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® Search algorithms
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Coding Project 1 is due today

• Submit both your code and report

• Declare your collaboration (help you’ve received)
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Recap: Problem Formulation and Search

• Problem formulation
– State-space description < {S}, S0, {SG}, {O}, {g} >

• S: Possible states
• S0: Initial state of the agent
• SG: Goal state(s)

– Or equivalently, a goal test G(S)
• O: Operators  O: {S} => {S}

– Describes the possible actions of the agent
• g: Path cost function, assigns a cost to a path/action

• At any given time, which possible action Oi is best?
– Depends on the goal, the path cost function, the future sequence of actions….

• Agent’s strategy:  Formulate, Search, and Execute
– This is offline problem solving



Recap: PACMAN

• The goal of a simplified PACMAN is to get to the pellet as
quick as possible.
– For a grid of size 30*30. Everything static.
– What is a reasonable representation of the State, Operators, Goal

test and Path cost?
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Quiz: PACMAN with static ghosts

• The goal is to eat all pellets as quickly as possible while
staying alive. Eating the “Power pellet” will allow the
pacman to eat the ghost.

• State (how many?) 
• Operators?
• Goal-Test?
• Path-Cost? 5
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Recap: General Tree Search Algorithm

function GENERAL-SEARCH(problem, QUEUING-FN) returns a solution or failure

nodes ¬ MAKE-QUEUE(MAKE-NODE(INITIAL-STATE[problem]))
loop do

if nodes is empty then return failure
node ¬ REMOVE-FRONT(nodes)
if GOAL-TEST[problem] applied to STATE(node) succeeds then return node
nodes ¬ QUEUING-FN(nodes, EXPAND(node, OPERATORS[problem]))

end

• Uses a queue (a list) and a queuing function to 
implement a search strategy

– Queuing-Fn(queue, elements) inserts a set of elements into the 
queue and determines the order of node expansion
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Recap: Breadth-First Search

• All nodes at depth d in the search tree are expanded before 
any nodes at depth d+1
– First consider all paths of length N, then all paths of length N+1, 

etc.
• Doesn’t consider path cost – finds the solution with the 

shortest path
• Uses FIFO queue

function BREADTH-FIRST-SEARCH(problem) returns a solution or failure
return GENERAL-SEARCH(problem, ENQUEUE-AT-END)
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Recap: Breadth-First Search

• Complete?

• Optimal?

• Time complexity?

• Space complexity?

Yes

If shallowest goal is optimal

Exponential: O( bd+1 )

Exponential: O( bd+1 )

In practice, the memory requirements are typically worse 
than the time requirements

b = branching factor (require finite b)
d = depth of shallowest solution



This lecture:  Search algorithms

• Uninformed search
– DFS
– Depth-limited search
– Iterative Deepening search
– Bidirectional search
– Uniform cost search

• Tree search vs Graph search

• Informed Search
– A*-Search
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Depth-First Search
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Depth-First Search

• Always expands one of the nodes at the deepest level of 
the tree
– Low memory requirements
– Problem: depth could be infinite

• Uses a stack (LIFO)
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Depth-First Search

• Always expands one of the nodes at the deepest level of 
the tree
– Low memory requirements
– Problem: depth could be infinite

• Uses a stack (LIFO)

function DEPTH-FIRST-SEARCH(problem) returns a solution or failure
return GENERAL-SEARCH(problem, ENQUEUE-AT-FRONT)
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Depth-First Search

• Complete?

• Optimal?

• Time complexity?

• Space complexity?

m = maximum depth of the search tree 
(may be infinite)
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Depth-First Search

• Complete?

• Optimal?

• Time complexity?

• Space complexity?

No

No

Exponential: O( bm )

Polynomial: O( bm )

m = maximum depth of the search tree 
(may be infinite)



What is the difference between the BFS / DFS
that you learned from the algorithm / data
structure course?
• Nothing, except:

– Now you are applying them to solve an AI problem
– The graph can be infinitely large
– The graph does not need to be known ahead of time (you only

need local information: goal-state checker, successor function)
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Space complexity of DFS

• Why is the space complexity (memory usage) of depth-
first search O( bm )?
– Remove expanded node when all descendents evaluated
– At each of the m levels, you have to keep b nodes in memory
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Space complexity of DFS

• Why is the space complexity (memory usage) of depth-
first search O( bm )?
– Remove expanded node when all descendents evaluated
– At each of the m levels, you have to keep b nodes in memory

Example:
b = 3
m = 6
Nodes in memory: bm+1 = 19

Actually, (b-1)m + 1 = 13 nodes, the way 
we have been keeping our node list
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Depth-Limited Search

• Like depth-first search, but uses a depth cutoff to avoid 
long (possibly infinite), unfruitful paths
– Do depth-first search up to depth limit l
– Depth-first is special case with limit = inf

• Problem:  How to choose the depth limit l ?
– Some problem statements make it obvious (e.g., TSP), but others 

don’t (e.g., MU-puzzle, from the supplementary slide last time)
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Depth-Limited Search

• Like depth-first search, but uses a depth cutoff to avoid 
long (possibly infinite), unfruitful paths
– Do depth-first search up to depth limit l
– Depth-first is special case with limit = inf

• Problem:  How to choose the depth limit l ?
– Some problem statements make it obvious (e.g., TSP), but others 

don’t (e.g., MU-puzzle, from the supplementary slide last time)

function DEPTH-LIMITED-SEARCH(problem, depth-limit) returns a 
solution or failure

return GENERAL-SEARCH(problem, ENQUEUE-AT-FRONT-IF-UNDER-
DEPTH-LIMIT)

Must explicitly represent node depth
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Depth-Limited Search

• Complete?

• Optimal?

• Time complexity?

• Space complexity?

No, unless d £ l

No

Exponential: O( bl )

Exponential: O( bl )

l = depth limit
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Iterative-Deepening Search

• Since the depth limit is difficult to choose in depth-limited 
search, use depth limits of l = 0, 1, 2, 3, …
– Do depth-limited search at each level
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Iterative-Deepening Search

• Since the depth limit is difficult to choose in depth-limited 
search, use depth limits of l = 0, 1, 2, 3, …
– Do depth-limited search at each level

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution or 
failure

for depth ¬ 0 to ¥ do
if DEPTH-LIMITED-SEARCH(problem, depth) succeeds then return result

end
return failure
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Iterative-Deepening Search

• IDS has advantages of 
– Breadth-first search – similar optimality and completeness 

guarantees
– Depth-first search – Modest memory requirements

• This is the preferred blind search method when the search 
space is large and the solution depth is unknown

• Many states are expanded multiple times
– Is this terribly inefficient?

• No… and it’s great for memory (compared with breadth-first)
• Why is it not particularly inefficient?
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Iterative-Deepening Search: Efficiency

• Complete?

• Optimal?

• Time complexity?

• Space complexity?

Yes

Same as BFS

Exponential: O( bd )

Polynomial: O( bd )
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Bidirectional Search
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Bidirectional Search

Forward search only:

…
…
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Bidirectional Search

Simultaneously search forward from the initial state and 
backward from the goal state
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Bidirectional Search

Simultaneously search forward from the initial state and 
backward from the goal state

Much more efficient!
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Bidirectional Search

• O(bd/2) rather than O(bd) – hopefully

Example:
410 ≈ 1,000,000
2*45 ≈ 2,000
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Bidirectional Search

• O(bd/2) rather than O(bd) – hopefully
• Both actions and predecessors (inverse actions) must be defined
• Must test for intersection between the two searches

– Constant time for test?
• Really a search strategy, not a specific search method

– Often not practical….

Example:
410 ≈ 1,000,000
2*45 ≈ 2,000
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Bidirectional Search

• Complete?

• Optimal?

• Time complexity?

• Space complexity?

Yes

Same as BFS

Exponential: O( bd/2 )

Exponential: O( bd/2 )

* Assuming breadth-first search used from both ends
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Uniform Cost Search

• Similar to breadth-first search, but always expands the 
lowest-cost node, as measured by the path cost function, 
g(n)
– g(n) is (actual) cost of getting to node n
– Breadth-first search is actually a special case of uniform cost 

search, where g(n) = DEPTH(n)
– If the path cost is monotonically increasing, uniform cost search 

will find the optimal solution
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Uniform Cost Search

• Similar to breadth-first search, but always expands the 
lowest-cost node, as measured by the path cost function, 
g(n)
– g(n) is (actual) cost of getting to node n
– Breadth-first search is actually a special case of uniform cost 

search, where g(n) = DEPTH(n)
– If the path cost is monotonically increasing, uniform cost search 

will find the optimal solution

function UNIFORM-COST-SEARCH(problem) returns a solution or failure
return GENERAL-SEARCH(problem, ENQUEUE-IN-COST-ORDER)

(Dijkstra’s algorithm of an potentially infinite graph)
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Example (3 min work)
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Try breadth-first and uniform cost
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Example (3 min work):  Breath-First Search
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Node to expand: Frontier:
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Example (3 min work):  Uniform Cost Search
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Uniform-Cost Search

• Complete?

• Optimal?

• Time complexity?

• Space complexity?

Yes, if ε > 0

Yes

C = optimal cost
ε = minimum step cost
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Exponential: O( b└C/ε┘ )

C = optimal cost
ε = minimum step cost
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Uniform-Cost Search

• Complete?

• Optimal?

• Time complexity?

• Space complexity?

Yes, if ε > 0
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Exponential: O( b└C/ε┘ )

Exponential: O( b└C/ε┘ )

C = optimal cost
ε = minimum step cost
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Uniform-Cost Search

• Complete?

• Optimal?

• Time complexity?

• Space complexity?

Yes, if ε > 0

Yes

Exponential: O( b└C/ε┘ )

Exponential: O( b└C/ε┘ )

Same as breadth-first if all edge costs are equal

C = optimal cost
ε = minimum step cost



Can we do better than Tree Search?

• Sometimes.

• When the number of states are small
– Dynamic programming (smart way of doing exhaustive search)

29
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State Space vs. Search Tree (cont.)

B C CB F

D H G

A D GA D E

B C

A

Search tree (partially expanded)
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Search Tree => Search Graph
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Search Tree => Search Graph

B C CB F

D H G

A D GA D E

B C

A

Dynamic programming (with book keeping)

O(bd) => O(# of states)



Graph Search vs Tree Search

• Tree Search 
– We might repeat some states
– But we do not need to remember states

• Graph Search
- We remember all the states that have been explored
- But we do not repeat some states

32



Summary table of uninformed search

33

(Section 3.4.6 in the AIMA book.)
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Practical note about search algorithms
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• The computer can’t “see” the search graph like we can
– No “bird’s eye view” – make relevant information explicit!
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Practical note about search algorithms

• The computer can’t “see” the search graph like we can
– No “bird’s eye view” – make relevant information explicit!

• What information should you keep for a node in the search tree?
– State

• (1 2 0)
– Parent node (or perhaps complete ancestry)

• Node #3 (or, nodes 0, 2, 5, 11, 14)
– Depth of the node

• d = 4
– Path cost up to (and including) the node

• g(node) = 12
– Operator that produced this node

• Operator #1



Remainder of the lecture

• Informed search

• Some questions / desiderata
1. Can we do better with some side information?
2. We do not wish to make strong assumptions on the side

information.
3. If the side information is good, we hope to do better.
4. If the side information is useless, we perform as well as an

uninformed search method.

35
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Best-First Search (with an Eval-Fn)

function BEST-FIRST-SEARCH(problem, EVAL-FN) returns a solution or 
failure

QUEUING-FN ¬ a function that orders nodes by EVAL-FN
return GENERAL-SEARCH(problem, QUEUING-FN)

• Uses a heuristic function, h(n), as the EVAL-FN
• h(n) estimates the cost of the best path from state n to a goal state

o h(goal) = 0
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Greedy Best-First Search

• Greedy search – always expand the node that appears to be the closest 
to the goal (i.e., with the smallest h)
– Instant gratification, hence “greedy”
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Greedy Best-First Search

• Greedy search – always expand the node that appears to be the closest 
to the goal (i.e., with the smallest h)
– Instant gratification, hence “greedy”

function GREEDY-SEARCH(problem, h) returns a solution or failure
return BEST-FIRST-SEARCH(problem, h)

• Greedy search often performs well, but:
– It doesn’t always find the best solution / or any solution
– It may get stuck
– It performance completely depends on the particular h function
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A* Search (Pronounced “A-Star”)

• Uniform-cost search minimizes g(n) (“past” cost)



38

A* Search (Pronounced “A-Star”)

• Uniform-cost search minimizes g(n) (“past” cost)

• Greedy search minimizes h(n) (“expected” or “future” cost)



38
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• Uniform-cost search minimizes g(n) (“past” cost)

• Greedy search minimizes h(n) (“expected” or “future” cost)

• “A* Search” combines the two:
– Minimize  f(n) = g(n) + h(n)
– Accounts for the “past” and the “future”
– Estimates the cheapest solution (complete path) through node n
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A* Search (Pronounced “A-Star”)

• Uniform-cost search minimizes g(n) (“past” cost)

• Greedy search minimizes h(n) (“expected” or “future” cost)

• “A* Search” combines the two:
– Minimize  f(n) = g(n) + h(n)
– Accounts for the “past” and the “future”
– Estimates the cheapest solution (complete path) through node n

function A*-SEARCH(problem, h) returns a solution or failure
return BEST-FIRST-SEARCH(problem, f )
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A* Example

f(n) = g(n) + h(n)
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A* Example
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f = 0 + 366 = 366 Arad

A* Example
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Zerind Sibiu Timisoaraf = 75 + 374 = 449 140 + 253 = 393 118+329=447

f = 0 + 366 = 366 Arad

A* Example
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Oradea Arad Fagaras Rimnicu Vilcea291+380=671 280+366=506 239+178=417 220+193=413

Zerind Sibiu Timisoaraf = 75 + 374 = 449 140 + 253 = 393 118+329=447

f = 0 + 366 = 366 Arad

A* Example
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Oradea Arad Fagaras Rimnicu Vilcea291+380=671 280+366=506 239+178=417 220+193=413

Zerind Sibiu Timisoaraf = 75 + 374 = 449 140 + 253 = 393 118+329=447

f = 0 + 366 = 366 Arad

A* Example



When does A* search “work”?

• Focus on optimality (finding the optimal solution)

41

• “A* Search” is optimal if h is admissible



When does A* search “work”?

• Focus on optimality (finding the optimal solution)

41

• “A* Search” is optimal if h is admissible
– h is optimistic – it never overestimates the cost to the goal

• h(n) £ true cost to reach the goal
– So f (n) never overestimates the actual cost of the best solution 

passing through node n



Visualizing A* search

• A* expands nodes in order of increasing f value
• Gradually adds "f-contours" of nodes 
• Contour i has all nodes with f=fi, where fi < fi+1
•
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Optimality of A*with an Admissible h



43
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• Let OPT be the optimal path cost.
– All non-goal nodes on this path have f ≤ OPT.

• Positive costs on edges
– The goal node on this path has f = OPT.
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Optimality of A*with an Admissible h

• Let OPT be the optimal path cost.
– All non-goal nodes on this path have f ≤ OPT.

• Positive costs on edges
– The goal node on this path has f = OPT.

• A* search does not stop until an f-value of OPT is reached.
– All other goal nodes have an f cost higher than OPT.

• All non-goal nodes on the optimal path are eventually 
expanded.
– The optimal goal node is eventually placed on the priority queue, 

and reaches the front of the queue.
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Optimal Efficiency of A* 

A* is optimally efficient for any particular h(n)
That is, no other optimal algorithm is guaranteed to expand 
fewer nodes with the same h(n).  
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Optimal Efficiency of A* 

A* is optimally efficient for any particular h(n)
That is, no other optimal algorithm is guaranteed to expand 
fewer nodes with the same h(n).  

- Need to find a good and efficiently evaluable h(n).



45

A* Search with an Admissible h

• Optimal?

• Complete?

• Time complexity?

• Space complexity?
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A* Search with an Admissible h

• Optimal?

• Complete?

• Time complexity?

• Space complexity?

Yes

Yes

Exponential; better under some 
conditions

Exponential; keeps all nodes in 
memory



Recall: Graph Search vs Tree Search

• Tree Search 
– We might repeat some states
– But we do not need to remember states

• Graph Search
- We remember all the states that have been explored
- But we do not repeat some states

46
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Avoiding Repeated States using A* Search

• Is GRAPH-SEARCH optimal with A*?

44
1 1

h = 1

h = 5

h = 0h = 5

A

B

C D

E7

h = 0

Try with TREE-SEARCH and 
GRAPH-SEARCH
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Avoiding Repeated States using A* Search

• Is GRAPH-SEARCH optimal with A*?

44
1 1

h = 1

h = 5

h = 0h = 5

A

B

C D

E7

h = 0

Try with TREE-SEARCH and 
GRAPH-SEARCH

Graph Search  
Step 1: Among B, C, E, Choose C
Step 2: Among B, E, D, Choose B
Step 3: Among D, E, Choose E.   (you are not going to 
select C again)
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Avoiding Repeated States using A* Search

• Is GRAPH-SEARCH optimal with A*?
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Avoiding Repeated States using A* Search

Solution 1: Remember all paths: Need extra bookkeeping

• Is GRAPH-SEARCH optimal with A*?
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Avoiding Repeated States using A* Search

Solution 1: Remember all paths: Need extra bookkeeping

• Is GRAPH-SEARCH optimal with A*?

44
1 1

h = 1

h = 5

h = 0h = 5

A

B

C D

E7

h = 0

Try with TREE-SEARCH and 
GRAPH-SEARCH

Solution 2: Ensure that the first path to a node is the best!
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Consistency (Monotonicity) of heuristic h

• A heuristic is consistent (or monotonic) provided 
– for any node n, for any successor n’ generated by action a with 

cost c(n,a,n’)
• h(n) ≤ c(n,a,n’) + h(n’)

– akin to triangle inequality.
– guarantees admissibility (proof?).
– values of f(n) along any path are non-decreasing (proof?).

• Contours of constant f in the state space

• GRAPH-SEARCH using consistent f(n) is optimal.
• Note that h(n) = 0 is consistent and admissible.

n n’
c(n,a,n’)

h(n)
h(n’)

g



Next lecture

• Examples

• Choosing heuristics

• Games and Minimax Search
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Heuristics

• What’s a heuristic for
– Driving distance (or time) from city A to city B ?
– 8-puzzle problem ?
– M&C ?
– Robot navigation ?
– Reaching the summit ?
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– Robot navigation ?
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• Admissible heuristic
– Does not overestimate the cost to reach the goal
– “Optimistic”
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Heuristics

• What’s a heuristic for
– Driving distance (or time) from city A to city B ?
– 8-puzzle problem ?
– M&C ?
– Robot navigation ?
– Reaching the summit ?

• Admissible heuristic
– Does not overestimate the cost to reach the goal
– “Optimistic”

• Are the above heuristics admissible? Consistent?
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Example: 8-Puzzle
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Comparing and combining heuristics 

• Heuristics generated by considering relaxed versions of a problem.
• Heuristic h1 for 8-puzzle

– Number of out-of-order tiles
• Heuristic h2 for 8-puzzle

– Sum of Manhattan distances of each tile
• h2 dominates h1 provided h2(n) ≥ h1(n).

– h2 will likely prune more than h1.
• max(h1,h2 , .. ,hn) is

– admissible if each hi is
– consistent if each hi is

• Cost of sub-problems and pattern databases
– Cost for 4 specific tiles
– Can these be added for disjoint sets of tiles?
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Effective Branching Factor
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Effective Branching Factor

• Though informed search methods may have poor worst-
case performance, they often do quite well if the heuristic 
is good
– Even if there is a huge branching factor
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Effective Branching Factor

• Though informed search methods may have poor worst-
case performance, they often do quite well if the heuristic 
is good
– Even if there is a huge branching factor

• One way to quantify the effectiveness of the heuristic: the 
effective branching factor, b*

– N: total number of nodes expanded
– d: solution depth
– N = 1 + b* + (b*)2 + … + (b*)d
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Effective Branching Factor

• Though informed search methods may have poor worst-
case performance, they often do quite well if the heuristic 
is good
– Even if there is a huge branching factor

• One way to quantify the effectiveness of the heuristic: the 
effective branching factor, b*

– N: total number of nodes expanded
– d: solution depth
– N = 1 + b* + (b*)2 + … + (b*)d

• For a good heuristic, b* is close to 1
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Example: 8-puzzle problem

Averaged over 100 trials each at different solution lengths

Solution length

Ave. # of nodes expanded



Summary of informed search

• How to use a heuristic function to improve search
– Greedy Best-first search + Uniform-cost search = A* Search

• When is A* search optimal?
– h is Admissible (optimistic) for Tree Search
– h is Consistent for Graph Search

• Choosing heuristic functions
– A good heuristic function can reduce time/space cost of search by

orders of magnitude.
– Good heuristic function may take longer to evaluate.
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