Artificial Intelligence

CS 165A
Apr 26, 2022

Instructor: Prof. Yu-Xiang Wang
\rightarrow Examples of heuristics in A^{*}-search
\rightarrow Games and Adversarial Search

Project 1 submissions so far

- Most students have submitted
- A few reports are still missing
- Most submissions got full credits for the coding part
- We are still grading the reports
- Feel free to talk to us if you find it challenging.
- Notes:
- You could still submit (late days will be automatically applied)
- Bonus questions have no deadline.

Recap: Search algorithms

- State-space diagram vs Search Tree
- Uninformed Search algorithms
- BFS/DFS
- Depth Limited Search
- Iterative Deepening Search.
- Uniform cost search.
- Informed Search (with an heuristic function h):
- Greedy Best-First-Search. (not complete / optimal)
- A* Search (complete / optimal if h is admissible)

Recap: Summary table of uninformed search

Criteria	BFS	Uniform-cost	DFS	Depth-limited	IDS	Bidirectional
Complete?	Yes*	Yes**	No	No	Yes*	Yes ${ }^{++}$
Time	$\mathrm{O}\left(b^{d}\right)$	$\mathrm{O}\left(\mathrm{b}^{1+1} \mathrm{c}^{\prime} \%\right.$)	$\mathrm{O}\left(b^{m}\right)$	$\mathrm{O}\left(b^{\prime}\right)$	$\mathrm{O}\left(b^{d}\right)$	$\mathrm{O}\left(b^{\text {d/2 }}\right.$)
Space	$\mathrm{O}\left(b^{d}\right)$	$\mathrm{O}\left(\mathrm{b}^{1+1} \mathrm{c}^{\circ} \%\right.$)	$\mathrm{O}(b m)$	$\mathrm{O}(\mathrm{b})$	$\mathrm{O}(b d)$	$\mathrm{O}\left(b^{\text {d/2 }}\right.$)
Optimal?	Yes ${ }^{\text {s }}$	Yes	No	No	Yes ${ }^{\text {s }}$	Yes ${ }^{\text {s+ }}$

b : Branching factor
d : Depth of the shallowest goal
l: Depth limit
m : Maximum depth of search tree
e : The lower bound of the step cost
(Section 3.4.7 in the AIMA book.)
\#: Complete if b is finite
\&: Complete if step cost >=e
s: Optimal if all step costs are identical
+: If both direction use BFS

Recap: A* Search (Pronounced "A-Star")

- Uniform-cost search minimizes $\boldsymbol{g}(\boldsymbol{n})$ ("past" cost)
- Greedy search minimizes $\boldsymbol{h}(\boldsymbol{n})$ ("expected" or "future" cost)
- "A* Search" combines the two:
- Minimize $\boldsymbol{f}(\boldsymbol{n})=\boldsymbol{g}(\boldsymbol{n})+\boldsymbol{h}(\boldsymbol{n})$
- Accounts for the "past" and the "future"
- Estimates the cheapest solution (complete path) through node \boldsymbol{n}
function A*-SEARCH $($ problem, $\boldsymbol{h})$ returns a solution or failure return Best-First-Search (problem, \boldsymbol{f})

Recap: Avoiding Repeated States using A* Search

- Is GRAPH-SEARCH optimal with A*?

Graph Search Step 1: Among B, C, E, Choose C Step 2: Among B, E, D, Choose B Step 3: Among D, E, Choose E. (you are not going to select C again)

Recap: Consistency (Monotonicity) of heuristic h

- A heuristic is consistent (or monotonic) provided
- for any node n, for any successor n' generated by action a with cost $\mathrm{c}(\mathrm{n}, \mathrm{a}, \mathrm{n}$ ')
- $h(n) \leq c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right)$
- akin to triangle inequality.
- guarantees admissibility (proof?).

- values of $f(n)$ along any path are non-decreasing (proof?).
- Contours of constant f in the state space
- GRAPH-SEARCH using consistent $\mathrm{f}(\mathrm{n})$ is optimal.
- Note that $h(n)=0$ is consistent and admissible.

This lecture

- Example of heuristics / A* search
- Effective branching factor
- Games
- Adversarial Search

Heuristics

- What's a heuristic for
- Driving distance (or time) from city A to city B ?
- 8-puzzle problem?
- M\&C?
- Robot navigation?
- Admissible heuristic
- Does not overestimate the cost to reach the goal
- "Optimistic"
- Consistent heuristic:
- Satisfy a triangular inequality: $h(n) \leq c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right)$
- Are the above heuristics admissible? Consistent?

Example: 8-Puzzle

5	4	
6	1	8
7	3	2
Start State		

Comparing and combining heuristics

- Heuristics generated by considering relaxed versions of a problem.
- Heuristic h_{1} for 8-puzzle
- Number of out-of-order tiles
- Heuristic h_{2} for 8-puzzle
- Sum of Manhattan distances of each tile
- h_{2} dominates h_{1} provided $h_{2}(n) \geq h_{1}(n)$.
- h_{2} will likely prune more than h_{1}.
- $\max \left(\mathrm{h}_{1}, \mathrm{~h}_{2}, . ., \mathrm{h}_{\mathrm{n}}\right)$ is
- admissible if each h_{i} is
- consistent if each h_{i} is
- Cost of sub-problems and pattern databases
- Cost for 4 specific tiles
- Can these be added for disjoint sets of tiles?

Effective Branching Factor

- Though informed search methods may have poor worstcase performance, they often do quite well if the heuristic is good
- Even if there is a huge branching factor
- One way to quantify the effectiveness of the heuristic: the effective branching factor, b^{*}
-N : total number of nodes expanded
-d : solution depth
$-N=1+b^{*}+\left(b^{*}\right)^{2}+\ldots+\left(b^{*}\right)^{d}$
- For a good heuristic, b^{*} is close to 1

Example: 8-puzzle problem

Averaged over 100 trials each at different solution lengths

	Search Cost			Effective Branching Factor		
d	IDS	$\mathrm{A}^{*}\left(h_{1}\right)$	$\mathrm{A}^{*}\left(h_{2}\right)$	IDS	$\mathrm{A}^{*}\left(h_{1}\right)$	$\mathrm{A}^{*}\left(h_{2}\right)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	364404	227	73	2.78	1.42	1.24
14	343941	539	113	2.83	1.44	1.23
16	-	1301	211	-	1.45	1.25
18	-	3056	363	-	1.46	1.26
20	-	7276	676	-	1.47	1.27
22	-	18094	1219	-	1.48	1.28
24	39135	1641	-	1.48	1.26	

Solution length

Memory Bounded Search

- Memory, not computation, is usually the limiting factor in search problems
- Certainly true for A* search
- Why? What takes up memory in A* search?
- Solution: Memory-bounded A* search
- Iterative Deepening A* (IDA*)
- Simplified Memory-bounded A* (SMA*)
- (Read the textbook for more details.)

Summary of informed search

- How to use a heuristic function to improve search
- Greedy Best-first search + Uniform-cost search = A* Search
- When is A* search optimal?
- h is Admissible (optimistic) for Tree Search
- h is Consistent for Graph Search
- Choosing heuristic functions
- A good heuristic function can reduce time/space cost of search by orders of magnitude.
- Good heuristic function may take longer to evaluate.

Games and Adversarial Search

- Games: problem setup
- Minimax search
- Alpha-beta pruning

Illustrative example of a simple game (1 min discussion)

[Example: game 1 You choose one of the three bins. I choose a number from that bin. Your goal is to maximize the chosen number.

(Example taken from Liang and Sadigh)

Game as a search problem

- S_{0} The initial state
- PLAYER(s): Returns which player has the move
- ACTIONS(s): Returns the legal moves.
- RESULT(s, a): Output the state we transition to.
- TERMINAL-TEST(s): Returns True if the game is over.
- UTILITY(s,p): The payoff of player p at terminal state s .

Two-player, Turn-based, Perfect information, Deterministic, Zero-Sum Game

- Two-player: Tic-Tac-Toe, Chess, Go!
- Turn-based: The players take turns in round-robin fashion.
- Perfect information: The State is known to everyone
- Deterministic: Nothing is random
- Zero-sum: The total payoff for all players is a constant.
- The 8-puzzle is a one-player, perfect info, deterministic, zero-sum game.
- How about Rock-Paper-Scissors?
- How about Monopoly?
- How about Starcraft?

Tic-Tac-Toe

- The first player is \mathbf{X} and the second is \mathbf{O}
- Object of game: get three of your symbol in a horizontal, vertical or diagonal row on a 3×3 game board
- X always goes first

- Players alternate placing Xs and Os on the game board
- Game ends when a player has three in a row (a wins) or all nine squares are filled (a draw)

What's the state, action, transition, payoff for Tic-Tac-Toe?

Partial game tree for Tic-Tac-Toe

Game trees

- A game tree is like a search tree in many ways ...
- nodes are search states, with full details about a position
- characterize the arrangement of game pieces on the game board
- edges between nodes correspond to moves
- leaf nodes correspond to a set of goals
- \{ win, lose, draw \}
- usually determined by a score for or against player
- at each node it is one or other player's turn to move
- A game tree is not like a search tree because you have an opponent!

Two players: MIN and MAX

- In a zero-sum game:
- payoff to Player 1 = - payoff to Player 2
- The goal of Player 1 is to maximizing her payoff.
- The goal of Player 2 is to maximizing her payoff as well
- Equivalent to minimizing Player 1's payoff.

Minimax search

- Assume that both players play perfectly
- do not assume player will miss good moves or make mistakes
- Score(s): The score that MAX will get towards the end if both player play perfectly from s onwards.
- Consider MIN's strategy
- MIN's best strategy:
- choose the move that minimizes the score that will result when MAX chooses the maximizing move
- MAX does the opposite

Minimaxing

- Your opponent will choose smaller numbers
- If you move left, your opponent will choose 3
- If you move right, your opponent will choose -8
- Thus your choices are only 3 or -8
- You should move left

Each move is called a "ply". One round is K-plies for a K-player game.

Minimax example

Which move to choose?

The minimax decision is move \mathbf{A}_{1}

Another example

- In the game, it's your move. Which move will the minimax algorithm choose $-\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D ? What is the minimax value of the root node and nodes $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D ?

MIN

Minimax search

- The minimax decision maximizes the utility under the assumption that the opponent seeks to minimize it (if it uses the same evaluation function)
- Generate the tree of minimax values
- Then choose best (maximum) move
- Don't need to keep all values around
- Good memory property
- Depth-first search is used to implement minimax
- Expand all the way down to leaf nodes
- Recursive implementation

Minimax properties

- Optimal?
- Complete?
- Time complexity?
- Space complexity?

Polynomial: O(bm)

But this could take forever...

- Exact search is intractable
- Tic-Tac-Toe is $9!=362,880$
- For chess, $\mathrm{b} \approx 35$ and $\mathrm{m} \approx 100$ for "reasonable" games
- Go is $361!\approx 10^{750}$
- Idea 1: Pruning
- Idea 2: Cut off early and use a heuristic function

Pruning

- What's really needed is "smarter," more efficient search
- Don’t expand "dead-end" nodes!
- Pruning - eliminating a branch of the search tree from consideration
- Alpha-beta pruning, applied to a minimax tree, returns the same "best" move, while pruning away unnecessary branches
- Many fewer nodes might be expanded
- Hence, smaller effective branching factor
- ...and deeper search
- ...and better performance
- Remember, minimax is depth-first search

Alpha pruning

Beta pruning

Improvements via alpha/beta pruning

- Depends on the ordering of expansion
- Perfect ordering $O\left(b^{m / 2}\right)$
- Random ordering $O\left(b^{3 m / 4}\right)$
- For specific games like Chess, you can get to almost perfect ordering.

Heuristic (Evaluation function)

- It is usually impossible to solve games completely
- Rather, cut the search off early and apply a heuristic evaluation function to the leaves
- $\boldsymbol{h}(\boldsymbol{s})$ estimates the expected utility of the game from a given position (node/state) \boldsymbol{s}
- like depth bounded depth first, lose completeness
- Explore game tree using combination of evaluation function and search
- The performance of a game-playing program depends on the quality (and speed!) of its evaluation function

Heuristics (Evaluation function)

- Typical evaluation function for game: weighted linear function
$-h(s)=w_{1} f_{1}(s)+w_{2} f_{2}(s)+\ldots+w_{d} f_{d}(s)$
- weights \cdot features [dot product]
- For example, in chess
- $W=\{1,3,3,5,8\}$
- $F=\{\#$ pawns advantage, \# bishops advantage, \# knights advantage, \# rooks advantage, \# queens advantage \}
- Is this what Deep Blue used?
- What are some problems with this?
- More complex evaluation functions may involve learning
- Adjusting weights based on outcomes
- Perhaps non-linear functions
- How to choose the features?

Tic-Tac-Toe revisited

a partial game tree for Tic-Tac-Toe

Evaluation function for Tic-Tac-Toe

- A simple evaluation function for Tic-Tac-Toe
- count the number of rows where \mathbf{X} can win
- subtract the number of rows where \mathbf{O} can win
- Value of evaluation function at start of game is zero
- on an empty game board there are 8 possible winning rows for both \mathbf{X} and \mathbf{O}

Evaluating Tic-Tac-Toe

evalX $=$ (number of rows where X can win) (number of rows where O can win)

- After \mathbf{X} moves in center, score for \mathbf{X} is +4
- After \mathbf{O} moves, score for \mathbf{X} is +2
- After \mathbf{X} 's next move, score for \mathbf{X} is +4

Evaluating Tic-Tac-Toe

evalo $=$ (number of rows where O can win) (number of rows where X can win)

- After X moves in center, score for \mathbf{O} is -4
- After \mathbf{O} moves, score for \mathbf{O} is +2
- After X's next move, score for \mathbf{O} is -4

Search depth cutoff

Evaluations shown for X

Expectimax: Playing against a benign opponent

- Sometimes your opponents are not clever.
- They behave randomly.
- You can take advantage of that by modeling your opponent.
- Example of game of chance:
- Slot machines
- Tetris

Expectimax example

- Your opponent behave randomly with a given probability distribution,
- If you move left, your opponent will select actions with probability [0.5,0.5]
- If you move right, your opponent will select actions with [0.6,0.4]

Note: pruning becomes tricky in expectimax... think about why.

Summary of game playing

- Minimax search
- Game tree
- Alpha-beta pruning
- Early stop with an evaluation function
- Expectimax

More reading / resources about game playing

- Required reading: AIMA 5.1-5.3
- Stochastic game / Expectiminimax: AIMA 5.5
- Backgammon. TD-Gammon
- Blackjack, Poker
- Famous game AI: Read the "Historical notes" of the AIMA Chapter 5
- Deep blue
- TD Gammon
- AlphaGo: https://www.nature.com/articles/nature16961

