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Abstract— The application of frequent patterns in classification
has demonstrated its power in recent studies. It often adopts a
two-step approach: frequent pattern (or classification rule) min-
ing followed by feature selection (or rule ranking). However, this
two-step process could be computationally expensive, especially
when the problem scale is large or the minimum support is low.
It was observed that frequent pattern mining usually produces
a huge number of “patterns” that could not only slow down the
mining process but also make feature selection hard to complete.

In this paper, we propose a direct discriminative pattern
mining approach, DDPMine, to tackle the efficiency issue arising
from the two-step approach. DDPMine performs a branch-and-
bound search for directly mining discriminative patterns without
generating the complete pattern set. Instead of selecting best
patterns in a batch, we introduce a “feature-centered” mining
approach that generates discriminative patterns sequentially on
a progressively shrinking FP-tree by incrementally eliminating
training instances. The instance elimination effectively reduces
the problem size iteratively and expedites the mining process.
Empirical results show that DDPMine achieves orders of magni-
tude speedup without any downgrade of classification accuracy. It
outperforms the state-of-the-art associative classification methods
in terms of both accuracy and efficiency.

I. INTRODUCTION

Frequent pattern-based classification has been explored in
recent years and its power was demonstrated by multiple
studies in several domains, including (1) associative classifi-
cation [1], [2], [3], [4], [5], [6] on categorical data, where
a classifier is built based on high-support, high-confidence
association rules; and (2) frequent pattern-based classification
[7], [8], [9], [10], [11] on text or data with complex structures
such as sequences and graphs, where discriminative frequent
patterns are taken as features to build high quality classifiers.
A frequent itemset (pattern) is a set of items that occur
in a dataset no less than a user-specified minimum support
(min sup). Frequent patterns have been explored widely in
classification tasks.

These studies achieve promising classification accuracy and
demonstrate the success of frequent patterns (or association
rules) in classification. For example, in [1], [2], [3], [5], [6],
associative classification was found to be competitive with
traditional classification methods, such as C4.5 and SVM,

sometimes even better on categorical datasets [4]. In addition,
frequent patterns are also promising for classifying complex
structures such as strings and graphs [8], [9], [10], [11] with
high accuracy.

Most of these studies [1], [2], [4], [11], [10] take a two-step
process: First mine all frequent patterns or association rules
which satisfy min sup and then perform a feature selection or
rule ranking procedure. Figure 1 (A) shows the flow of the
two-step framework, where a dark circle represents one dis-
criminative pattern. Although the approach is straightforward
and achieves high classification accuracy, it could incur high
computational cost. The efficiency issues exist in the following
two aspects.

First, frequent pattern mining could take a long time to
complete due to the exponential combinations among items,
which is common for dense datasets or high-dimensional
microarray data. When the problem scale is large or min sup
is low, it could take forever to complete the mining. It often
turns out that the mining results, even those for closed frequent
itemsets, are explosive in size.

More importantly, the classification tasks attach great im-
portance to the frequent itemsets that are highly discriminative
w.r.t. the class labels. Since frequent itemsets are generated
solely based on support information, not based on discrim-
inative power, a large number of indiscriminative itemsets
can be generated during the mining step. When the complete
mining results are prohibitively large, yet only the highly
discriminative ones are of real interest, it is inefficient to
wait forever for the mining algorithm to finish and then apply
feature selection to post-process the huge-sized mining results.
Even for a feature selection algorithm with linear complexity,
it could be very expensive to process an explosive number,
such as millions, of features which is a common scale in
frequent patterns.

The computational cost raised by the two-step framework
motivates us to investigate an alternative approach: Instead
of generating the complete set of frequent patterns, directly
mine highly discriminative patterns for classification. This
leads to our proposal of a direct discriminative pattern mining
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approach, DDPMine. It integrates the feature selection mech-
anism into the mining framework by directly mining the most
discriminative patterns, and then incrementally eliminating the
training instances which are covered by those patterns. Figure
1 (B) illustrates the DDPMine mining methodology which
first transforms data into a compact FP-tree ([12]) and then
searches discriminative patterns directly. DDPMine is shown
to outperform the two-step method with significant speedup.

Our contributions are summarized as follows.
• We examine the efficiency issue that arises from the

two-step mining framework and propose a direct mining
solution.

• A direct discriminative pattern mining algorithm
DDPMine is proposed. DDPMine not only avoids
generating a large number of indiscriminative patterns,
but also incrementally reduces the problem size
by eliminating training instances and progressively
shrinking the FP-tree, which further speeds up the
mining process.

• Instead of mining a set of discriminative patterns in a
batch, our “feature-centered” mining approach exploited
by DDPMine could single out patterns sequentially in
the progressively shrinking FP-tree which is shown to be
very efficient.

• Time complexity analysis is provided for the DDPMine
algorithm. An upper bound is derived on the number of
iterations it has to go through, showing the computational
cost analytically.

• Our empirical results show that DDPMine achieves
orders of magnitude speedup without any downgrade
of classification accuracy. Moreover, it outperforms the
state-of-the-art associative classification methods in terms
of both accuracy and efficiency.

Together with our previous work [11], we demonstrated that
frequent pattern-based classification is not only accurate but
also scalable.

II. NOTATIONS AND DEFINITIONS

Let D be a training database, I = {i1, i2, . . . , im} be the
set of distinct items, and C = {c1, c2, . . . , ck} be the set of
class labels. Assume D contains a set of n training instances
D = {xi, yi}n

i=1, where xi ⊆ I is a set of items and yi ∈ C
is a class label.

An itemset α = {α1, α2, . . . , αl} is a subset of I . Given
a dataset D = {xi, yi}n

i=1, the set of data that contains α is
denoted as Dα = {(xi, yi)|α ⊆ xi}. α is frequent if θ =
|Dα|
|D| ≥ θ0, where θ = |Dα|

|D| is the relative support of α, and
θ0 is the min sup threshold, 0 ≤ θ0 ≤ 1. The set of frequent
itemsets is denoted as F .

III. FREQUENT PATTERN-BASED CLASSIFICATION

Frequent Pattern-Based Classification is learning a clas-
sification model in the feature space of single features as
well as frequent patterns. The framework of frequent pattern-
based classification basically includes three steps: (1) frequent
itemset mining, (2) feature selection, and (3) model learning.
The first step generates frequent patterns (or itemsets), on
which a feature selection algorithm is applied to single out
a compact set of discriminative patterns. Then the training
data is represented in the feature space of those discriminative
patterns. Finally, a classification model is constructed. Any
learning algorithm could be used as the classification model.
Both frequent itemset mining and feature selection steps in the
classification framework could potentially be a computational
bottleneck, due to the exponential combination among items.

A. Computational Bottleneck

The frequent pattern mining step could take a very long
time to generate the complete set of frequent patterns. When
the complete mining results are prohibitively large on dense
datasets, of which only a small number are truly discriminative
for classification, it is inefficient to wait forever for the mining
algorithm to finish and then apply feature selection to post-
process the huge-sized mining results.

In addition to pattern mining, feature selection could be
computational bottleneck too. The goal of feature selection
in this framework is to select highly discriminative features.
Due to an explosive number of frequent patterns, any feature
selection algorithm with polynomial time complexity can
hardly scale. Even if a linear algorithm is employed, it could
still run slowly. According to our experiments in [11], a low
min sup generates over millions of frequent itemsets, on top
of which feature selection algorithms fail to complete in days.

B. Feature Selection by Sequential Coverage

In this study, we explore a direct mining approach for
a general feature selection algorithm that is based on the
“sequential coverage paradigm” [13]. The sequential coverage
algorithm takes as input a set of training instances D and a
set of features F , and iteratively applies the feature selection
step. At each step, the algorithm selects the feature with the
highest discriminative measure. After selecting this feature, all
the training instances containing this feature are eliminated
from D and the feature is marked as selected. In the next
iteration, the same step is applied, but on a smaller set of
training examples. This algorithm continues in an iterative
fashion until either all the training examples are eliminated
or all the features are selected.



Algorithm 1 Feature Selection

Input: Frequent patterns F , Training database D
Output: A selected pattern set Fs

1: Fs := ∅;
2: while (true)
3: Find the best pattern α in F − Fs;
4: If α can correctly cover at least one instance in D
5: Fs := Fs ∪ {α};
6: F := F − {α};
7: D := D − Dα;
7: If D = ∅ or F = ∅

8: break;
9: return Fs

Algorithm 1 sketches the feature selection process in a set
of frequent patterns. The criterion of “best pattern” in Line
3 could be information gain [14], fisher score [15] or others.
The time complexity of this sequential coverage algorithm is
O(|F | · |D|), where |F | is the size of feature set and |D| is
the size of training data.

IV. DIRECT DISCRIMINATIVE PATTERN MINING

In the DDPMine approach, there are two objectives we
want to achieve: (1) for efficiency concerns, we want to
directly mine a set of highly discriminative patterns; and (2)
for accuracy consideration, we impose a feature coverage
constraint: every training instance has to be covered by one or
multiple features.

DDPMine developed two modules to meet these two ob-
jectives: (1) a branch-and-bound search method to identify
the most discriminative pattern in a data set; (2) an instance
elimination process to remove the training instances that are
covered by the patterns selected so far. The branch-and-bound
search algorithm is based on the upper bound estimation of
discriminative measures derived from our previous work [11],
which is able to prune the search space effectively.

DDPMine progressively reduces the dataset size by itera-
tively eliminating training instances. This expedites the mining
process since the mining complexity is closely related to the
dataset size.

Both processes are actually implemented in a compact tree
structure, FP-Tree, and are able to avoid the generation of the
complete pattern set.

A. Branch-and-Bound Search

An upper bound of discriminative measures such as infor-
mation gain [14] was derived by [11] which is a function of
pattern frequency. [11] demonstrates that the information gain
upper bound monotonically increases with pattern frequency.
The discriminative power of low-frequency patterns is upper
bounded by a small value. Based on this conclusion, we design
a branch-and-bound search for directly mining discriminative

Algorithm 2 The Branch-and-bound Mining Algorithm

Input: An FP-tree P , min sup s, a prefix α
Output: The most discriminative feature bestPat
Global variable: maxIG := 0, bestPat := null

Procedure branch and bound(P, s, α)
1: if P = ∅

2: return;
3: for each item ai in P do
4: generate pattern β = ai ∪ α with support=ai.support;
5: compute information gain IG(β);
6: if IG(β) > maxIG
7: maxIG := IG(β);
8: bestPat := β;
9: construct pattern β’s conditional database Dβ ;
10: IGub(|Dβ |) := upper bound(|Dβ |);
11: if maxIG ≥ IGub(Dβ)
12: skip mining on Dβ ;
13: else
14: construct β’s conditional FP-tree Pβ ;
15: branch and bound(Pβ , s, β);

patterns and pruning the indiscriminative ones. We adopt FP-
growth [12] as the basic mining methodology and show how to
incorporate the theoretical upper bound to facilitate a branch-
and-bound search. For details of FP-growth mining, please
refer to [12].

The basic idea is, during the recursive FP-growth mining,
we use a global variable to record the most discriminative
itemset discovered so far and its information gain score. Before
proceeding to construct a conditional FP-tree, we first estimate
the upper bound of information gain, given the size of the
conditional database. Since the support of any itemset from
this conditional database cannot be greater than the conditional
database size, and the upper bound is a monotonically increas-
ing function of support, the information gain of any itemset
from this conditional database is bounded by the upper bound
value. If the upper bound value is no greater than the current
best value, we could safely skip this conditional FP-tree as
well as any FP-tree recursively constructed from this one.
Algorithm 2 shows the branch-and-bound mining algorithm.
IG(β) on line 6 is the information gain of frequent pattern
β and IGub(|Dβ |) on line 10 is the information gain upper
bound given the conditional database Dβ . The upper bound
formulae were derived in [11] and are provided in Appendix
of this paper.

We will illustrate this method through the following exam-
ple. Table I shows a training database which contains eight
instances and two classes. Let min sup = 2. The global FP-
tree is illustrated in Figure 2. The FP-tree is a compact prefix-
tree structure. A node represents an item with the count and
a path represents a transaction.

The first frequent itemset generated is d with an informa-
tion gain value IG(d) = 0.016. Then maxIG is assigned



TID Set of Items Class Label
100 a, b, c 1
200 a, b, c, d 1
300 a, b, c 1
400 a, b, d 1
500 c, d 0
600 b, c 0
700 a, b, c 1
800 a, b, c 1

TABLE I

A SAMPLE TRAINING DATABASE D

Root
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c:7

a:5

b:1

d:1

d:1

Fig. 2. The Global FP-tree

0.016. The conditional database and FP-tree on d is shown
in Figure 3. Given the size of the conditional database is
3, the information gain upper bound is IGub(3) = 0.467.
Since IGub(3) > maxIG, we cannot prune the conditional
FP-tree on d. Therefore, we perform recursive mining on
the conditional FP-tree and get ad, bd, cd and abd, with
IG(ad) = 0.123, IG(bd) = 0.123, IG(cd) = 0.074 and
IG(abd) = 0.123.

As the mining proceeds to the frequent itemset a, we
can compute its information gain IG(a) = 0.811 which is
assigned to maxIG as well. The conditional database and FP-
tree on a is shown in Figure 4. Given the size of the conditional
database is 6, the information gain upper bound is IGub(6) =
0.811. Since maxIG = IGub(6), any itemset generated from
the conditional FP-tree will have an information gain no
greater than maxIG. Therefore, the conditional FP-tree can be
pruned without any mining. To confirm our analysis, we could
double check the actual mining results from this conditional
FP-tree: ab, ac, ad, abd and abc. A careful verification shows
that the information gain of all these itemsets is no greater
than maxIG, which is consistent with our pruning decision.

B. Training Instance Elimination

The branch-and-bound search directly mines the discrim-
inative patterns and effectively prunes the search space. To
achieve the feature coverage objective that ensures every
training instance is covered by one or multiple features,
there are two different approaches: a transaction-centered
approach and a feature-centered approach. We first present
the transaction-centered approach and analyze why it does
not work efficiently. Then we propose the feature-centered
approach which is a core part of DDPMine.

Items Class Label
a, b, c 1

a, b 1
c 0

a:2

Root

b:2

c:1

c:1

Fig. 3. Conditional DB and FP-tree on d
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1) Transaction-Centered Approach: The transaction-
centered approach is to mine a set of discriminative features
to satisfy the feature coverage constraint for each training
instance.

The transaction-centered approach could be built on FP-
growth mining with some additional operations. It keeps the
best feature generated so far for each transaction. When a
frequent pattern β is generated, the transaction id list T (β) is
computed. We go through every instance t ∈ T (β) and check
whether β is the best feature for t. To get T (β), we have
to check the training database. Therefore, the cost associated
with this approach is

Cost = Tmining + m · Tcheck db (1)

where Tmining is the time of FP-growth mining and Tcheck db

is the time to get T (β) for a frequent itemset β. m is the
number of frequent itemsets generated. Since the number of
frequent itemsets is usually very huge, even explosive, m is
a very large factor. In our experiments, we observe that m
is usually between hundreds of thousands to several million.
Table II shows the mining time, the total check db time as
well as the number of itemsets m on several large datasets. As
shown in the table, m is usually very huge and the check db
time is at least two orders of magnitude larger than the mining
time. Therefore, the check db operation becomes the major
computational bottleneck due to the large factor m, which
makes the transaction-centered approach inefficient.

TABLE II

RUNTIME OF TRANSACTION-CENTERED APPROACH

Dataset min sup Tmining m · Tcheck db m
adult 50 0.203 355.648 22228
chess 1000 9.219 883.971 844258
hypo 1000 1.766 158.995 153412
sick 1000 6.531 454.379 495380



Algorithm 3 The DDPMine Algorithm

Input: An FP-tree P , min sup s
Output: A set of selected features Fs

Procedure DDPMine(P, s)
1: if P = ∅

2: return;
3: α := branch and bound(P, s, null);
4: Compute the transaction id list T (α) containing α;
5: P ′ := update tree(P, T (α));
6: Fs := {α}∪ DDPMine(P ′, s);
7: return Fs;

2) Feature-Centered Approach – Our Choice: In light of
the cost associated with the transaction-centered approach, we
want to directly mine discriminative features while reducing
the number of check db operations. Therefore, we propose a
feature-centered approach which, as suggested by the name,
primarily focuses on the discriminative features.

The basic idea is, a branch-and-bound search produces the
most discriminative itemset α but the mining process does not
compute any transaction id at all. After mining, the transaction
id list T (α) is computed. Then we eliminate the transactions in
T (α) from the FP-tree and repeat the branch-and-bound search
on the updated tree. This process iterates until all transactions
are removed from the FP-tree.

This approach is feature-centered in the sense that the
mining process only concerns mining the most discriminative
pattern. The chech db operation is not performed on any
intermediate mining results, but only on the best feature
produced by the mining process.

The DDPMine algorithm, which integrates the branch-and-
bound search and the feature-centered approach, is presented
in Algorithm 3. It takes two inputs: an FP-tree and min sup.
An initial FP-tree is constructed from the training database.
branch and bound searches the most discriminative feature
α. Then the transaction set T (α) containing α is computed and
removed from P . The resulting FP-tree is P ′. Then DDPMine
is recursively invoked on P ′ until the FP-tree becomes empty.
The final output is the set of frequent itemsets generated by
the iterative mining process.

Correspondingly, the cost associated with DDPMine is

Cost = n · (Tmining + Tcheck db + Tupdate) (2)

where n is the number of iterations which is usually very
small. We will derive an upper bound of n in Section IV-
C. Tupdate is the time to update the FP-tree. We design an
efficient method for the update operation in Section IV-B.3.

3) Progressively Shrinking FP-Tree: One step in the
DDPMine algorithm is update tree, which removes the set of
training instances T (α) containing the feature α from the FP-
tree. We design an efficient method for update tree operation
with the corresponding data structure.

When we insert a training instance into an FP-tree, we
register the transaction id of this instance at the node which
corresponds to the very last item in the instance. Accordingly,
the FP-tree carries training instance id lists. For efficiency
concern, the id lists are only registered with the global FP-
tree, but not propagated in the conditional FP-trees when
performing the recursive FP-growth mining.

When a frequent itemset α is generated, the training in-
stances T (α) have to be removed from the global FP-tree.
Then we perform a traversal of the FP-tree and examine the
id lists associated with the tree nodes. When an id in a node
appears in T (α), this id is removed. Correspondingly, the
count on this node is reduced by 1, as well as the count on all
the ancestor nodes up to the root of the tree. When the count
reaches 0 at any node, the node is removed from the FP-tree.
Therefore, the update operation basically is a traversal of the
FP-tree, the complexity of this operation is

Tupdate = O(|V | + |D|) (3)

where |V | is the number of nodes in the FP-tree and |D| is
the number of training instances in the database.

In our previous example, when we discover the itemset
a with T (a) = {100, 200, 300, 400, 700, 800}, T (a) are re-
moved from the FP-tree. Figure 5 shows the updated tree
where the gray nodes are the nodes with 0 count and will
be removed from the updated tree. The rectangle boxes are
the transaction id lists associated with the nodes. Since the
global FP-tree is updated incrementally in each iteration, we
call it progressively shrinking FP-tree.

Root

a:0b:1

d:0

c:2

a:0

b:0

d:0

d:1

tid={600} tid={500}

tid={100, 300,
         700, 800}

tid={200}

tid={400}

Fig. 5. The Updated FP-tree with TID

4) Feature Coverage: In the DDPMine algorithm, when a
feature is generated, the transactions containing this feature
are removed. In real classification tasks, we may want to gen-
erate multiple features to represent a transaction for accuracy
consideration. To realize this purpose, we introduce a feature
coverage parameter δ: A transaction is eliminated from further
consideration when it is covered by at least δ features. This
feature could be easily integrated into DDPMine with some
minor changes in the data structure: We keep a counter for
each transaction. Whenever a feature is generated, the counter
for each transaction containing this feature is incremented by
one. When a counter reaches δ, the corresponding transaction
is removed from the tree. The counters are stored in an array
of integers, called CTable.



Besides the counter, we need to keep a global hash table,
called HTable, to keep track of the features that are already
discovered. When δ > 1, a transaction will not be eliminated
unless the counter reaches δ. As a result, the FP-tree may
remain unchanged when no transactions are eliminated in one
iteration. In such a case, we need to use a hash table to keep
track of the features that are already discovered and thus avoid
generating the same features multiple times. Let’s follow the
example in Table I and assume δ = 2. In the first iteration,
we generate the feature a. The CTable and HTable are shown
in Figure 6. Since no counter reaches δ = 2, no transaction is
removed from the FP-tree. Thus, it remains unchanged.

TID Count
100 1
200 1
300 1
400 1
500 0
600 0
700 1
800 1

FID Items Info Gain
1 a 0.811

Fig. 6. CTable and HTable at Iteration 1

TID Count
100 2
200 2
300 2
400 2
500 0
600 0
700 2
800 2

FID Items Info Gain
1 a 0.811
2 ab 0.811

Fig. 7. CTable and HTable at Iteration 2

In the following iterations, the HTable will be checked
for duplication whenever a new feature is discovered. If
there is a “hit” in the HTable, the new feature will be
ignored and the mining proceeds. In the second iteration of
this example, the mining algorithm first discovers a which
exists in HTable already. Then the algorithm ignores it and
proceeds. Finally, it generates ab as the most discriminative
feature. After ab is generated, the CTable and HTable are
changed and shown in Figure 7. Accordingly, transactions
{100, 200, 300, 400, 700, 800} are removed from the FP-tree.

C. Efficiency Analysis

DDPMine works in an iterative way and terminates when
the training database becomes empty. We derive an upper
bound of the number of iterations DDPMine has to go
through.

Assume min sup = θ0. DDPMine produces a frequent
itemset αi in the i-th iteration, sup(αi) ≥ θ0. In the i-th
iteration, we eliminate the training instances T (αi) from the
current set of training instances since they are covered by the
feature αi. Therefore, we have the following equation which
specifies the reduction of the training instance database:

|Di| = |Di−1| − |T (αi)| (4)

where Di is the training instances remaining after the i-th
iteration, T (αi) is the id list of transactions which contain αi,
and D0 is the complete set of training instances.

Since sup(αi) ≥ θ0, we have |T (αi)| ≥ θ0|Di−1| in
equivalence. Then we have

|Di| = |Di−1| − |T (αi)| ≤ (1 − θ0)|Di−1| (5)

According to Eq. (5), we have

|Di| ≤ (1 − θ0)i|D0| (6)

Assume after n iterations, the training database reduces to
|Dn| = 1. Since (1 − θ0)n|D0| ≥ |Dn| = 1, we can derive

n ≤ log|D0|
log 1

1−θ0

= log 1
1−θ0

|D0| (7)

According to Eq. (7), if θ0 = 0.5, n ≤ log2|D0|. If θ0 =
0.2, n ≤ log1.25|D0|. If the training database has 1 million
instances, then n ≤ 20 if θ0 = 0.5; n ≤ 62 if θ0 = 0.2.

The above bound analysis assumes the feature coverage
parameter δ = 1. If δ > 1, the bound of n becomes

n ≤ δ · log|D0|
log 1

1−θ0

= δ · log 1
1−θ0

|D0| (8)

Eqs. (7) and (8) provide an upper bound of the number of
iterations. In each iteration, the major computational cost is
the frequent itemset mining. But it is more efficient than the
original FP-growth mining, since it has the branch-and-bound
pruning mechanism. In addition, the mining becomes more
and more efficient as the training database shrinks. Combining
Eqs. (2) and (8), the cost of DDPMine is

Cost ≤ δ · log 1
1−θ0

|D0| · (Tmining +Tcheck db +Tupdate) (9)

V. EXPERIMENTAL RESULTS

We conduct a systematic experimental study to evaluate
DDPMine on both efficiency and accuracy. A series of datasets
from UCI Machine Learning Repository are tested. The im-
plementation of the branch-and-bound mining is done based
on FPClose [16]. LIBSVM [17] is used as the classification
model. 5-fold cross validation is used for evaluation: Each
dataset is partitioned into five parts evenly. Each time, one
part is used for test and the other four are used in DDPMine
for mining and training. The classification accuracies on the
five test sets are averaged. The algorithm is implemented in
Microsoft Visual C++ and experiments were run on a 3GHz
PC with 1GB memory.
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Fig. 8. Efficiency Tests

A. Efficiency Evaluation

1) Efficiency Comparison: We test the efficiency of
DDPMine as min sup varies. For comparison, we tested two
other methods.

• HARMONY [5] which is an instance-centric rule-based
classifier. It directly mines the final set of classifica-
tion rules. By introducing several novel search strategies
and pruning methods into the rule discovery process,
HARMONY has shown high efficiency and better classi-
fication accuracy than CPAR [3] and SVM.

• PatClass [11] which is a frequent pattern-based clas-
sifier. It takes the two-step procedure by first mining a
set of frequent itemsets followed by a feature selection
step. This method has shown to achieve high classification
accuracy. LIBSVM is used as the classification model in
PatClass as well.

In this experiment, we choose four large datasets: adult,
chess, hypo and sick. We tested the running time of these
three methods as min sup varies. Figure 8 shows the results
on four datasets. On all four datasets in Figure 8, it is clear
that DDPMine is the most efficient method. It outperforms
both HARMONY and PatClass by an order of magnitude or
even more. In addition, the running time of DDPMine is not
affected much by min sup. A reasonable explanation for this

property is the effect of the training instance elimination: The
problem size progressively shrinks which expedites the mining
process.

On the other hand, PatClass is the least efficient method.
The performance of PatClass is very sensitive to min sup: as
min sup lowers down, the running time increases dramatically,
due to an explosive set of frequent itemsets produced. Besides
the mining process, feature selection also slows down since
the set of frequent itemsets as input is bulky.

HARMONY stands in the middle: it is quite efficient
when min sup is high but slows down as min sup decreases.
Compared with PatClass, it is still much more efficient, due
to the pruning strategies it exploits.

2) Branch and Bound Search: We also evaluate the effec-
tiveness of the pruning by the branch-and-bound search. Figure
9 shows the running time of DDPMine with and without the
branch-and-bound pruning respectively, as min sup varies. As
we can see from Figure 9, when the pruning strategy is used in
the mining process, the efficiency gain is at least 1/3, usually
between 1/2–2/3, especially when min sup is low.

3) Problem Size Reduction: In this experiment, we test
how fast the problem size reduces in an iterative fashion in
DDPMine. We tested on the four large datasets again and
set min sup to be 20%. We run the DDPMine algorithm and
record the database size (in terms of the number of training
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Fig. 9. Branch and Bound Search

instances) remaining in each iteration. Figure 10 shows the
problem size reduction curve. As we can see clearly from
Figure 10, the problem size shrinks very quickly. Usually
by 10 or fewer iterations, the database reduces to empty
and the program terminates. In addition, we observed that,
as the problem size reduces incrementally, the branch-and-
bound FP-growth mining becomes more and more efficient
even though the relative min sup is the same. This is because
mining efficiency is also closely related to the data set size.

B. Efficiency and Accuracy: UCI datasets

We evaluate DDPMine on a series of UCI datasets in
terms of both efficiency and accuracy, by comparing with
HARMONY and PatClass, which are the state-of-the-art
associative classification methods.

Table III shows the running time (in seconds) of the three
methods. For both DDPMine and PatClass we compute the
running time for both frequent itemset mining and feature
selection; whereas for HARMONY, we compute the running
time for association rule mining. The running time was aver-
aged over 5-fold cross validation.

From Table III, we can see that, DDPMine is the most
efficient algorithm, followed by HARMONY while PatClass
is the least efficient one. On average, DDPMine outper-
forms HARMONY by an order of magnitude and outperforms

PatClass by two orders of magnitude. This result is consistent
with those in Figure 8.

Table IV shows the accuracy comparison between these
three methods. On average, DDPMine has comparable ac-
curacy with PatClass, and both outperform HARMONY
by 9.8%. One would notice that the accuracy by PatClass
and DDPMine is not identical although DDPMine simulates
the mechanism of PatClass. The reason is that the set of
discriminative patterns produced by these two methods are
different. In PatClass, discriminative patterns are generated
based on the complete set of training instances; whereas in
DDPMine, discriminative patterns are generated based on the
remaining training instances in each iteration.

VI. RELATED WORK

Our study is related to associative classification [1], [2], [3],
[4], [5] in which, a classifier is built based on high-confidence,
high-support association rules. The association between fre-
quent patterns and class labels is used for prediction.

Earlier studies on associative classification [1], [2], [3]
mainly focus on mining high-support, high-confidence rules
and build a rule-based classifier. Prediction is made based on
the top-ranked rule or multiple rules.

A recent work on top-k rule mining [4] discovers top-k
covering rule groups for high-dimensional gene expression
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Fig. 10. Problem Size Reduction

TABLE III

RUNTIME COMPARISON

Dataset HARMONY PatClass DDPMine
adult 60.78 1070.39 8.75
chess 37.09 113.98 1.20
crx 0.71 7.56 0.57

hypo 52.19 66.09 0.66
mushroom 0.63 34.42 0.83

sick 53.45 170.94 1.70
sonar 5.53 15.83 0.83

waveform 8.06 85.23 4.34
total 218.44 1564.44 18.88

profiles. A classifier RCBT is constructed from the top-k
covering rule groups and achieves very high accuracy.

HARMONY [5] is another rule-based classifier which di-
rectly mines classification rules. It uses an instance-centric
rule-generation approach and assures for each training in-
stance, that one of the highest-confidence rules covering the
instance is included in the rule set. HARMONY is shown to be
more efficient and scalable than previous rule-based classifiers.

[6] is a recently proposed innovative association rule-based
classification method. Different from all the above studies,
it is based on a lazy (non-eager) classification philosophy,

TABLE IV

ACCURACY COMPARISON

Dataset HARMONY PatClass DDPMine
adult 81.90 84.24 84.82
chess 43.00 91.68 91.85
crx 82.46 85.06 84.93

hypo 95.24 99.24 99.24
mushroom 99.94 99.97 100.00

sick 93.88 97.49 98.36
sonar 77.44 90.86 88.74

waveform 87.28 91.22 91.83
average 82.643 92.470 92.471

in which the computation is performed on a demand-driven
basis. This lazy classification method effectively reduces the
number of rules produced by focusing on the test instance only.
Experimental studies show that the lazy approach outperforms
both the eager associative classification approach and decision
tree-based classifiers in terms of accuracy. Based on the
experimental results on common datasets, [11] is shown to
achieve high accuracy than [6].

[11] is a newly proposed frequent pattern-based classifi-
cation method. Highly discriminative frequent itemsets are
selected to represent the data in a feature space, based on



which any learning algorithm can be used for model learning.
This method first mines a set of frequent itemsets, then
performs feature selection on the mining results to single out
a compact set of highly discriminative itemsets. This method
is shown to achieve very high accuracy.

VII. CONCLUSIONS

Frequent pattern-based classification methods have shown to
be very effective at classifying categorical or high dimensional
sparse datasets. However, many existing methods which mine
a set of frequent itemsets or association rules encounter non-
trivial computational bottleneck in the mining step, due to
the explosive combination between the items. In addition,
the explosive number of features poses great computational
challenges for feature selection.

In this study, we proposed a direct discriminative pattern
mining approach DDPMine which directly mines the dis-
criminative patterns and integrates feature selection into the
mining framework. A branch-and-bound search is imposed
on the FP-growth mining process, which prunes the search
space significantly. DDPMine works in an iterative fashion
and reduces the problem size incrementally by eliminating
training instances which are covered by the selected features.
Experimental results show that DDPMine achieves orders of
magnitude speedup over the two-step method without any
downgrade of classification accuracy. DDPMine also outper-
forms the state-of-the-art associative classification methods in
terms of both accuracy and efficiency.

VIII. APPENDIX

An upper bound of some discriminative measures was
derived in [11] as a function of the itemset frequency. We
use the widely used discriminative measure information gain
[14] to show the bound.

Information gain is defined as

IG(C|X) = H(C) − H(C|X) (10)

where H(C) is the entropy and H(C|X) is the conditional
entropy.

Assume we have an itemset α whose absence or presence
is represented by a random variable X , X ∈ {0, 1}. Assume
C = {0, 1}. Let P (x = 1) = θ (θ is the frequency of the
itemset α), P (c = 1) = p and P (c = 1|x = 1) = q. The
upper bound function shown below assumes θ ≤ p since θ ≥ p
is a symmetric case. Then when q = 0 or q = 1, IG(C|X)
reaches the upper bound. When q = 1, the upper bound is

IGub(C|X) = −p log p − (1 − p) log(1 − p)

+(p − θ) log
p − θ

1 − θ
+ (1 − p) log

1 − p

1 − θ

When q = 0, the upper bound is

IGub(C|X) = −p log p − (1 − p) log(1 − p)

+p log
p

1 − θ
+ (1 − p − θ) log

1 − p − θ

1 − θ

In addition, we have the following conclusion:

∂IGub(C|X)
∂θ

> 0, if θ ≤ p (11)

This result shows that the information gain upper bound is a
function of support θ. IGub(C|X) is monotonically increasing
with θ. When θ is small, IGub(C|X) is small. Therefore, the
information gain of low-frequency patterns is bounded by a
small value.
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