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Abstract—Mobile applications are part of the everyday lives of
billions of people, who often trust them with sensitive information.
These users identify the currently focused app solely by its visual
appearance, since the GUIs of the most popular mobile OSes do not
show any trusted indication of the app origin.

In this paper, we analyze in detail the many ways in which
Android users can be confused into misidentifying an app, thus,
for instance, being deceived into giving sensitive information to a
malicious app. Our analysis of the Android platform APIs, assisted by
an automated state-exploration tool, led us to identify and categorize
a variety of attack vectors (some previously known, others novel, such
as a non-escapable fullscreen overlay) that allow a malicious app to
surreptitiously replace or mimic the GUI of other apps and mount
phishing and click-jacking attacks. Limitations in the system GUI
make these attacks significantly harder to notice than on a desktop
machine, leaving users completely defenseless against them.

To mitigate GUI attacks, we have developed a two-layer defense.
To detect malicious apps at the market level, we developed a tool that
uses static analysis to identify code that could launch GUI confusion
attacks. We show how this tool detects apps that might launch GUI
attacks, such as ransomware programs. Since these attacks are meant
to confuse humans, we have also designed and implemented an
on-device defense that addresses the underlying issue of the lack of a
security indicator in the Android GUI. We add such an indicator to
the system navigation bar; this indicator securely informs users about
the origin of the app with which they are interacting (e.g., the PayPal
app is backed by “PayPal, Inc.”).

We demonstrate the effectiveness of our attacks and the proposed
on-device defense with a user study involving 308 human subjects,
whose ability to detect the attacks increased significantly when using
a system equipped with our defense.

I. INTRODUCTION

Today, smartphone and tablet usage is on the rise, becoming the
primary way of accessing digital media in the US [1]. Many users
now trust their mobile devices to perform tasks, such as mobile
banking or shopping, through mobile applications, typically called
“apps.” This wealth of confidential data has not gone unnoticed by
cybercriminals: over the last few years, mobile malware has grown
at an alarming rate [2].

Popular mobile operating systems run multiple apps concurrently.
For example, a user can run both her mobile banking application
and a new game she is checking out. Obviously, a game should not
receive financial information. As a consequence, the ability to tell

the two apps apart is crucial. At the same time, it is important for
these apps to have user-friendly interfaces that make the most of
the limited space and interaction possibilities.

Let us assume that a victim user is playing the game, which
is malicious. When this user switches to another app, the game
will remain active in the background (to support background
processing and event notifications). However, it will also silently
wait for the user to login into her bank. When the malicious game
detects that the user activates the banking app, it changes its own
appearance to mimic the bank’s user interface and instantly “steals
the focus” to become the target with which the victim interacts. The
user is oblivious to this switch of apps in the foreground, because
she recognizes the graphical user interface (GUI) of the banking
application. In fact, there have been no changes on the user’s display
throughout the attack at all, so it is impossible for her to detect it:
she will then insert her personal banking credentials, which will
then be collected by the author of the malicious app.

In this paper, we study this and a variety of other GUI confusion
attacks. With this term, we denote attacks that exploit the user’s in-
ability to verify which app is, at any moment, drawing on the screen
and receiving user inputs. GUI confusion attacks are similar to social
engineering attacks such as phishing and click-jacking. As such, they
are not fundamentally novel. However, we find that the combination
of powerful app APIs and a limited user interface make these
attacks much harder to detect on Android devices than their “cousins”
launched on desktop machines, typically against web browsers.

The importance of GUI-related attacks on Android has been
pointed out by several publications in the past, such as [3], [4]
(with a focus on “tapjacking”), [5] (with a focus on phishing attacks
deriving from control transfers), and [6] (with a focus on state
disclosure through shared-memory counters). Our paper generalizes
these previously-discovered techniques by systematizing existing
exploits. Furthermore, we introduce a number of novel attacks. As
an extreme example of a novel attack, we found that a malicious app
has the ability to create a complete virtual environment that acts as a
full Android interface, with complete control of all user interactions
and inputs. This makes it very hard for a victim user to escape the
grip of such a malicious application. Even though at the time of this
writing the number of known samples performing GUI confusion
attacks is limited, we believe (as we will show in this paper) that
this is a real, currently unsolved, problem in the Android ecosystem.

This paper also introduces two novel approaches to defend



against GUI confusion attacks. The first approach leverages static
code analysis to automatically find apps that could abuse Android
APIs for GUI confusion attacks. We envision that this defense could
be deployed at the market level, identifying suspicious apps before
they hit the users. Interestingly, we detected that many benign apps
are using potentially-dangerous APIs, thus ruling out simple API
modifications as a defense mechanism.

Our static analysis approach is effective in identifying potentially-
malicious apps. More precisely, our technique detects apps that
interfere with the UI in response to some action taken by the user
(or another app). The apps that we detect in this fashion fulfill two
necessary preconditions of GUI confusion attacks: They monitor the
user and other apps, and they interfere with the UI (e.g., by stealing
the focus and occupying the top position on the screen). However,
these two conditions are not sufficient for GUI confusion attacks. It
is possible that legitimate apps monitor other apps and interfere with
the UI. As an example, consider an “app-locker” program, which
restricts access to certain parts of the phone (and other apps). When
looking at the code, both types of programs (that is, malicious apps
that launch GUI confusion attacks as well as app-lockers) look very
similar and make use of the same Android APIs. The difference is in
the intention of the apps, as well as the content they display to users.
Malicious apps will attempt to mimic legitimate programs to entice
the user to enter sensitive data. App-lockers, on the other hand, will
display a screen that allows a user to enter a PIN or a password to
unlock the phone. These semantic differences are a fundamental
limitation for detection approaches that are purely code-based.

To address the limitations of code-based detection, we devised
a second, on-device defense. This approach relies on modifications
to the Android UI to display a trusted indicator that allows users
to determine which app and developer they are interacting with,
attempting to reuse security habits and training users might already
have. To this end, we designed a solution (exemplified in Figure 1)
that follows two well-accepted paradigms in web security:

• the Extended Validation SSL/TLS certification and visualization
(the current-best-practice solution used by critical businesses to
be safely identified by their users)

• the use of a “secure-image” to established a shared secret between
the user interface and the user (similarly to what is currently
used in different websites [7], [8] and recently proposed for the
Android keyboard [9])

We evaluate the effectiveness of our solution with a user study
involving 308 human subjects. We provided users with a system
that implements several of our proposed defense modifications, and
verified that the success ratio of the (normally invisible) deception
attacks significantly decreases.

To summarize, the main contributions of this paper are:

• We systematically study and categorize the different techniques
an attacker can use to mount GUI deception attacks. We describe
several new attack vectors that we found, and we introduce a tool
to automatically explore reachable GUI states and identify the
ones that can be used to mount an attack. This tool was able to
automatically find two vulnerabilities in the Android framework
that allow an app to gain full control of a device’s UI.

• We study, using static analysis, how benign apps legitimately use
API calls that render these attacks possible. Then, we develop
a detection tool that can identify their malicious usage, so that
suspicious apps can be detected at the market level.

Fig. 1: Comparison between how SSL Extended Validation
information is shown in a modern Browser (Chrome 33) and what
our implemented defense mechanism shows on the navigation bar
of an Android device.

• We propose an on-device defense that allows users to securely
identify authors of the apps with which they interact. We compare
our solution with the current state of the art, and we show that
our solution has the highest coverage of possible attacks.

• In a user study with 308 subjects, we evaluate the effectiveness
of these attack techniques, and show that our on-device defense
helps users in identifying attacks.

For the source code of the proof-of-concept attacks we
developed and the prototype of the proposed on-device defense,
refer to our repository1.

II. BACKGROUND

To understand the attack and defense possibilities in the Android
platform, it is necessary to introduce a few concepts and terms.

The Android platform is based on the Linux operating system
and it has been designed mainly for touchscreen mobile devices.
Unless otherwise noted, in this paper we will mainly focus on
Android version 4.4. When relevant, we will also explain new
features and differences introduced by Android 5.0 (the latest
available version at the time of writing).

In an Android device, apps are normally pre-installed
or downloaded from the Google Play Store or from another
manufacturer-managed market, although manual offline installation
and unofficial markets can also be used. Typically, each app runs iso-
lated from others except for well-defined communication channels.

Every app is contained in an apk file. The content of this file
is signed to guarantee that the app has not been tampered with and
that it is coming from the developer that owns the corresponding
private key. There is no central authority, however, to ensure that
the information contained in the developer’s signing certificate is
indeed accurate. Once installed on a device, an app is identified by
its package name. It is not possible to install apps with the same
package name at the same time on a single device.

Apps are composed of different developer-defined components.
Specifically, four types of components exist in Android: Activity,
Service, Broadcast Receiver, and Content Provider. An Activity
defines a graphical user interface and its interactions with user’s
actions. Differently, a Service is a component running in background,
performing long-running operations. A Broadcast Receiver is a
component that responds to specific system-wide messages. Finally,
a Content Provider is used to manage data shared with other
components (either within the same app or with external ones).

1https://github.com/ucsb-seclab/android ui deception
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Fig. 2: Typical Android user interface appearance. The status bar
is at the top of the screen, while the navigation bar occupies the
bottom. A browser app is open, and its main Activity is shown in
the remaining space.

To perform sensitive operations (e.g., tasks that can cost money
or access private user data), apps need specific permissions. All
the permissions requested by a non-system app must be approved
by the user during the app’s installation: a user can either grant all
requested permissions or abort the installation. Some operations
require permissions that are only granted to system apps (typically
pre-installed or manufacturer-signed). Required permissions,
together with other properties (such as the package name and
the list of the app’s components), are defined in a manifest file
(AndroidManifest.xml), stored in the app’s apk file.

A. Android graphical elements

Figure 2 shows the typical appearance of the Android user
interface on a smartphone. The small status bar, at the top, shows
information about the device’s state, such as the current network
connectivity status or the battery level. At the bottom, the navigation
bar shows three big buttons that allow the user to “navigate” among
all currently running apps as well as within the focused app.

Details may vary depending on the manufacturer (some devices
merge the status and navigation bars, for instance, and legacy devices
may use hardware buttons for the navigation bar). In this work we
will use as reference the current guidelines2, as they represent a
typical modern implementation; in general, our considerations can
be adapted to any Android device with minor modifications.

2http://developer.android.com/design/handhelds/index.html ,
http://developer.android.com/design/patterns/compatibility.html

Apps draw graphical elements by instantiating system-provided
components: Views, Windows, and Activities.

Views. A View is the basic UI building block in Android.
Buttons, text fields, images, and OpenGL viewports are all examples
of views. A collection of Views is itself a View, enabling hierarchical
layouts.

Activities. An Activity can be described as a controller in a
Model-View-Controller pattern. An Activity is usually associated
with a View (for the graphical layout) and defines actions that happen
when the View elements are activated (e.g., a button gets clicked).

Activities are organized in a global stack that is managed by the
ActivityManager system Service. The Activity on top of the stack
is shown to the user. We will call this the top Activity and the app
controlling it the top app.

Activities are added and removed from the Activity stack in
many situations. Each app can reorder the ones it owns, but separate
permissions are required for global monitoring or manipulation.
Users can request an Activity switch using the navigation bar buttons:

• The Back button (bottom left in Figure 2) removes the top Activity
from the top of the stack, so that the one below is displayed. This
default behavior can be overridden by the top Activity.

• The Home button lets the user return to the base “home” screen,
usually managed by a system app. A normal app can only replace
the home screen if the user specifically allows this.

• The Recent button (bottom right in Figure 2) shows the list of
top Activities of the running apps, so the user can switch among
them. Activities have the option not to be listed. In Android 5.0,
applications can also decide to show different thumbnails on
the Recent menu (for instance, a browser can show a different
thumbnail in the Recent menu for each opened tab).

Windows. A Window is a lower-level concept: a virtual surface
where graphical content is drawn as defined by the contained Views.
In Figure 2, the Status Bar, the Navigation Bar and the top Activity
are all drawn in separate Windows. Normally, apps do not explicitly
create Windows; they just define and open Activities (which in
turn define Views), and the content of the top Activity is drawn in
the system-managed top-activity Window. Windows are normally
managed automatically by the WindowManager system Service,
although apps can also explicitly create Windows, as we will show
later.

III. GUI CONFUSION ATTACKS

In this section, we discuss classes of GUI confusion attacks
that allow for launching stealthy and effective phishing-style or
click-jacking-style operations.

In our threat model, a malicious app is running on the victim’s
Android device, and it can only use APIs that are available to any
benign non-system app. We will indicate when attacks require par-
ticular permissions. We also assume that the base Android operating
system is not compromised, forming a Trusted Computing Base.

We have identified several Android functionalities (Attack
Vectors, categorized in Table I) that a malicious app can use to
mount GUI confusion attacks. We have also identified Enhancing
Techniques: abilities (such as monitoring other apps) that do not
present a GUI security risk in themselves, but can assist in making
attacks more convincing or stealthier.



TABLE I: Attack vectors and enhancing techniques. We indicate
with a dash attacks and techniques that, to the best of our knowledge,
have not been already mentioned as useful in GUI confusion attacks.

Category Attack vector Mentioned in

Draw on top
UI-intercepting draw-over [3], [5]
Non-UI-intercepting draw-over [3], [4], [5]
Toast message [3], [10]

App switch

startActivity API [6]
Screen pinning —
moveTaskTo APIs —
killBackgroundProcesses API —
Back / power button (passive) —
Sit and wait (passive) —

Fullscreen
non-“immersive” fullscreen —
“immersive” fullscreen —
“inescapable” fullscreen —

Enhancing
techniques

getRunningTask API [5]
Reading the system log [11]
Accessing proc file system [6], [12]
App repackaging [13], [14], [15]

A. Attack vectors

1) Draw on top: Attacks in this category aim to draw graphical
elements over other apps. Typically, this is done by adding graphical
elements in a Window placed over the top Activity. The Activity
itself is not replaced, but malware can cover it either completely
or partially and change the interpretation the user will give to certain
elements.

Apps can explicitly open new Windows and draw content in
them using the addView API exposed by the WindowManager
Service. This API accepts several flags that determine how the new
Window is shown (for a complete description, refer to the original
documentation3). In particular, flags influence three different aspects
of a Window:

• Whether it is intercepting user input or is letting it “pass through”
to underlying Windows.

• Its type, which determines the Window’s Z-order with respect
to others.

• The region of the screen where it is drawn.

Non-system apps cannot open Windows of some types, while
Windows with a higher Z-order than the top-activity Window
require the SYSTEM ALERT WINDOW permission.

Windows used to display toasts, text messages shown for a
limited amount of time, are an interesting exception. Intended to
show small text messages even when unrelated apps control the
main visualization, toast messages are usually created with specific
APIs and placed by the system in Windows of type TOAST, drawn
over the top-activity Window. No specific permission is necessary

3http://developer.android.com/reference/android/view/WindowManager.Layou
tParams.html

to show toast messages. Their malicious usage has been presented
by previous research (refer to Table I).

Two other types of attack are possible:

• UI-intercepting draw-over: A Window spawned using, for
instance, the PRIORITY PHONE flag can not only overlay the
top-activity Window with arbitrary content, but also directly steal
information by intercepting user input.

• Non UI-intercepting draw-over: By forwarding all user input
to the underlying Windows, classical “click-jacking” attacks are
possible. In these attacks, users are lured to perform an unwanted
action while thinking they are interacting with a different element.

2) App switch: Attacks that belong to this category aim to
steal focus from the top app. This is achieved when the malicious
app seizes the top Activity: that is, the malicious app replaces the
legitimate top Activity with one of its own. The malicious app that
we developed for our user study (Section VII) uses an attack in this
category: it waits until the genuine Facebook app is the top app, and
then triggers an app switch and changes its appearance to mimic
the GUI of the original Facebook app.

Replacing the currently running app requires an active app
switch. Passive app switches are also possible: in this case, the
malicious application does not actively change the Activity stack,
nor it shows new Windows, but it waits for specific user’s input.

We have identified several attack vectors in this category:

startActivity API. New Activities are opened using the
startActivity API. Normally, the newly opened Activity does not
appear on top of Activities of other apps. However, under particular
conditions the spawned Activity will be drawn on top of all the
existing ones (even if belonging to different apps) without requiring
any permission. Three different aspects determine this behavior: the
type of the Android component from which the startActivity API
is called, the launchMode attribute of the opened Activity, and flags
set when startActivity is called.

Given the thousands of different combinations influencing this
behavior and the fact that the official documentation4 does not state
clearly when a newly Activity will be placed on top of other apps’
Activities, we decided to develop a tool to systematically explore
the conditions under which this happens.

Our tool determined that opening an Activity from a Service,
a Broadcast Receiver, or a Content Provider will always place it
on top of all the others, as long as the NEW TASK flag is specified
when the startActivity API is called. Alternatively, opening an
Activity from another one will place the opened Activity on top
of all the others if the singleInstance launch mode is specified. In
addition, our tool found other, less common, situations in which
an Activity is placed on top of all the others. For more details and
a description of our tool, refer to Section IV-A.

moveTaskTo APIs. Any app with the REORDER TASKS
permission can use the moveTaskToFront API to place Activities
on top of the stack. We also found another API, moveTaskToBack,
requiring the same permission, to remove another app from the top
of the Activity stack.

Screen pinning. Android 5.0 introduces a new feature called
“screen pinning” that locks the user interaction to a specific app.
Specifically, while the screen is “pinned,” there cannot be any switch

4http://developer.android.com/guide/components/tasks-and-back-stack.html



to a different application (the Home button, the Recent button, and
the status bar are hidden). Screen pinning can be either manually en-
abled by a user or programmatically requested by an app. In the latter
case, user confirmation is necessary, unless the app is registered as a
“device admin” (which, again, requires specific user confirmation).

killBackgroundProcesses API. This API (requiring the
KILL BACKGROUND PROCESSES permission) allows killing
the processes spawned by another app. It can be used maliciously
to interfere with how benign apps work: besides mimicking their
interface, a malicious app could also prevent them from interacting
with the user. Android does not allow killing the app controlling
the top Activity, but other attack vectors can be used to first remove
it from the top of the stack.

Back/Power Button. A malicious app can also make the user
believe that an app switch has happened when, in fact, it has not.
For example, an app can intercept the actions associated with the
back button. When the user presses the back button, she expects
one of two things: either the current app terminates, or the previous
Activity on the stack is shown. A malicious app could change its
GUI to mimic its target (such as a login page) in response to the user
pressing the back button, while at the same time disabling the normal
functionality of the back button. This might make the user believe
that an app switch has occurred, when, in fact, she is still interacting
with the malicious app. A similar attack can be mounted when the
user turns off the screen while the malicious app is the top app.

Sit and Wait. When a malicious app is in the background, it
can change its GUI to that of a victim app, so that when the user
switches between apps looking, for example, for the legitimate
banking application, she could inadvertently switch to the malicious
version instead. This type of attack is known in the browser world
as tabnabbing [16].

3) Fullscreen: Android apps have the possibility to enter the so
called fullscreen mode, through which they can draw on the device’s
entire screen area, including the area where the navigation bar is
usually drawn. Without proper mitigations, this ability could be
exploited by malicious apps, for example, to create a fake home
screen including a fake status bar and a fake navigation bar. The
malicious app would therefore give the user the impression she is
interacting with the OS, whereas her inputs are still intercepted by
the malicious app.

Android implements specific mitigations against this threat [17]:
An app can draw an Activity on the entire screen, but in principle
users always have an easy way to close it and switch to another
app. Specifically, in Android versions up to 4.3, the navigation bar
appears on top of a fullscreen Activity as soon as the user clicks
on the device screen. Android 4.4 introduces a new “immersive”
fullscreen mode in which an Activity remains in fullscreen mode
during all interactions: in this case, the navigation bar is accessed
by performing a specific “swipe” gesture.

Given the large number of possible combinations of flags that
apps are allowed to use to determine the appearance of a Window
in Android, these safety functionalities are intrinsically difficult
to implement. In fact, the implementation of the Android APIs in
charge of the creation and display of Windows has thousands of lines
of code, and bugs in this APIs are likely to enable GUI confusion
attacks. Therefore, we used our API exploration tool to check if it
is possible to create a Window that covers the entire device’s screen
area (including the navigation bar) without giving any possibility

to the user to close it or to switch to another application. We call a
Window with these properties an “inescapable” fullscreen Window.

Our tool works by spawning Windows with varying input
values of GUI-related APIs and, after each invocation, determines
whether an “inescapable” fullscreen mode is entered. By using it,
several such combinations were found, thus leading to the discovery
of vulnerabilities in different Android versions. Upon manual
investigation, we found that Google committed a patch5 to fix a bug
present in Android 4.3; however, our tool pointed out that this fix
does not cover all possible cases. In fact, we found a similar problem
that affects Android versions 4.4 and 5.0. We notified Google’s
Security Team: a review is in progress at the time of this writing.

Section IV-B presents more technical details about the tool we
developed and its findings.

There is effectively no limit to what a malicious programmer
can achieve using an “inescapable” fullscreen app. For instance, one
can create a full “fake” environment that retains full control (and
observation powers) while giving the illusion of interacting with
a regular device (either by “proxying” app Windows or by relaying
the entire I/O to and from a separate physical device).

B. Enhancing techniques

Additional techniques can be used in conjunction with the
aforementioned attack vectors to mount more effective attacks.

1) Techniques to detect how the user is currently interacting with
the system: To use the described attack vectors more effectively, it
is useful for an attacker to know how the user is currently interacting
with the device.

For instance, suppose again that a malicious app wants to steal
bank account credentials. The most effective way would be to
wait until the user actually opens the specific login Activity in the
original app and, immediately after, cover it with a fake one. To do
so, it is necessary to know which Activity and which app the user
is currently interacting with.

We have identified a number of ways to do so: some of them
have been disabled in newer Android versions, but others can still
be used in the latest available Android version.

Reading the system log. Android implements a system log
where standard apps, as well as system Services, write logging and
debugging information. This log is readable by any app having the
relatively-common READ LOGS permission (see Table IV in the
next section). By reading messages written by the ActivityManager
Service, an app can learn about the last Activity that has been drawn
on the screen.

Moreover, apps can write arbitrary messages into the system log
and this is a common channel used by developers to receive debug
information. We have observed that this message logging is very
commonly left enabled even when apps are released to the public,
and this may help attackers time their actions, better reproduce the
status of an app, or even directly gather sensitive information if
debug messages contain confidential data items.

Given the possible malicious usage of this functionality, an app
can only read log messages created by itself in Android version 4.1
and above.

5https://android.googlesource.com/platform/frameworks/base/+/b816bed



getRunningTasks API. An app can get information about
currently running apps by invoking the getRunningTasks API. In
particular, it is possible to know which app is on top and the name
of the top Activity. The relatively-common GET TASKS permission
is required to perform such queries.

The functionality of this API has been changed in Android
5.0, so that an app can only use it to get information about its own
Activities. For this reason, in Android 5.0 this API cannot be used
anymore to detect which application is currently on top.

Accessing the proc file system. It is possible to get similar
information by reading data from the proc file system, as previous
research [6], [12] studied in detail both in a generic Linux system
and in the specific setup of an Android device.

For instance, an app can retrieve the list of running applications
by listing the /proc directory and reading the content of the file:
/proc/<process pid>/cmdline. However, most of the apps have
a process running in the background even when a user is not
interacting with them, so this information cannot be used to detect
the app showing the top Activity.

More interestingly, we have identified a technique to detect
which is the app the user is currently interacting with. In particular,
the content of the file /proc/<process pid>/cgroups changes (from
“/apps/bg non interactive” to “/apps”) when the app on top is run by
the<process pid>. This is due to the fact that Android (using Linux
cgroups) uses the specific “/apps” scheduling category for the app
showing the top activity. We have tested this technique in Android
5.0 and, to the best of our knowledge, we are the first one pointing
out the usage of this technique for GUI-related attacks in Android.

Finally, as studied in [6], by reading the content of
/proc/<process pid>/statm, an application can infer the graphical
state of another app, and precisely identify the specific Activity with
which a user is interacting.

2) Techniques to create graphical elements mimicking already
existing ones: To effectively replace an Activity of a “victim
app,” a convincing copy is necessary. Of course, an attacker could
develop a malicious app from scratch with the same graphical
elements as the original one. However, it is also possible to take
the original app, change its package name, and just add the attack
and information-gathering code.

The procedure of modifying an existing app (called repackaging)
is well-known in the Android ecosystem. In the context of this
paper, repackaging is a useful technique to expedite development
of interfaces that mimic those of other apps. Note, however, that
the attacks described in this section are entirely possible without
repackaging. Detecting and defending from repackaging is outside
the scope of this paper.

C. Attack app examples

In practice, malicious apps can combine multiple attack vectors
and enhancing techniques to mount stealthy attacks. For instance,
the attack app we implemented for our user study portraits itself
as a utility app. When launched, it starts to monitor other running
apps, waiting until the user switches to (or launches) the Facebook
app. When that happens, it uses the startActivity API to spawn a
malicious app on top of the genuine Facebook app. The malicious
app is a repackaged version of the actual Facebook app, with the
additional functionality that it leaks any entered user credentials to

TABLE II: Component types, flags, and launchMode values tested
by our tool

Component type Activity, Service, Content Provider, Broadcast Receiver

launchMode
attribute

standard, singleTop, singleTask, singleInstance

startActivity flags MULTIPLE TASK, NEW TASK, CLEAR TASK,
CLEAR TOP, PREVIOUS IS TOP,
REORDER TO FRONT, SINGLE TOP,
TASK ON HOME

a remote location. To be stealthier, it informs Android that it should
not be listed in the Recent Apps view.

We also developed a proof-of-concept malicious app that covers
and mimics the home screen of a device, and demonstration videos.
The displayed attack uses the “immersive” fullscreen functionality,
but it can be easily adapted to use the “inescapable” fullscreen mode
described in Section III-A3.

IV. STATE EXPLORATION OF THE ANDROID GUI API

We have developed a tool to study how the main Android
GUI APIs can be used to mount a GUI confusion attack. The tool
automatically performs a full state exploration of the parameters
of the startActivity API, which can be used to open Activities on
top of others (including Activities of different apps). Also, our tool
systematically explores all Window-drawing possibilities, to check
if it is possible to create Windows that:

1) entirely cover the device’s screen;
2) leave the user no way to close them or access the navigation bar.

In the following two sections, we will explain our tool in detail,
and we will show what it has automatically found.

A. Study of the startActivity API

First, using the documentation and the source code as references,
we determined that three different aspects influence how a
newly-started Activity is placed on the Activities’ stack:

• The type of Android component calling startActivity.
• The launchMode attribute of the opened Activity.
• Flags passed to startActivity.

Table II lists the possible Android component types, all the
relevant flags and launchMode values an app can use.

Our tool works by first opening a “victim” app that controls the
top Activity. A different “attacker” app then opens a new Activity
calling the startActivity API with every possible combination of the
listed launch modes and flags. This API is called in four different
code locations, corresponding to the four different types of Android
components. Our tool then checks if the newly-opened Activity has
been placed on top of the “victim” app, by taking a screenshot and
analyzing the captured image.

Our tool found, in Android version 4.4, the following three
conditions under which an Activity is drawn on top of every other:

1) The Activity is opened by calling the startActivity API from a
Service, a Broadcast Receiver, or a Content Provider and the
NEW TASK flag is used.



TABLE III: Window types and flags. Flags in italics are only
available starting from Android version 4.4, whereas TYPEs in
bold require the SYSTEM ALERT WINDOW permission.

TYPEs TOAST, SYSTEM ERROR, PHONE,
PRIORITY PHONE, SYSTEM ALERT,
SYSTEM OVERLAY

Layout flags IN SCREEN, NO LIMITS,

System-UI
Visibility flags

HIDE NAVIGATION, FULLSCREEN,
LAYOUT HIDE NAVIGATION,
LAYOUT FULLSCREEN, IMMERSIVE,
IMMERSIVE STICKY

2) The Activity is opened by calling the startActivity API from
another Activity and it has the singleInstance launch mode.

3) The Activity is opened by calling the startActivity API from
another Activity and one of the following combinations of
launch modes and flags is used:
• NEW TASK and CLEAR TASK flags.
• NEW TASK and MULTIPLE TASK flags, and launch mode

different from singleTask.
• CLEAR TASK flag and singleTask launch mode.

We are only aware of one previous paper [6] that (manually)
studies the behavior of this API for different parameters and under
different conditions. Interestingly, the authors do not find all the
conditions that we discovered. This underlines how the complexity
of the Android API and omissions in the official documentation
are prone to creating unexpected behaviors that are triggered using
undocumented combinations of flags and APIs. Such behaviors
are hard to completely cover through manual investigation. Hence,
our API exploration tool can effectively help Android developers to
detect these situations. As one example, we will now discuss how our
tool revealed the existence of an “inescapable” fullscreen possibility.

B. Study of “inescapable” fullscreen Windows

We first checked the documentation and source code to
determine the three different ways in which an app can influence
the appearance of a Window that are relevant to our analysis:

• Modifying the Window’s TYPE.
• Specifying certain flags that determine the Window’s layout.
• Calling the setSystemUiVisibility API with specific flags to

influence the appearance and the behavior of the navigation bar
and the status bar.

Table III lists all the relevant flags and Window types an app can use.

Our tool automatically spawns Windows with every possible
combination of the listed types and flags. After spawning each
Window, it injects user input that should close a fullscreen Window,
according to the Android documentation (e.g., a “slide” touch from
the top of the screen). It then checks if, after the injection of these
events, the Window is still covering the entire screen, by taking a
screenshot and analyzing the captured image.

Using our tool we were able to find ways to create an
“inescapable” fullscreen Window in Android 4.3, 4.4 and 5.0, which
we will now briefly describe.

In particular, a Window of type SYSTEM ERROR created with
the flag NO LIMITS, can cover the device’s entire screen in Android

4.3. To specifically address this problem, a patch has been committed
in the Android code before the release of the version 4.4. This patch
limits the position and the size of a Window (so that it cannot cover
the navigation bar) if it has this specific combination of type and flag.

However, this patch does not cover all the cases. In fact, the
“immersive” fullscreen mode introduced in Android 4.4 opens
additional ways to create “inescapable” fullscreen Windows,
such as using the SYSTEM ERROR type and then calling the
setSystemUiVisibility API to set the LAYOUT HIDE NAVIGA-
TION, HIDE NAVIGATION, LAYOUT FULLSCREEN, and
IMMERSIVE STICKY flags. We verified that the same parameters
create an “inescapable” fullscreen Window in Android 5.0 as well.

It is important to notice that all the ways we discovered to
create “inescapable” fullscreen Windows require using the SYS-
TEM ERROR type. To fully address this problem, we propose re-
moving this type or restricting its usage only to system components.

V. DETECTION VIA STATIC ANALYSIS

We developed a static analysis tool to explore how (and whether)
real-world apps make use of the attack vectors and enhancing
techniques that we previously explained in Section III. Our goals
with this tool are two-fold:

1) Study if and how the techniques described in Section III are used
by benign apps and/or by malicious apps, to guide our defense
design.

2) Automatically detect potentially-malicious usage of such
techniques.

A. Tool description

Our tool takes as input an app’s apk file and outputs a summary
of the potentially-malicious techniques that it uses. In addition, it
flags an app as potentially-malicious if it detects that the analyzed
app has the ability to perform GUI confusion attacks.

Specifically, it first checks which permissions the app requires
in its manifest. It then extracts and parses the app’s bytecode,
and it identifies all the invocations to the APIs related to the
previously-described attack techniques. Then, the tool applies
backward program slicing techniques to check the possible values
of the arguments for the identified API calls. The results of the static
analyzer are then used to determine whether a particular technique
(or a combination of them) is used by a given application. Finally,
by analyzing the app’s control flow, it decides whether to flag it as
(potentially) malicious.

In this section, we will discuss the static analyzer, the attack tech-
niques that we can automatically detect, and the results we obtained
by running the tool on a test corpus of over two thousand apps. We
would like to note that the implementation of the basic static analysis
tool (namely, the backward program slicer) is not a contribution
of this paper: We reused the one that Egele et al. developed for
Cryptolint [18], whose source code was kindly shared with us.

1) Program slicer: The slicer first decompiles the Dalvik
bytecode of a given app by using Androguard [19]. It then constructs
an over-approximation of the application’s call graph representing
all possible method invocations among different methods in the
analyzed app. Then, a backward slicing algorithm (based on [20])
is used to compute slices of the analyzed app. Given an instruction
I and a register R, the slicer returns a set of instructions that



can possibly influence the value of R. The slice is computed by
recursively following the def-use chain of instructions defining R,
starting from instruction I. If the beginning of a method is reached,
the previously-computed call graph is used to identify all possible
calling locations of that method. Similarly, when a relevant register
is the return value of another method call, the backward slicer
recursively continues its analysis from the return instruction of the
invoked method, according to the call graph.

As most of the static analysis tools focusing on Android, the
slicer may return incomplete results if reflection, class loading, or
native code are used. Dealing with such techniques is outside the
scope of this project.

2) Detecting potential attack techniques: In the following, we
describe how our tool identifies the different attack vectors and
enhancing techniques.

Draw on top. We detect if the addView API, used to create
custom Windows, is invoked with values of the TYPE parameter
that give to the newly-created Window a Z-order higher than that
of the top-activity Window.

In addition, to detect potentially-malicious usage of a toast
message, we first look for all the code locations where a toast
message is shown, and then we use the slicer to check if the setView
API is used to customize the appearance of the message. Finally,
we analyze the control flow graph of the method where the message
is shown to detect if it is called in a loop. In fact, to create a toast
message that appears as a persistent Window, it is necessary to call
the show API repeatedly.

App Switch. Our tool checks if:

• The startActivity API is used to open an Activity that will be
shown on top of others. As we already mentioned, three aspects
influence this behavior: the type of the Android component from
which the startActivity API is called, the launchMode attribute of
the opened Activity, and flags set when startActivity is called. We
determine the first aspect by analyzing the call graph of the app,
the launchMode is read from the app’s manifest file, whereas
the used flags are detected by analyzing the slice of instructions
influencing the call to the startActivity API.

• The moveTaskToFront API is used.
• The killBackgroundProcesses API is used.

We do not use as a feature the fact that an app is intercepting the
back or power buttons, as these behaviors are too frequent in benign
apps and, being passive methods, they have limited effectiveness
compared to other techniques.

Fullscreen. Our tool checks if the setUiVisibility API is called
with flags that cause it to hide the navigation bar.

Getting information about the device state. Our tool checks
if:

• The getRunningTasks API is used.
• The app reads from the system log. Specifically, since the native

utility logcat is normally used for this purpose, we check if
the Runtime.exec API is called specifying the string “logcat” as
parameter.

• The app accesses files in the /proc file system. We detect this by
looking for string constants starting with “/proc” within the app.

We did not use as a feature the fact that an app is a repackaged
version of another, as its usage, even if popular among malware, is

not necessary for GUI confusion attacks. If desired, our system can
be completed with detection methods as those presented in [13], [14].

During our study, we found that some apps do not ask (on
installation) for the permissions that would be necessary to call
certain APIs for which we found calls in their code. For instance,
we found some applications that contain calls to the getRunningTask
API, without having the GET TASKS permission. The reason
behind this interesting behavior is that this API is called by library
code that was included (but never used) in the app.

In the threat model we consider for this paper, we assume that
the Android security mechanisms are not violated. So, calling an
API that requires a specific permission will fail if the app does not
have it. For this reason, we do not consider an app as using one of
the analyzed techniques if it lacks the necessary permissions.

Since the version 5.0 of Android has been released too close to
the time of the writing of this paper, we expect only a very limited
(and not statistically significant) number of applications using
techniques introduced in this version. For this reason, we decided
not to implement the detection of the techniques only available in
Android 5.0.

App classification. We classify an app as suspicious if the
following three conditions hold:

1) The app uses a technique to get information about the device
state.

2) The app uses an attack vector (any of the techniques in the Draw
on top, App Switch, Fullscreen categories)

3) There is a path in the call graph of the app where Condition 1
(check on the running apps) happens, and then Condition 2 (the
attack vector) happens.

Intuitively, the idea behind our classification approach is that, to
perform an effective attack, a malicious app needs to decide when to
attack (Condition 1) and then how to attack (Condition 2). Also, the
check for when an attack should happen is expected to influence the
actual launch of this attack (hence, there is a control-flow dependency
of the attack on the preceding check, captured by Condition 3).

It is important to note that our tool (and the classification rules)
are designed to identify the necessary conditions to perform a GUI
confusion attack. That is, we expect our tool to detect any app
that launches a GUI confusion attack. However, our classification
rules are not sufficient for GUI confusion attacks. In particular, it
is possible that our tool finds a legitimate app that fulfills our static
analysis criteria for GUI confusion attacks. Consider, for example,
applications of the “app-locker” category. These apps exhibit a
behavior that is very similar to the attacks described in Section III.
They can be configured to “securely lock” (that is, disable) certain
other apps unless a user-defined password is inserted. To this end,
they continuously monitor running applications to check if one of
the “locked” apps is opened and, when this happens, they cover
it with a screen asking for an unlock password. At the code level,
there is no difference between such apps and malicious programs.
The difference is in the intent of the program, and the content shown
to users when the app takes control of the screen.

We envision that our tool can be used during the market-level vet-
ting process to spot apps that need manual analysis since they could
be performing GUI confusion attacks. App-lockers would definitely
need this analysis to check whether they are behaving according to
their specification. In the following evaluation, we do not count app-
lockers and similar programs as false positives. Instead, our system



has properly detected an app that implements functionality that is
similar to (and necessary for) GUI confusion attacks. The final deci-
sion about the presence of a GUI confusion attack has to be made by
a human analyst. The reason is that static code analysis is fundamen-
tally unable to match the general behavior of an app (and the content
that it displays) to user expectations. Nonetheless, we consider our
static analysis approach to be a powerful addition to the arsenal of
tools that an app store can leverage. This is particularly true under the
assumption that the number of legitimate apps that trigger our static
detection is small. Fortunately, as shown in the next section, this
assumption seems to hold, considering that only 0.4% of randomly
chosen apps trigger our detection. Thus, our tool can help analysts to
focus their efforts as part of the app store’s manual vetting process.

One possibility to address the fundamental problem of static code
analysis is to look at the app description in the market6. However,
this approach is prone to miss malicious apps, as cybercriminals
can deceive the detection system with a carefully-crafted description
(i.e., disguising their password-stealer app as an app-locker).

A second possibility to address this fundamental problem
is to devise a defense mechanism that empowers users to make
proper decisions. One proposal for such a defense solution is based
on the idea of a trusted indicator on the device that reliably and
continuously informs a user about the application with which she is
interacting. We will discuss the details of this solution in Section VI.

B. Results

We ran our tool on the following four sets of apps:

1) A set of 500 apps downloaded randomly from the Google Play
Store (later called benign1).

2) A set of 500 apps downloaded from the “top free” category on
the Google Play Store (later called benign2).

3) A set of 20 apps described as app-lockers in the Google Play
Store (later called app-locker).

4) A set of 1,260 apps from the Android Malware Genome project
[22] (later called malicious).

The top part of Table IV shows the usage of five key permissions
that apps would need to request to carry out various GUI confusion
attacks, for each of the four different data sets we used to evaluate
our tool. From this data, it is clear that three out of five permissions
are frequently used by benign applications. As a result, solely
checking for permissions that are needed to launch attacks cannot
serve as the basis for detection, since they are too common.

The bottom part of Table IV details how frequently apps call
APIs associated with the different techniques. Again, just looking
at API calls is not enough for detection. Consider a simplistic
(grep-style) approach that detects an app as suspicious when it
uses, at least once, an API to get information about the state of the
device and one to perform an attack vector. This would result in
an unacceptable number of incorrect detections. Specifically, this
approach would result in classifying as suspicious 33 apps in the
benign1 (6.6%) set and 95 in the benign2 set (19.0%).

On the benign1 set, our tool flagged two apps as suspicious.
Manual investigation revealed that these applications monitor
the user’s Activity and, under specific conditions, block normal
user interaction with the device. Even though these samples do

6A similar concept has been explored in Whyper [21], a tool to examine whether
app descriptions indicate the reason why specific permissions are required.

Fig. 3: A screenshot acquired while the sample of the svpeng
malware family, detected by our tool, is attacking the user. The
Activity shown in the picture (asking, in Russian, to insert credit
card information) is spawned by the malware while the user is on
the official Google Play Store. Data entered in this Activity is then
sent to a malicious server.

not perform a GUI confusion attack (since they do not mimic
the appearance of another application), they are both app-lockers.
Hence, we expect our tool to report them.

On the benign2 set, the tool detected 26 applications. When
reviewing these apps, we found that two of them are app-lockers, ten
of them are chat or VOIP apps, which display custom notifications
using a separate mechanism than the status bar (such as stealing
focus on an incoming phone call), four are games with disruptive ads,
and four are “performance enhancers” (which monitor and kill the
background running apps and keep a persistent icon on the screen).
We also detected two anti-virus programs (which jump on top when
a malicious app is detected) and one (annoying) keyboard app that
jumps on top to offer a paid upgrade. We also had three false pos-
itives; two apps that could be used to take pictures, and one browser.
These three apps satisfy the three conditions used to flag an app as
potentially-malicious, but they do not interfere with the device’s GUI.

The difference between results on sets benign2 and benign1 is
due to the fact that popular apps are significantly bigger and more
complex than the randomly-selected ones. In general, they do more
and call a larger variety of APIs. Nonetheless, the total number of
apps that would need to be manually analyzed is small, especially
considering the set of random apps. Hence, an app store could use
our system to perform a pre-filtering to check for apps that can
potentially launch GUI confusion attacks, and then use manual
analysis to confirm (or refute) this hypothesis.

To evaluate the detection capabilities (and false negative rate) of
our tool, we randomly downloaded from the Google Play Store a set
of 20 apps (called app-locker), described as app-lockers on the store.
Since, as previously explained, this category of applications exhibits
a behavior that is very similar to the attacks described in Section III,
we expected our tool to detect them all. Our tool detected 18



TABLE IV: Number of apps requesting permissions used by GUI confusion attacks and number of apps using each detected technique
in the analyzed data sets

permission name benign1 set benign2 set malicious set app-locker set

GET TASKS 32 6.4% 80 16.0% 217 17.2% 19 95.0%
READ LOGS 9 1.8% 35 7.0% 240 19.1% 13 65.0%

KILL BACKGROUND PROCESSES 3 0.6% 13 2.6% 13 1.0% 5 25.0%
SYSTEM ALERT WINDOW 1 0.2% 34 6.8% 3 0.2% 10 50.0%

REORDER TASKS 0 0.0% 4 0.8% 2 0.2% 2 10.0%

technique benign1 set benign2 set malicious set app-locker set

startActivity API 53 10.6% 135 27.0% 751 59.6% 20 100.0%
killBackgroundProcesses API 1 0.2% 8 1.6% 6 0.5% 4 20.0%

fullscreen 0 0.0% 22 4.4% 0 0.0% 1 5.0%
moveToFront API 0 0.0% 0 0.0% 1 0.1% 1 5.0%

draw over using addView API 0 0.0% 9 1.8% 0 0.0% 3 15.0%
custom toast message 0 0.0% 1 0.2% 0 0.0% 1 5.0%

getRunningTasks API 23 4.6% 68 13.6% 147 11.7% 19 95.0%
reading from the system log 8 1.6% 18 3.6% 28 2.2% 8 40.0%

reading from proc file system 3 0.6% 26 5.2% 43 3.4% 4 20.0%

TABLE V: Detection of potential GUI confusion attacks.

Dataset Total Detected Correctly Detected Notes

benign1 set 500 2 2 The detected apps are both app-lockers.

benign2 set 500 26 23 10 chat/voip app (jumping on top on an incoming phone call/message), 4 games (with disruptive
ads), 4 enhancers (background apps monitoring and killing, persistent on-screen icon over any app),
2 anti-virus programs (jumping on top when a malicious app is detected), 2 app-lockers, and 1
keyboard (jumping on top to offer a paid upgrade).

app-locker set 20 18 18 Of the two we are not detecting, one is currently inoperable, and the other has a data dependency
between checking the running apps and launching the attack (we only check for dependency in the
control flow).

malicious set 1,260 25 21 21 of the detected apps belong to the DroidKungFu malware family, which aggressively displays
an Activity on top of any other.

out of 20 samples. Manual investigation revealed that of the two
undetected samples, one is currently inoperable and the other has a
data dependency between checking the running apps and launching
the attack (we only check for dependency in the control flow).

Finally, we tested our tool on the malicious set of 1,260 apps
from the Android Malware Genome project [22]. Overall, most
current Android malware is trying to surreptitiously steal and
exfiltrate data, trying hard to remain unnoticed. Hence, we would
not expect many samples to trigger our detection. In this set, we
detected 25 apps as suspicious. Upon manual review, we found
that 21 of the detected samples belong to the malware family
DroidKungFu. These samples aggressively display an Activity on
top of any other, asking to the user to either grant them “superuser”
privileges or enable the “USB debugging” functionality (so that the
root exploit they use can work). Due to code obfuscation, we could
not confirm whether the other four samples were correct detections
or not. To be on the safe side, we count them as incorrect detections.

We also ran our tool on a sample of the svpeng [23] malware
family. To the best of our knowledge, this is the only Android
malware family that currently performs GUI confusion attacks.
Specifically, this sample detects when the official Google Play Store
is opened. At this point, as shown in Figure 3, the malicious sample
spawns an Activity, mimicking the original “Enter card details”
Activity. As expected, our tool was able to detect this malicious
sample. Furthermore, we tested our tool on an Android ransomware

sample known to interfere with the GUI (Android.Fakedefender).
As expected, our tool correctly flagged the app as suspicious, since
it uses an enhancing technique (detecting if the user is trying to
uninstall it) and an attack vector (going on top of the uninstall
Activity to prevent users from using it).

Finally, we used our tool to check for the “inescapable”
fullscreen technique. Our tool did not find evidence of its usage in
any of the analyzed sets. This suggests that removing the possibility
of using this very specific functionality (as we will propose in the
next section) will not break compatibility with existing applications.

VI. UI DEFENSE MECHANISM

As mentioned, we complete our defense approach with a system
designed to inform users and leave the final decision to them,
exploiting the fact that the Android system is not being fooled by
GUI attacks: Recall from Section II-A that all user-visible elements
are created and managed via explicit app-OS interactions.

What compromises user security (and we consider the root
cause of our attacks) is that there is simply no way for the user
to know with which application she is actually interacting. To
rectify this situation, we propose a set of simple modifications to
the Android system to establish a trusted path to inform the user
without compromising UI functionality.



TABLE VI: Examples of deception methods and whether defense systems protect against them.

Fernandes et al. [9] Chen et al. [6] Our on-device defense

Keyboard input to the wrong app 3 7 3

Custom input method to the wrong app (i.e., Google
Wallet’s PIN entry), on-screen info from the wrong app

Off by default, requires user interaction: The protection is
activated only if the user presses a specific key combination.

7 3

Covert app switch Keyboard only 3 (animation) 3

Faked app switch (through the back or power button) Keyboard only 7 3

“Sit and Wait” (passive appearance change) Keyboard only 7 3

Similar-looking app icon and name, installed through
the market

7 (the security indicator displays the similar-looking app icon
and name. No verification of the author of the app happens.)

7 3

Side-loaded app, with the same app icon and name
(possibly, through repackaging)

7 (the security indicator displays the original app icon and
name. No verification of the author of the app happens.)

7 3

Confusing GUI elements added by other apps (inter-
cepting or non-intercepting draw-over, toast messages)

Off by default, requires user interaction 7 3 (yellow lock)

Presenting deceptive elements in non-immersive
fullscreen mode

Off by default, requires user interaction 7 3

Presenting deceptive elements in immersive fullscreen
mode

Off by default, requires user interaction 7 3 (“secret image”)

In particular, our proposed modifications need to address three
different challenges:

1) Understanding with which app the user is actually interacting.
2) Understanding who the real author of that app is.
3) Showing this information to the user in an unobtrusive but

reliable and non-manipulable way.

Three independent components address these challenges. The
combination of the states of components one and two determines
the information presented to the user by component three.

Overall, two principles guided our choices:

• Offering security guarantees comparable with how a modern
browser presents a critical (i.e., banking) website, identifying
it during the entire interaction and presenting standard and
recognizable visual elements.

• Allowing benign apps to continue functioning as if our defense
were not in place, and not burdening the user with extra
operations such as continuously using extra button combinations
or requiring specific hardware modifications.

In particular, we wish to present security-conscious users with
a familiar environment consistent with their training, using the same
principles that brought different browser manufacturers to present
similar elements for HTTPS-protected sites without hiding them
behind browser-specific interactions.

An overview of the possible cases, how our system behaves
for each of them, and the analogy with the web browser world that
inspired our choices is presented in Table VII, while a more detailed
description of each of our three components will be presented in
the following sections.

Our implementation will be briefly described in Section VI-D,
whereas Table VI exemplifies deception methods and recaps how
users are defended by our system and those described in [9] and [6],
which target attacks similar to the ones we described (Section VIII
provides more details).

A. Which app is the user interacting with?

Normally, the top Activity (and, therefore, the top app) is the
target of user interaction, with two important exceptions:

1) Utility components such as the navigation bar and the status bar
(Section II-A) are drawn separately by the system in specific
Windows.

2) An app, even if not currently on top of the Activity stack, can di-
rect a separate Window to be drawn over the top-activity Window.

Interactions with utility components are very common and
directly mediated by the system. Thus, we can safely assume that
no cross-app interference can be created (the “Back” button in
the navigation bar, for instance, is exclusively controlled by the top
Activity) and we don’t need to consider them (Point 1) in our defense.

However, as exemplified in Section III, Windows shown by
different apps (Point 2) can interfere with the ability of a user to
interact correctly with the top app.

While we could prohibit their creation (and thus remove row 3
of Table VII), the ability to create “always-visible” Windows is used
by common benign apps: for instance, the “Facebook Messenger”
app provides the ability to chat while using other apps and it is
currently the most popular free app on the Google Play Store.
Therefore, we have decided to simply alert users of the fact that a
second app is drawing on top of the current top app, and leave them
free to decide whether they want this cross-app interaction or not.

The official Android system also provides a limited defense
mechanism:

1) As mentioned, a specific permission is necessary to create
always-visible custom Windows. If it is granted during
installation, no other checks are performed. It is impossible for
the top app to prevent extraneous content from being drawn
over its own Activities. Toasts are handled separately and do not
require extra permissions.

2) The top app can use the filterTouchesWhenObscured API on its
Views (or override the onFilterTouchEventForSecurity method)



TABLE VII: Possible screen states and how they are visualized.

if then
Resulting UI state Visualization Equivalent in browsers Visualization in browsers

no domain specified in the manifest Apps not associated with
any organization

Regular black navigation
bar

Regular HTTP pages no lock icon

Domain specified in the manifest,
successful verification,
no visible Windows from other apps

Sure interaction with a
verified app

Green lock and company
name

HTTPS verified page Green lock, domain name, and
(optionally) company name

Domain specified in the manifest,
successful verification,
visible Windows from other apps

Likely interaction with a
verified app, but external
elements are present

Yellow half-open lock Mixed HTTP and HTTPS
content

Varies with browsers, a yellow
warning sign is common

Domain specified in the manifest,
unknown validity,

Incomplete verification
(networking issues)

Red warning page,
user allowed to proceed

Self-signed or missing CA
certificate

Usually, red warning page,
user allowed to proceed

(other cases) Failed verification Red error page Failed verification Red error page

to prevent user input when content from other apps is present
at the click location.

Given the attack possibilities, however, these defenses are
not exhaustive for our purposes if not supplemented by the extra
visualization we propose, as they still allow any extraneous content
to be present over the top Activity. Moreover, the protection API
can create surprising incompatibilities with benign apps (such as
“screen darkeners”) that use semi-transparent Windows, and does
not prevent other apps’ Windows from intercepting interactions (that
is, it can protect only from Windows that “pass through” input).

The Android API could also be extended to provide more
information and leave developers responsible to defend their own
apps, but providing a defense mechanism at the operating system
level makes secure app development much easier and encourages
consistency among different apps.

B. Who is the real author of a given app?

In order to communicate to the user the fact that she is
interacting with a certain app, we need to turn its unique identifier
(the package name, as explained in Section II) into a message
suitable for screen presentation. This message must also provide
sufficient information for the user to decide whether to trust it with
sensitive information or not.

To this aim, we decided to show to the user the app’s developer
name and to rely on the Extended-Validation [24] HTTPS
infrastructure to validate it, since Extended-Validation represents
the current best-practice solution used by critical business entities
(such as banks offering online services) to be safely identified by
their users. As we will discuss in the following paragraphs, other
solutions could be used, but they are either unpractical or unsafe.

As a first example, the most obvious solution to identify an appli-
cation would be to show the app’s name as it appears in the market,
but we would need to rely on the market to enforce uniqueness and
trustworthiness of the names, something that the current Android
markets do not readily provide. The existence of multiple official and
unofficial markets and the possibility of installing apps via an apk
archive (completely bypassing the markets and their possible security
checks), make this a complex task. In fact, we observed several cases
in which apps mimic the name and the icon of other apps, even in
the official Google Play market: as an example, Figure 4 shows how
a search for the popular “2048” game returns dozens of apps with
very similar names and icons. For this reason, establishing a root

of trust to app names and icons (such as in [9]) is fundamentally
unreliable, as these are easily spoofed, even on the official market.

The only known type of vetting on the Google Play market
involves a staff-selected app collection represented on the market
with the “Top Developer” badge [25]. This is, to our knowledge, the
only case where market-provided names can be reasonably trusted.
Unfortunately, this validation is currently performed on a limited
amount of developers. Moreover, no public API exists to retrieve
this information. When an official method to automatically and
securely obtain this information is released, our system could be
easily adapted to show names retrieved from the market for certified
developers, automatically protecting many well-known apps.

Relying on market operators is not, however, the only possible
solution. The existing HTTPS infrastructure can be easily used
for the same effect. This system also allows users to transfer their
training from the browser to the mobile world: using this scheme,
the same name will be displayed for their bank, for instance,
whether they use an Android app or a traditional web browser.

As far as identifying the developer to the user, two main choices
are possible in the current HTTPS ecosystem. The first one simply
associates apps with domain names. We need to point out, however,
that domain names are not specifically designed to resist spoofing
and the lack of an official vetting process can be troublesome.

On the other hand, Extended-Validation (EV) certificates are
provided only to legally-established names (e.g., “PayPal, Inc.”),
relying on existing legal mechanisms to protect against would-be
fraudsters, thus preventing a malicious developer to use a name
mimicking the one of another (e.g., using the name “Facebuuk”
instead of “Facebook”). Extended-Validation certificate are the
current mechanism in use by web browsers to safely identify the
owner of a domain and they are available for less than $150 per
year: in general, a substantially lower cost than the one involved
in developing and maintaining any non-trivial application.

Concretely, to re-use a suitable HTTPS EV certification with
our protection mechanism, the developer simply needs to provide
a domain name (e.g., example.com) in a new specific field in
the app’s manifest file, and make a /app_signers.txt file
available on the website containing the authorized public keys.
During installation (and periodically, to check for revocations),
this file will be checked to ensure that the developer who signed



Fig. 4: A search for the popular “2048” game, returning several
“clones.” The app developed by the inventor of the game is listed
in fifth position.

the app7 is indeed associated with the organization that controls
example.com. If desired, developers can also “pin” the site
certificate in the app’s manifest.

It should be noted that several issues have been raised on
the overall structure of the PKI and HTTPS infrastructure (for a
summary see, for instance, [26]). Our defense does not specifically
depend on it: in fact, it should be kept in line with the best practices
in how secure sites and browsers interact.

C. Conveying trust information to the user

The two components we have described so far determine the
possible statuses of the screen, summarized in the first two columns
of Table VII. The three right columns of Table VII present our
choices, modeled after the user knowledge, training, and habit
obtained through web browsers, since the mobile environment
shares with them important characteristics:

• The main content can be untrusted and interaction with it can
be unsafe.

• It is possible for untrusted content to purport to be from reputable
sources and request sensitive user information.

• Cross-entity communications must be restricted and controlled
appropriately.

Browsers convey trust-related information to the user mainly
via the URL bar. Details vary among implementations, but it is
generally a user element that is always visible (except when the user
or an authorized page requests a fullscreen view) and that shows
the main “trusted” information on the current tab.

For a web site, the main trust information is the base domain
name and whether the page shown can actually be trusted to be from

7Recall that all apk archives must contain a valid developer signature, whose
public key must match the one used to sign the previous version during app updates.

that domain (determined by the usage of HTTPS, and shown by
a “closed lock” icon). A different element is shown when “mixed”
trusted-untrusted information is present. Also, the user is warned
that an attack may be in effect if the validation fails.

Most importantly, information presented in the URL bar is
directly connected to the page it refers to (pages cannot directly draw
on the URL bar, nor can they cause the browser to switch to another
tab without also changing information shown on the URL bar).

On the Android platform, we choose the navigation bar as the
“trusted” position that will behave like the URL bar. As browsers
display different URL bars for different tabs, we also dynamically
change information shown on the navigation bar: at every instant
in time, we make sure it matches the currently visible status (e.g.,
the bar changes as Activities are moved on top of the stack, no
matter how the transition was triggered). In other words, the security
indicators are always shown as long as the navigation bar is.

The navigation bar is in many ways a natural choice as a
“trusted” GUI in the Android interface, as apps cannot directly
modify its appearance and its functionality is vital to ensure correct
user interaction with the system (e.g., the ability for a user to go
back to the “home” page or close an app).

Fullscreen apps. To ensure our defense reliability and visibility,
our defense mechanism needs to deal with scenarios in which an
application hides the content of the navigation bar (on which we
show our security indicator) by showing a fullscreen Activity. This
allows a malicious application to render a fake navigation bar in
place of the original one.

For this reason, to further prove the authenticity of the
information shown by our defense system, we complemented our
system by using a “secret image” (also called security companion).
This image is chosen by the user among a hundred different
possibilities (images designed to be recognizable at a small size) and
it is displayed together with our lock indicator (see Figure 1) making
it impossible to correctly spoof it. In fact, a malicious application
has no way to know which is the secret image selected by the user.

This system is similar to the “SiteKey” or “Sign-in Seal”
mechanisms used by several websites to protect their login pages
(i.e., [7], [8]), with the considerable advantage that users are
constantly exposed to the same security companion whenever they
interact with verified apps or with the base system.

The user has the opportunity to select the secret image during
the device’s first-boot or by using a dedicated system application.
After that a secret image is selected, its functionality is briefly
explained to the user. To prevent a malicious application from
inferring the image chosen by the user, we store it in a location
unreadable by non-system applications.

In addition, we modify the system so that the chosen image
will not appear in screenshots (note that the Android screenshot
functionality is mediated by the operating system). Also note that
non-system applications cannot automatically take screenshots
without explicit user collaboration.

We also propose the introduction of a fullscreen mode which
still shows security indicators (but not the rest of the navigation bar),
in case apps designed for fullscreen operation wish to show their
credentials on some of their Activities.

Finally, we prevent applications from creating “inescapable”
fullscreen Windows, by simply removing the possibility to use the



specific Window’s type that makes it possible (refer to Section IV-B
for the technical details). As pointed out in Section V-B, we do not
expect this change in the current Android API to interfere with any
existing benign application.

D. Implementation

Our prototype is based on the Android Open Source Project
(AOSP) version of Android (tag android-4.4 r1.2). Some
components are implemented from scratch, others as modifications
of existing system Services.

The proposed modifications can be easily incorporated into
every modern Android version, since they are built on top of
standard, already existing, user-space Android components. Their
footprint is around 600 LOCs, and we ported them from Android
4.2 to 4.4 without significant changes.

Interaction-target app detection. This component retrieves
the current state of the Activity stack and identifies the top app,
by accessing information about the Activity stack (stored in the
ActivityManager Service).

We also check (via the WindowManager Service) if each
Window currently drawn on the device respects at least one of the
following three properties:

1) The Window has been generated by a system app.
2) The Window has been generated by the top app.
3) The Window has not been created with flags that assign it a

Z-order higher than that of the top-activity Window.

If all the drawn Windows satisfy this requirement, we can be
sure that user interaction can only happen with the top app or with
trusted system components. This distinguishes the second and third
row of Table VII.

Database and author verification Service. A constantly-
active system Service stores information about the currently installed
apps that purport to be associated with a domain name. This Service
authenticates the other components described in this section and
securely responds to requests from them.

This Service also performs the HTTPS-based author verification
as described previously8. The PackageManager system Service
notifies this component whenever a new app is installed.

User interaction modification. The navigation bar behavior
is modified to dynamically show information about the Activity
with which the user is interacting, as described in Table VII. We
also added a check in the ActivityManager Service to block apps
from starting when necessary (cases listed in the fourth and fifth
rows of Table VII).

VII. EVALUATION

We performed an experiment to evaluate:

• The effectiveness of GUI confusion attacks: do users notice
any difference or glitch when a malicious app performs a GUI
confusion attack?

• How helpful our proposed defense mechanism is in making the
users aware that the top Activity spawned by the attack is not
the original one.

8For our evaluation prototype, static trust information was used to demonstrate
attacks and defense on popular apps without requiring cooperation from their
developers.

(a) Task B1 and Task B2 (real Facebook app)

(b) Task Astd (non-fullscreen attack app)

(c) Task Afull (fullscreen, defense-aware, attack app)

Fig. 5: Appearance of the navigation bar for subjects using our
defense (Group 2 and Group 3), assuming they chose the dog as
their security companion. Note that a non-fullscreen app cannot
control the navigation bar: only a fullscreen app can try to spoof it.
In all attacks, the malicious application was pixel-perfect identical
to the real Facebook app.

We recruited human subjects via Amazon Mechanical Turk9,
a crowd-sourced Internet service that allows for hiring humans to
perform computer-based tasks. We chose it to get wide, diversified
subjects. Previous research has shown that it can be used effectively
for performing surveys in research [27]. IRB approval was obtained
by our institution.

We divided the test subjects into three groups. Subjects in
Group 1 used an unmodified Android system, to assess how
effective GUI confusion attacks are on stock Android. Subjects
in Group 2 had our on-device defense active, but were not given
any additional explanation of how it works, or any hint that their
mobile device would be under attack. This second group is meant
to assess the behavior of “normal” users who just begin using
the defense system, without any additional training. To avoid
influencing subjects of the first two groups, we advertised the test as
a generic Android “performance test” without mentioning security
implications. Finally, subjects in Group 3, in addition to using a
system with our on-device defense, were also given an explanation
of how it works and the indication that there might be attacks
during the test. This last group is meant to show how “power users”
perform when given a short training on the purpose of our defense.

Subjects interacted through their browser10 with a hardware-
accelerated emulated Android 4.4 system, mimicking a Nexus 4
device. For subjects in Group 2 and Group 3, we used a modified
Android version in which the defense mechanisms explained in
Section VI had been implemented.

A. Experiment procedure

The test starts with two general questions, asking the subjects i)
their age and ii) if they own an Android device. These questions are
repeated, in a different wording, at the end of the test. We use these

9https://www.mturk.com
10We used the noVNC client, http://kanaka.github.io/noVNC



TABLE VIII: Results of the experiment with Amazon Turk users.
Percentages are computed with respect to the number of Valid Subjects.

Group 1:
Stock Android

Group 2:
Defense active.
Subjects not aware of the possibility of attacks

Group 3:
Defense active, briefly explained.
Subjects aware of the possibility of attacks

Total Subjects 113 102 132

Valid Subjects 99 93 116

Subjects answering correctly to Tasks:

B1 and B2 67 (67.68%) 70 (75.27%) 85 (73.28%)

Astd 19 (19.19%) 60 (64.52%) 80 (68.97%)

Afull 17 (17.17%) 71 (76.34%) 86 (74.14%)

Astd and Afull 8 (8.08%) 55 (59.14%) 67 (57.76%)

Astd and B1 and B2 4 (4.04%) 51 (54.84%) 73 (62.93%)

Afull and B1 and B2 6 (6.06%) 63 (67.74%) 76 (65.52%)

Astd and Afull and B1 and B2 2 (2.02%) 50 (53.76%) 66 (56.90%)

questions to filter out subjects that are just answering randomly (once
given, each answer is final and cannot be reviewed or modified).

Then, subjects in Group 2 and Group 3 are asked to choose their
“security companion” in the emulator (which is, for example, the
image of the dog in Figure 1), picking among several choices of
images as they would be asked to do at the device’s first boot to
set up our defense. The selected image will be then shown in our
defense widget on the navigation bar.

Then, subjects are instructed to open the Facebook app in the em-
ulator. We chose this particular app because it is currently the second
most popular free app, and it asks for credentials to access sensitive
information. The survey explains to our subjects that the screen of a
real Nexus 4 device is being streamed to their browser, and that the
application they just opened is the real one. We have included this
step because, in a previous run of our experiment, a sizable amount
of our subjects did not believe that the phone was “real,” and so they
did not considered as “legitimate” any interaction they had with it.

Subjects are then instructed to open the Facebook app in the
emulator several times, leaving them free to log in if they want to.
After a few seconds, we hide the emulator and ask our subjects
about their interaction. Specifically, we ask if they think they
interacted with the original Facebook application as they did at the
very beginning. Subjects had to respond both in a closed yes-no
form and by providing a textual explanation. We used the closed
answers to quantitatively evaluate the subjects’ answers and the
open ones to get insights about subjects’ reasoning process and to
spot problems they may have had with our infrastructure.

We decided against evaluating the effectiveness of our defense
by checking if users have logged in. This is because, in previous
experiments, we noticed that security-conscious users would
avoid surrendering their personal credentials in an online survey
(regardless of any security indicator), but would not be careful
if provided with fake credentials. Instead, we decided to ask the
subjects to perform four different tasks: B1, B2, Astd, and Afull.

During Task B1 and Task B2, subjects are directed to open the
Facebook app. In these two tasks, this will simply result in opening
the real Facebook app.

In Task Astd we deliver the attack described in Section III-C
while the subjects are opening Facebook. As a result, the device
will still open the real Facebook app, but on top of it there will be
an Activity that (even though it looks just like the real Facebook
login screen) actually belongs to our malicious app. In Groups 2 and
Group 3, which have our defense active, our widget in the navigation
bar will show that the running app is not certified, by showing
no security indicator on the navigation bar. Therefore, subjects in
Group 2 and 3 may detect the attack by noticing the missing widget.

Differently, in Task Afull, we simulate a fullscreen attack.
In this case, our malicious app will take control of the whole
screen. The malicious app can mimic perfectly the look and feel
of anything that would be shown on the screen, but it cannot display
the correct security companion (because it does not know which
one it is). The fullscreen attack app must then mimic to its best
the look of our defense widget, but it will show a different security
companion, hoping that the user will not notice. For this reason,
subjects in Group 2 and Group 3 can detect the attack if (and only
if) they notice that our widget is not showing the “correct” security
companion they had chosen. Note that this puts our defense in its
worst-case scenario, with pixel-perfect reproduction of the original
app and the defense widget except for the user-selected secret image.

Note that for subjects in Group 1 this task looks exactly the
same as Task Astd: if the navigation bar never shows security
indicators, we assume it would be counterproductive for an attacker
to drastically alter it by showing a “spoofed” security indicator.

The four tasks are presented in a randomized order. This
prevents biasing results in case performing a task during a specific
step of the experiment (e.g., at the beginning) could “train” subjects
to answer better in subsequent tasks.

Figure 5 summarizes what has been shown on the navigation
bar to the subjects in Group 2 and Group 3 during the execution
of the different tasks.

B. Results

In total, 347 subjects performed and finished our test. However,
we removed 39 subjects because the control questions were inconsis-



tent (e.g., How old are you? More than 40. What’s your age? 21.), the
same person tried to retake the test, or the subject encountered tech-
nical problems during the test. This left us with 308 valid subjects
in total. The results of the experiment are shown in Table VIII.

The vast majority of subjects in Group 1, using stock Android,
were not able to correctly identify attacks and often noticed no dif-
ference (typically, answering that they were using the real Facebook
in all tasks) or reported minimal animation differences due to the
reduced frame rate and emulator speed (unrelated to the attacks).
This corroborates our opinion that these attacks are extremely
difficult to identify. In particular, only 8.08% of the subjects detected
both attacks and only 2.02% of the subjects answered all questions
correctly. Manual review of the textual answers revealed that this
happened randomly (that is, the subjects did not notice any relevant
graphical difference among the different tasks).

Comparing results for Group 1 and Group 2, it is clear that the
defense helped subjects in detecting the attacks. Specifically, the
percentage of correct detections increased from 19.19% to 64.52%
for Task Astd (�2 = 40.68, p < 0.0001)11 and from 17.17% to
76.34% (�2=67.63, p<0.0001) for Task Afull. Also, the number
of subjects able to answer correctly all times increased from 2.02%
to 53.76% (p<0.0001, applying Fisher’s exact test).

Comparing detection results of the two attacks, we found that
the detection rate for the fullscreen attack is slightly better than
the one for the non-fullscreen one. However, this difference is
not statistically significant. In particular, considering Group 2
and Group 3 together, 66.99% of the subjects answered correctly
during Task Astd and 75.12% answered correctly during Task Afull

(�2=3.36, p=0.0668).

We also noticed that the number of subjects answering correctly
during the non-attack tasks (Tasks B1 and B2) did not increase
when our defense was active. In other words, we did not find any
statistical evidence that our defense leads to false positives.

Finally, results for Group 2 and Group 3 are generally very
similar, with just a slight (not statistically significant) improvement
for subjects in Group 3 in the ability to answer correctly all
questions (�2=0.21, p=0.6506). This may hint to the fact that our
additional explanation was not very effective, or simply to how the
mere introduction of a security companion and defense widget puts
users “on guard,” even without specific warnings.

C. Limitations

As mentioned, we took precaution not to influence users’ choices
during the experiment. In particular, subjects in Group 2 used
a system with our defense in place, but without receiving any
training about it before. Nonetheless, they had to set up their security
companion prior to starting the experiment, as this step is integral
to our defense and cannot be skipped when acquiring a new device.
We designed our experiment to simulate, as accurately as possible,
the first-use scenario of a device where our proposed defense is in
place. In this scenario, users would be prompted to choose a security
companion during the device’s first boot. We acknowledge, however,
that this step may have increased the alertness of our subjects so that
our results may not be completely representative of the effect that our
defense widget has on users, especially over a long period of time.

11We evaluate results using 95% confidence intervals. Applying the Bonferroni
correction, this means that the null hypothesis is rejected if p<0.01.

Similarly, the fact that subjects, at the beginning of the
experiment, were made to interact with the original Facebook
application may have helped them in answering to the different
tasks. However, we assume it is unlikely that users are being
attacked by a malicious app performing a GUI confusion attack
during the very first usage of their device.

It is also possible that the usage of an emulator, accessed using
a web browser, may have had a negative impact on the subjects’
ability to detect our attacks. It should be noted, however, that the
usage of an x86 hardware-accelerated emulator (and VNC) resulted
in a good-performance, to the point we would recommend this
setup to future experimenters (unless, of course, they have the time
and resources to gather enough participants and use real devices).

Finally, there is a possibility that the subject’s network was
introducing delays. From the network’s point of view, the emulation
appears as a continuous VNC session from the beginning to the end.
This setup should not specifically affect individual tasks, but may
have caused some jitter for subjects.

VIII. RELATED WORK

As mentioned in the introduction, previous papers have already
shed some light on the problem of GUI confusion attacks in
Android. In particular, [3] describes tapjacking attacks in general,
whereas [4] focuses on tapjacking attacks against WebViews
(graphical elements used in Android to display Web content). Felt
et al. [5] focus on phishing attacks on mobile devices deriving from
control transfers (comparable to the “App Switching” attacks we
described), whereas Chen et al. [6] describe a technique to infer
the UI state from an unprivileged app and present attack examples.
Our paper generalizes these previously-discovered techniques by
systematizing existing exploits and introducing additional attack
vectors. We also confirmed the effectiveness of these attacks
through a user study. More importantly, we additionally proposed
two general defense mechanisms and evaluated their effectiveness.

Fernandes et al. present a GUI defense focusing on keyboard
input in [9]: the “AuthAuth” system augments the system keyboard
by presenting a user-defined image and the app name and icon.
Our proposed defense system uses the same “UI-user shared secret”
mechanism: in both cases, users must first choose an image that
will be known only by the OS and the user, making it unspoofable
for an attacking app.

However our works significantly differ in how this mechanism
is used and what is presented to the user. For instance, as we have
shown before (e.g., see Figure 4), app names and icons are not valid
or reliable roots of trust, as they are easy to spoof. Apps with similar-
looking name and icons are commonly present in Android markets,
and fake apps with the same name and icon can be side-loaded on the
device. Our work, instead, establishes a root of trust to the author of
the app, and extends the covered attack surface by considering more
attack scenarios and methods. In particular, we opted to secure all the
user interactions instead of focusing only on the keyboard, because
users interact with apps in a variety of ways. For instance, some
payment apps (e.g., Google Wallet) use custom PIN-entry forms,
while others get sensitive input such as health-related information
through multiple-choice buttons or other touch-friendly methods.

Other research efforts focus on the analysis of Android malware.
Zhou et al. performed a systematic study of the current status of
malware [22], whereas other studies focus on the specific techniques



that current malicious applications use to perform unwanted
activities. A frequently-used technique is repackaging [14], [15].
In this case, malware authors can effectively deceive users by
injecting malicious functionality in well-known, benign-looking
Android applications. As previously mentioned in Section III-B2,
this technique can be used in combination with our attack vectors
to make it easy for attackers to mimic the GUI of victim apps.

Roesner et al. [28] studied the problem of embedded user
interfaces in Android and its security implications. Specifically, they
focus on the common practice of embedding in an app graphical
elements, created by included libraries. The problem they solve is
related and complementary to the one we focus on. Specifically they
focus on how users interact with different elements within the same
app, whereas we focus on how users interact with different apps.

Felt et al. performed a usability study to evaluate how users
understand permission information shown during the installation
process of an app [29]. They showed that current permission
warnings are not helpful for most users and presented recommen-
dations for improving user attention. Possible modifications to how
permissions are shown to users and enforced have been also studied
in Aurasium [30]. Our work has in common with these the fact that it
proposes a set of modifications to give users more information on the
current status of the system, although we address a different threat.

Many studies investigated how to show security-related informa-
tion and error messages in browsers, both from a general prospec-
tive [31]–[33] and specifically for HTTPS [34]–[38]. Akhawe et
al. [38] showed that proper HTTPS security warning messages are ef-
fective in preventing users from interacting with malicious websites.
The knowledge presented by these works has been used as a baseline
for our proposed defense mechanism. It should be noted, however,
that other studies have shown that indicators are not always effective.
In fact, over the years, the situation has significantly improved in
browsers: compare, for instance, the almost-hidden yellow lock on
the status bar of Internet Explorer 6 from [37] with Figure 1. We
believe that our solution may also have benefited from the EV-style
presentation of a name in addition to a lock and the consequent
increase in screen area. In general, effectively communicating the
full security status of user interactions is an open problem.

Phishing protection has been extensively studied in a web
browser context (e.g., in [39]–[41]) and is commonly implemented
using, for example, blacklists such as Google’s SafeBrowsing [42].
Our work is complementary to these approaches and explores GUI
confusion attacks that are not possible in web browsers.

Finally, the problem of presenting a trustworthy GUI has been
studied and implemented in desktop operating systems, either
by using a special key combination [43] or decorations around
windows [44]. Given the limited amount of screen space and
controls, applying these solutions in mobile devices would be
impossible in an unobtrusive way.

IX. CONCLUSION

In this paper, we analyzed in detail the many ways in which
Android users can be confused into misidentifying an app. We
categorized known attacks, and disclose novel ones, that can be
used to confuse the user’s perception and mount stealthy phishing
and privacy-invading attacks.

We have developed a tool to study how the main Android
GUI APIs can be used to mount such an attack, performing a full
state exploration of the parameters of these APIs, and detecting
problematic cases.

Moreover, we developed a two-layered defense. To prevent
such attacks at the market level, we have developed another tool
that uses static analysis to identify code in apps that could be
leveraged to launch GUI confusion attacks, and we have evaluated
its effectiveness by analyzing both malicious applications and
popular benign ones.

To address the underlying user interface limitations, we have
presented an on-device defense system designed to improve
the ability of users to judge the impact of their actions, while
maintaining full app functionality. Using analogies with how web
browsers present page security information, we associate reliable
author names to apps and present them in a familiar way.

Finally, we have performed a user study demonstrating that our
on-device defense improves the ability of users to notice attacks.
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