does not perform any integrity or authenti-
cation checks. Note also that the retrieval and storage of the
code container (that usually precede the actual code loading),
is “up to the developer”, and this is why we omitted these
steps in Listing 1.

Grab ’n Run API. At its core, our library wraps the
DexClassLoader class to add the missing security checks



Listing 1: DexClassLoader code snippet.

/*
* Omitted steps, as they are ‘‘up to the developer’’:
*
* - retrieval of the code container
* - storage of the container to jarContainerPath
* - creation of the dexOuptutDirPath
*/
DexClassLoader loader = new DexClassLoader(

jarContainerPath, dexOutputDirPath, null, getClassLoader());

Class<?> klass = loader.loadClass("com.example.MyClass");
MyClass obj = (MyClass) klass.newInstance();

introduced by our protocol. Table 1 maps each step of
our verification protocol to the corresponding classes of the
Grab ’n Run library that execute them. The most im-
portant classes are SecureLoaderFactory, a factory class
that initializes secure loading components, and SecureDex-

ClassLoader, which wraps DexClassLoader and exposes a
backward-compatible, yet secure API.

We can logically map the main functionalities of Secure-

LoaderFactory to the ones of the constructor of DexClass-

Loader and the loadClass() method of DexClassLoader to
the corresponding one in SecureDexClassLoader. These two
classes are used as follows by the developer:

1. Initialize SecureLoaderFactory. At first, the developer
initializes an instance of SecureLoaderFactory, which
requires a reference to the current Activity object.

2. Initialize SecureDexClassLoader. The method create-

DexClassLoader() implemented by the SecureLoaderFac-
tory object, returns an instance of SecureDexClassLoad-
er. Alongside the usual parameters required by DexClass-

Loader’s constructor, the developer must pass an extra
argument, which is the package-to-certificate associative
map that links package names to the URL of the remote
certificate to verify each code signature.

3. Code Loading. Next, the developer uses the load-

Class() method on SecureDexClassLoader to load a
given class, identified by its full name. SecureDexClass-

Loader returns a class object only if the class is imple-
mented within a successfully-verified JAR or APK code
container.

Listing 2 shows an example of this procedure. Note that
this listing implements the same exact functionality as in
Listing 1, and it also additionally retrieves and stores of the
code component to be loaded. Listing 2 also shows how to

Table 1: Mapping between the verification proto-
col’s steps (Subsection 4.2) and classes in our library.
Classes in brackets embed those that actually imple-
ment the corresponding step.

Step of the protocol Library classes performing the step

Step 1: Code retrieval CacheBinder (SecureLoaderFactory)
FileDownloader (SecureLoaderFactory)

Step 2: Code storage SecureLoaderFactory

Step 3: Certificate
SecureLoaderFactorylocation resolution

Step 4: Certificate CacheBinder (SecureDexClassLoader)
retrieval FileDownloader (SecureDexClassLoader)

Step 5: Signature PackageNameTrie (SecureDexClassLoader)
verification SecureDexClassLoader

Listing 2: SecureDexClassLoader code snippet.

Map<String, URL> pToCert = new HashMap<String, URL>();
pToCert.put("com.foo", new URL("https://bar.com/cert.pem"));

SecureLoaderFactory factory = new SecureLoaderFactory(this);
SecureDexClassLoader loader = factory.createDexClassLoader(

"http://something.com/dev/exampleJar.jar",
null, getClassLoader(), pToCert);

Class<?> klass = loader.loadClass("com.example.MyClass");

if (klass != null) // Is signature valid?
MyClass obj = (MyClass) klass.newInstance();

properly handle the scenario where it is not possible to verify
the code component’s integrity.

Compared to the native DexClassLoader, SecureDexClass-
Loader securely fetches and stores the code containers to be
loaded, and caches them to minimize the retrieval of remote
resources (i.e., code containers, and certificates for the signa-
ture verification). The signature is verified concurrently in
case of multiple code containers. Finally, Table 2 summarizes
the main differences between the original API and the one
proposed by Grab ’n Run.

5.2 Repackaging Tool
We implemented the procedure outlined in Subsection 4.3

in Python. The prototype relies on Androguard [1], an
open-source reverse-engineering and static-analysis suite for
Android application analysis, and apktool [2], which offers
APK repackaging functionality.

Configuration. As input, the developer provides two con-
figuration options along with the APK to be patched: (i)
the code containers used as sources for DCL (either with
a local reference on the file-system, or with a remote URL
pointing to each archive), and (ii) the binding between each
container and the trusted certificate that must be used for
its signature verification (provided via a remote URL with
HTTPS protocol).

Unpacking and Reassembly. Using Androguard, we per-
form static analysis on the target APK to determine whether
it uses DexClassLoader API. If this is the case, we query
Androguard to obtain the list of the points to patch, and
the required permissions of the APK. We use apktool to
unpack the APK and disassemble the classes inside of it:
The result is a collection of decoded resources (including
the Manifest) and a set of classes written in Smali — an
intermediate, and human-readable intermediate representa-
tion of Dalvik bytecode. If missing, we append three extra
permissions required by the Grab ’n Run library to the Man-
ifest: ACCESS_NETWORK_STATE, and INTERNET for retrieving
code containers, and certificates from remote endpoints, and
READ_EXTERNAL_STORAGE to transfer code containers stored
on the SD into an application-private folder prior to the
actual verification. Once we obtain the patched bytecode,

Table 2: Features comparison.

Feature Original Grab ’n Run

Fetch code from remote URL % !

Store code in app-private dir. % !

Code verification (integrity and
developer authenticity)

% !

Dynamic code loading ! !



we use apktool once again to reassemble the package.

Patching. Patching a Smali class is, in the general case,
quite challenging. Our solution is based on the following two
observations: 1) adding a new class is trivial (in fact, in Smali,
each class is defined in a separate file); 2) substituting an
invocation to a method M with the invocation to a different
method M ′ is trivial, as long as the two methods M and
M ′ have the same exact signature (i.e., number and type of
arguments and return value). Thus, our system first creates a
new static class that implements a series of methods that have
the same signature of the methods we need to patch (e.g.,
the loadClass() method). Functionally, each of these new
methods constitute a wrapper for their respective method
that implements the required security checks and pass the
required additional arguments. Once these methods are
defined, it is then trivial to patch the original Smali code to
redirect each invoke to a relevant method to its respective
wrapper method.

6. EVALUATION
In this section, we report on our effort to evaluate the

security and practicality aspects, when actually used by non-
security-conscious Android developers. In particular, we
evaluated these aspects by performing a user study with
12 Android developers2. Our results show that our library
provides tangible benefits under both the security and prac-
ticality aspects. As the last step of our evaluation, we also
present the results we obtained while measuring our library’s
performance overhead, which, as expected, resulted to be
negligible.

We also attempted to collect a corpus of insecure real
world applications to patch with the repackaging tool. Un-
fortunately, almost all of these applications make use of
unsigned code containers that we were not in a position to
sign, and/or retrieve from a secure endpoint (e.g., the un-
signed container is embedded in the firmware of the phone
by the vendor). Thus, even if the patching process with the
repackaging tool completes successfully, we were not able
to test whether the functionality of the application was pre-
served since Grab ’n Run prevents DCL from unsigned code
containers.

6.1 User Study
In this section we describe the user study we conducted,

and we discuss the results we obtained.

Participants Recruitment. For our user study, we first
tried to recruit as many participants as possible by posting
an announcement on several public Android-related mailing
lists, as well as on mailing lists internal to the authors’
affiliations. In total, we were able to recruit 12 participants.
Ideally, we would have successfully recruited many more
participants. However, we required the participants to have
at least a minimal prior knowledge in Android application
development, and we also did advertise that the experiment
could have taken up to few hours: While we would have
probably recruited more participants if we were not specifying
these requirements, we believe these were necessary to obtain
meaningful results.

These participants had different ranks of expertise in An-
droid developing: some of them had developed only a couple

2IRB approval was obtained by our institution.

Table 3: Security bugs introduced by the developers
of our user study using DexClassLoader API. The ta-
ble correlates each error with a triggering example
and the number of developers that introduced it.

Error (Triggering example) % developers

Fetch code in an unsafe way
75.0% (9/12)

(Use HTTP connection instead of HTTPS)

Store code in a world-writable area
50.0% (6/12)

(Save code container on external storage)

Store code in a world-writable area
00.0% (0/12)

(Wrongly initialize optimized cache folder)

Miss or fail to implement security checks
100.0% (12/12)

(Do not implement any custom integrity check)

of toy applications, whereas some others develop Android
applications on a regular basis. It is important to note that
none of the selected participants had never used DexClass-

Loader, or any other API for DCL before this experiment.

Experiment Setup. We gave each developer access to a
skeleton application that we developed specifically for this
project. Then, we asked them to perform two tasks. First, we
asked them to implement a functionality involving DCL using
the native Android API, DexClassLoader. In particular, we
asked them to fetch a remote code component, store it on
the device, and finally dynamically load a class defined in
the downloaded component. As the second task, we asked
them to implement the very same functionality, but, this
time, using our SecureDexClassLoader. At the end of the
experiment, the developers had to send us the source code
of both implementations, and compile a form that asked
questions about the two different APIs. In particular, this
form collected feedback from the participants related to
several aspects, such as efficiency, code readability, security,
and maintainability.

During the experiment, the developers were left free to
consult any online resources, including, obviously, the official
Android documentation. Moreover, we explicitly asked the
participants to treat this experiment as if they were adding a
functionality to their own, very popular real application with
millions of users. This was done to encourage the participants
to think about the security aspect, among many others (e.g.,
efficiency, code readability, and maintainability). We note
that the participants were not required to setup the certificate
used to validate the code, nor the endpoint to store such a
certificate. Although this reduces the complexity of the task,
we believe these two steps represent one of the most common
use cases, especially in a scenario where a developer wants
to securely load dynamic code from a third-party container.

Security Benefits Results. Table 3 reports our study’s
results related to the security aspect. In particular, it shows
how many developers committed which kind of security-rel-
ated error when using the native Android API, DexClass-
Loader. This data was collected by manually inspecting the
source code of all the submitted implementations. As the
table shows, 75% of the developers failed to fetch the remote
code container securely (i.e., they used an HTTP connection,
as opposed to a HTTPS one); half of them failed to securely
store the fetched code component (i.e., they stored it on
the external storage). An alarming result is that not even
a single participant thought about checking the integrity of
the downloaded component, or the developer’s identity of



the fetched container. Thus, all 12 developers introduced
a severe security vulnerability, even when implementing a
simple functionality, and even after telling them to take
into account the security aspect. This confirms, once again,
that securely implement DCL-based functionalities is really
challenging.

Another very interesting aspect is that none of the de-
velopers unsafely stored the optimized version of the code
component in a world-writable portion of the file system. We
believe this is the case thanks to the fact that this security-
related aspect is specifically mentioned in the official docu-
mentation of the DexClassLoader, and all developers opted
to adopt this best practice. We believe this is interesting
for two reasons: First, it shows that the developers of our
user study did indeed care about the security aspect; Second,
it shows that proper documentation is indeed effective in
helping developers to not introduce security vulnerabilities.

As the second part of the experiment, the participants then
used our newly-developed API, SecureDexClassLoader, to
implement the very same functionality. In this case, none
of the developer introduced a security vulnerability. While
this is not entirely surprising (since our library prevents this
class of vulnerabilities by design), it does confirm that the
adoption of our work would directly benefit the Android
developers community.

Practicality Benefits Results. To evaluate the practical-
ity aspect of our work, we asked all participants to compile
a questionnaire, which contained questions related to many
aspects of the experiment. Table 4 shows a summary of the
answers we received from our participants. Overall, our work
received very positive feedback. First, all developers felt that
the overhead of learning to use our library (starting from
the native API) was negligible; Second, 83% of the involved
participants thought that the second snippet of code, which
relies on our library, would be easier to maintain and modify,
and that it is actually simpler to read compared to the first
one; Third, 91% of developers also asserts that the code
snippet using Grab ’n Run was easier to implement, looks
more flexible (e.g., automatically fetch remote containers,
store them appropriately), and secure (e.g., perform integrity
checks at run time on code containers) than the native API.
We believe these are really encouraging results.

Finally, we also noted that the average estimate of time
spent for understanding and implementing the dynamic code
loading functionality is about 139 minutes when the de-
velopers used DexClassLoader, while it dropped to just 37
minutes when using SecureDexClassLoader. While this is
also a very good result, we acknowledge that our experiment
setting might have significantly influenced this outcome. In
fact, we asked the developers to implement the required
functionality with our library only after they have already
implemented it by using the native API. That is, it might
be possible that the striking difference in the average time
is due to the fact that the developers acquired part of the
required knowledge during the first phase of the experiment.

6.2 Performance Evaluation
Experiment Setup. To measure the performance overhead
introduced by SecureDexClassLoader, we developed a sim-
ple profiling application that dynamically loads two classes
from an APK container using first DexClassLoader, and then
SecureDexClassLoader API. In particular, we instrumented
both the application and our library code to log the initial

Table 4: Summary of the feedback provided by the
participants of our user study.

Users evaluation: DexClassLoader (Native API)
vs SecureDexClassLoader (Grab ’n Run API)

Average time for development
Average of the times in minutes that each developer declared as
required to implement the DCL functionality:
Using DexClassLoader (Native API) 139 min
Using SecureDexClassLoader (Grab ’n Run API) 37 min

Final evaluation of DexClassLoader
Please provide an average mark on your satisfaction after
having used DexClassLoader (Native API).
1 or 2 (Disappointing) 6/12
3 5/12
4 or 5 (Excellent) 1/12

Final evaluation of SecureDexClassLoader
Please provide an average mark on your satisfaction after
having used SecureDexClassLoader (Grab ’n Run API).
1 or 2 (Disappointing) 0/12
3 0/12
4 or 5 (Excellent) 12/12

Grab ’n Run learning overhead
Please quantify the effort in learning how to use Grab ’n Run API over
the Native API (i.e., DexClassLoader).
1 or 2 (Almost zero) 12/12
3 0/12
4 or 5 (Extremely broad) 0/12

Easy to implement
Look at the two applications you prepared, which one between
the two was easier to implement?
First application (DexClassLoader) was easier to implement. 0/12
Second application (SecureDexClassLoader) was easier to implement. 11/12
Both of them were too difficult. 1/12

Readability
Look at the two snippets of code you implemented for the applications,
which one is easier to read and understand at a first glance?
First application (DexClassLoader) is way easier to read. 0/12
Second application (SecureDexClassLoader) is way easier to read. 10/12
They are more or less equally easy to understand. 2/12
Both of them are difficult to read. 0/12

Flexibility
Between the two analyzed solutions, which one do you think offers
more flexibility and features for your Android applications?
DexClassLoader (Native API). 1/12
SecureDexClassLoader (Grab ’n Run API). 11/12

Code maintainability
If you decide to change the remote location of the APK used as source for
DCL, or if you plan to perform DCL from a second remote APK, stored at
a different URL, which one of the two applications would be easier to fix?
First application (DexClassLoader) would be easier to fix. 1/12
Second application (SecureDexClassLoader) would be easier to fix. 10/12
The amount of work would be exactly the same for both of them. 1/12

Security
Which one between the two applications do you think is more secure?
First application (DexClassLoader) is more secure. 0/12
Second application (SecureDexClassLoader) is more secure. 11/12
They are the same, security-wise. 1/12

and final timestamps of the operations related to the DCL
step. Since DexClassLoader cannot automatically fetch re-
mote code components, we decided to use a local container
as the source for DCL for both systems, so to have a fairer
comparison. Moreover, as part of the experiment, we also
considered the most common scenario in which classes have
been already loaded from the source container during a pre-
vious run of the application. In other words, we considered
the scenario where DexClassLoader has already prepared
and stored the optimized version of this archive in the cache
folder, and SecureDexClassLoader has already fetched the
certificate used for the container signature verification. The
measurement was performed by executing and profiling the
application over 100 iterations on a Nexus 5 device.

Performance Overhead Results. Table 5 reports our
results and a comparison between the native API and ours.
We aggregated the measured time-stamps depending on the
experiment phase, and we computed mean, median, and
standard deviation over all the iterations. The measurements
outlines that SecureDexClassLoader introduces an overhead
during its “Setup” phase that is mostly due to the presence of
the signature verification step, which is missing in native Dex-
ClassLoader. However, thanks to the caching mechanism,



Table 5: Performance evaluation results.

Phase Mean [ms] Median [ms] Std Deviation [ms]

DexClassLoader 6.28 6.00 1.39
— Setup 3.98 4.00 1.04
— First Load Operation 1.42 1.00 0.70
— Second Load Operation 0.44 0.00 0.61

SecureDexClassLoader 90.42 90.00 8.73
— Setup 88.25 87.50 8.55
—— Verify Signature 61.39 61.00 6.79
— First Load Operation 1.33 1.00 0.55
— Second Load Operation 0.49 0.00 0.77

this costly verification is performed only once, during the app
initialization. After this setup phase, the overhead introduced
by our library is negligible.

7. LIMITATIONS
In the previous sections, we described how we believe our

approach to be feasible, secure, and practical. Nonetheless,
our work is affected by a few limitations, which we enumerate
in this section.

Uniqueness of Package Name. The current implementa-
tion of our library assumes that a package name uniquely
identifies a code container. This implies that our library
does not currently allow an application to securely load two
code containers that have the same package name. We be-
lieve that this limitation does not introduce any significant
practicality issue. In fact, the Google Play Store already
enforces a similar policy: a given package name uniquely
identifies an application on the market, and two different
applications are not allowed to have the same package name.
Moreover, in the unlikely scenario where a developer needs
to load two code containers that, incidentally, have the same
package name, one simple workaround is to simply change
the package name of one of the two containers.

Limited API Coverage. The work presented in this pa-
per mainly focuses on providing a secure implementation
of the existing DexClassLoader native API. However, there
are several other APIs for dynamically loading code in An-
droid. For example, an application might load additional
code through the PathClassLoader or the android.content-
.Context.createPackageContext APIs. Even if our library
does not currently provide a secure replacement for these
APIs, we believe our work can be extended. However, we
acknowledge that, for some of these APIs, the modifications
might be non-trivial.

Challenges in Code Reuse. One use case of DCL is to
allow for code reuse across different applications. However,
our protocol relies on safely storing each code container in an
application-private folder, and it makes the implementation
of code reuse more challenging. As a possible solution, a
developer that wants to share code components among two
of its applications, could sign the two applications with
the same private key: in this case, the Android framework
would assign to the two applications the same Linux user,
and the two applications would consequently have access to
the same folders and code components, thus making code
reuse possible. An alternative solution would be to set the
permissions of the dynamically-fetched code component to
read-only for other applications. However, it is not clear
how this could be implemented through the current Android
permission system.

8. RELATED WORK
This section describes the relevant related work with a

brief discussion of the differences with Grab ’n Run.

Remote Code Execution. Poeplau et al. [9] were the
first to study the security problems introduced by DCL.
After reviewing the mistakes made by the developers of
the vulnerable apps among the top 500 on the Google Play
Store, they proposed a series of modifications to the Android
framework. They also introduce the notion of an external
service in charge of analyzing any dynamically loaded code
component. As for [5], this solution is valid, but it is affected
by practicality issues. In fact, the required modifications are
not trivial, and they involve low-level implementation details
of the Dalvik VM. Moreover, the massive fragmentation
of the different Android versions make these modifications
less likely to be adopted in the short term [13]. Another
aspect that might incur into practicality issues is that the
proposed solution requires that the developers to go through
a time-consuming vetting process for each of the additional
components, making this solution unideal when a developer
would need to flexibly deploy additional components.

In contrast, Grab ’n Run leaves the underlying framework
untouched and wraps the security-sensitive APIs, exposing a
cleaner, simpler API to the developers. Differently from [9],
we focused our work on the code-verification protocol, the
implementation of Grab ’n Run in an open-source library
and patching tool, leaving the porting to DCL of native (e.g.,
ARM, x86) code to future works. While we acknowledge
that our solution does not protect against DCL usage in a
malicious scenario (e.g., an application that loads only at
runtime the malicious payload), we believe our work makes
a significant step forward to prevent benign applications to
contain vulnerable components.

Code Verification. Vidas and Christin [12] propose a
simple mechanism that alleviates the specific problem of
verifying the authenticity of an app, to protect the user
from repackaged apps that contain malicious code. Their
approach is based on creating a simple public-key infrastruc-
ture backed by the domain name system. To allow Android
to verify the authenticity of a given app, the developer must
place the signing certificate on the DKIM or TXT record of
their own domain name. Such domain name is required to
match the reversed string extracted from the Java package
name of the app itself. Thus, if a developer wants to exe-
cute MalwareMainActivity.evil.com or want to repackage
a benign application with malicious code, she would have to
possess the signing certificate and control the authoritative
name servers accordingly.

Differently from Grab ’n Run, their scheme is not always
practical because of the package name restrictions. This is
mainly due to the fact that their approach is tailored to
protect against repackaging. However, because of this limi-
tation, the approach cannot be easily ported to address the
DCL-related security vulnerabilities discussed in Section 2.
In fact, a developer could not securely load code with a
package name of a domain they do not own, and this would
not allow them to “seal” third-party apps or libraries.

More importantly, in their work, the signature is checked
only upon installation, and not when the code component
is actually used. This design choice is mainly motivated
by the fact that there might not be Internet connectivity at
runtime. However, this implies that any code change between



installation and execution, which would break the signature,
would pass unnoticed. Differently, our system first makes
sure the code component is stored in a safe location, and it
then verifies the integrity of the component just before it

Vulnerable Usage of Security-related APIs. Our work
is motivated by the observation that apps’ developers, when
using security-related APIs or functionalities, often make
severe mistakes and, as a consequence, introduce severe
security vulnerabilities. Unfortunately, this aspect seems to
affect not only DCL-related APIs, but also other kind of
APIs. For example, Egele et al. [4] have recently studied
the use of cryptographic APIs in Android applications and
found out that the developers that publish on the Google
Play Store made at least one mistake in 88% of the apps
(they reviewed a sample of 11,748 apps).

Despite the abundance of cryptographic libraries, which
strive to abstract away the details and remove the burden
on the developers’ side, many security flaws are still due to
inaccurate use of such libraries or näıve practices. In fact,
according to a recent empirical measurement by Fahl et al.
[5], 17.2% of a sample of 13,500 Google Play apps failed
to verify the SSL certificate, of which 1,070 include critical
code, 790 accept all certificates, and 284 accept all hostnames.
Similarly to [9], the authors of this work propose a patch
to the Android framework to close the gap that caused the
errors.

9. CONCLUSIONS AND FUTURE WORK
In this work, we proposed, designed, implemented, and

tested Grab ’n Run, a novel code verification protocol and a
series of supporting libraries, APIs, and components, that
aim to address the pressing security issues related to the
unsafe implementation of functionality based on dynamic
code loading. We extensively evaluated our work through a
user study with 12 participants: Our results show that our
library is both secure, since many security vulnerabilities
are prevented by design, and practical, since Grab ’n Run is
thought as a drop-in Java library, very similar to the already-
existing Android API. Our results also show that it is really
challenging to securely implement DCL-based functionality
by using the current Android API. Moreover, we also imple-
mented a “repackaging tool,” which can automatically patch
potentially-vulnerable Android applications so that they use
our newly-developed library. Finally, in the spirit of open
science and to benefit the Android developer community, we
released our library as fully open source, and we already
received very positive feedback. As part of our future efforts,
we will implement support for new APIs, and we will perform
additional user studies to understand how to improve our
work and to increase its adoption.
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