
Artificial Intelligence
CS 165A

Apr 26, 2022

Instructor: Prof. Yu-Xiang Wang

® Examples of heuristics in A*-search
® Games and Adversarial Search

1

Project 1 submissions so far

• Most students have submitted
– A few reports are still missing

• Most submissions got full credits for the coding part
– We are still grading the reports

• Feel free to talk to us if you find it challenging.

• Notes:
– You could still submit (late days will be automatically applied)
– Bonus questions have no deadline.
– Project 2 is out. Please start early!

2

Recap: Search algorithms

• State-space diagram vs Search Tree

• Uninformed Search algorithms
– BFS / DFS
– Depth Limited Search
– Iterative Deepening Search.
– Uniform cost search.

• Informed Search (with an heuristic function h):
– Greedy Best-First-Search. (not complete / optimal)
– A* Search (complete / optimal if h is admissible)

3

Recap: Summary table of uninformed search

4

(Section 3.4.7 in the AIMA book.)

5

Recap: A* Search (Pronounced “A-Star”)

• Uniform-cost search minimizes g(n) (“past” cost)

• Greedy search minimizes h(n) (“expected” or “future” cost)

• “A* Search” combines the two:
– Minimize f(n) = g(n) + h(n)
– Accounts for the “past” and the “future”
– Estimates the cheapest solution (complete path) through node n

function A*-SEARCH(problem, h) returns a solution or failure
return BEST-FIRST-SEARCH(problem, f)

6

Recap: Avoiding Repeated States using A*
Search
• Is GRAPH-SEARCH optimal with A*?

44
1 1

h = 1

h = 5

h = 0h = 5

A

B

C D

E7

h = 0

Try with TREE-SEARCH and
GRAPH-SEARCH

6

Recap: Avoiding Repeated States using A*
Search
• Is GRAPH-SEARCH optimal with A*?

44
1 1

h = 1

h = 5

h = 0h = 5

A

B

C D

E7

h = 0

Try with TREE-SEARCH and
GRAPH-SEARCH

Graph Search
Step 1: Among B, C, E, Choose C
Step 2: Among B, E, D, Choose B
Step 3: Among D, E, Choose E. (you are not going to
select C again)

7

Recap: Consistency (Monotonicity) of
heuristic h
• A heuristic is consistent (or monotonic) provided

– for any node n, for any successor n’ generated by action a with
cost c(n,a,n’)

• h(n) ≤ c(n,a,n’) + h(n’)
– akin to triangle inequality.
– guarantees admissibility (proof?).
– values of f(n) along any path are non-decreasing (proof?).

• Contours of constant f in the state space

• GRAPH-SEARCH using consistent f(n) is optimal.
• Note that h(n) = 0 is consistent and admissible.

n n’
c(n,a,n’)

h(n)
h(n’)

g

This lecture

• Example of heuristics / A* search
– Effective branching factor

• Games

• Adversarial Search

8

9

Heuristics

• What’s a heuristic for
– Driving distance (or time) from city A to city B ?
– 8-puzzle problem ?
– M&C ?
– Robot navigation ?

9

Heuristics

• What’s a heuristic for
– Driving distance (or time) from city A to city B ?
– 8-puzzle problem ?
– M&C ?
– Robot navigation ?

• Admissible heuristic
– Does not overestimate the cost to reach the goal
– “Optimistic”

• Consistent heuristic:
– Satisfy a triangular inequality: h(n) ≤ c(n,a,n’) + h(n’)

9

Heuristics

• What’s a heuristic for
– Driving distance (or time) from city A to city B ?
– 8-puzzle problem ?
– M&C ?
– Robot navigation ?

• Admissible heuristic
– Does not overestimate the cost to reach the goal
– “Optimistic”

• Consistent heuristic:
– Satisfy a triangular inequality: h(n) ≤ c(n,a,n’) + h(n’)

• Are the above heuristics admissible? Consistent?

10

Example: 8-Puzzle

11

Comparing and combining heuristics

• Heuristics generated by considering relaxed versions of a problem.
• Heuristic h1 for 8-puzzle

– Number of out-of-order tiles
• Heuristic h2 for 8-puzzle

– Sum of Manhattan distances of each tile
• h2 dominates h1 provided h2(n) ≥ h1(n).

– h2 will likely prune more than h1.
• max(h1,h2 , .. ,hn) is

– admissible if each hi is
– consistent if each hi is

• Cost of sub-problems and pattern databases
– Cost for 4 specific tiles
– Can these be added for disjoint sets of tiles?

12

Effective Branching Factor

12

Effective Branching Factor

• Though informed search methods may have poor worst-
case performance, they often do quite well if the heuristic
is good
– Even if there is a huge branching factor

12

Effective Branching Factor

• Though informed search methods may have poor worst-
case performance, they often do quite well if the heuristic
is good
– Even if there is a huge branching factor

• One way to quantify the effectiveness of the heuristic: the
effective branching factor, b*

– N: total number of nodes expanded
– d: solution depth
– N = 1 + b* + (b*)2 + … + (b*)d

12

Effective Branching Factor

• Though informed search methods may have poor worst-
case performance, they often do quite well if the heuristic
is good
– Even if there is a huge branching factor

• One way to quantify the effectiveness of the heuristic: the
effective branching factor, b*

– N: total number of nodes expanded
– d: solution depth
– N = 1 + b* + (b*)2 + … + (b*)d

• For a good heuristic, b* is close to 1

13

Example: 8-puzzle problem

Averaged over 100 trials each at different solution lengths

Solution length

Ave. # of nodes expanded

14

Memory Bounded Search

14

Memory Bounded Search

• Memory, not computation, is usually the limiting factor in
search problems
– Certainly true for A* search

14

Memory Bounded Search

• Memory, not computation, is usually the limiting factor in
search problems
– Certainly true for A* search

• Why? What takes up memory in A* search?

14

Memory Bounded Search

• Memory, not computation, is usually the limiting factor in
search problems
– Certainly true for A* search

• Why? What takes up memory in A* search?

• Solution: Memory-bounded A* search
– Iterative Deepening A* (IDA*)
– Simplified Memory-bounded A* (SMA*)
– (Read the textbook for more details.)

Summary of informed search

• How to use a heuristic function to improve search
– Greedy Best-first search + Uniform-cost search = A* Search

• When is A* search optimal?
– h is Admissible (optimistic) for Tree Search
– h is Consistent for Graph Search

• Choosing heuristic functions
– A good heuristic function can reduce time/space cost of search by

orders of magnitude.
– Good heuristic function may take longer to evaluate.

15

Games and Adversarial Search
• Games: problem setup

• Minimax search

• Alpha-beta pruning

16

Illustrative example of a simple game (1 min
discussion)

17

(Example taken from Liang and Sadigh)

Game as a search problem

18

Game as a search problem

• S0 The initial state

18

Game as a search problem

• S0 The initial state

• PLAYER(s): Returns which player has the move

18

Game as a search problem

• S0 The initial state

• PLAYER(s): Returns which player has the move

• ACTIONS(s): Returns the legal moves.

18

Game as a search problem

• S0 The initial state

• PLAYER(s): Returns which player has the move

• ACTIONS(s): Returns the legal moves.

• RESULT(s, a): Output the state we transition to.

18

Game as a search problem

• S0 The initial state

• PLAYER(s): Returns which player has the move

• ACTIONS(s): Returns the legal moves.

• RESULT(s, a): Output the state we transition to.

• TERMINAL-TEST(s): Returns True if the game is over.

18

Game as a search problem

• S0 The initial state

• PLAYER(s): Returns which player has the move

• ACTIONS(s): Returns the legal moves.

• RESULT(s, a): Output the state we transition to.

• TERMINAL-TEST(s): Returns True if the game is over.

• UTILITY(s,p): The payoff of player p at terminal state s.

18

Two-player, Turn-based, Perfect information,
Deterministic, Zero-Sum Game
• Two-player: Tic-Tac-Toe, Chess, Go!

• Turn-based: The players take turns in round-robin fashion.

• Perfect information: The State is known to everyone

• Deterministic: Nothing is random

• Zero-sum: The total payoff for all players is a constant.

19

• The 8-puzzle is a one-player, perfect info,
deterministic, zero-sum game.

• How about Rock-Paper-Scissors?
• How about Monopoly?
• How about Starcraft?

Tic-Tac-Toe

• The first player is X and the
second is O

• Object of game: get three of
your symbol in a horizontal,
vertical or diagonal row on a
3x3 game board

• X always goes first
• Players alternate placing Xs and Os on the game board
• Game ends when a player has three in a row (a wins) or all

nine squares are filled (a draw)

20

Tic-Tac-Toe

• The first player is X and the
second is O

• Object of game: get three of
your symbol in a horizontal,
vertical or diagonal row on a
3x3 game board

• X always goes first
• Players alternate placing Xs and Os on the game board
• Game ends when a player has three in a row (a wins) or all

nine squares are filled (a draw)

20

What’s the state, action, transition, payoff for Tic-Tac-Toe?

Partial game tree for Tic-Tac-Toe

X’s turn

O’s turn

X’s turn

O’s turn

X’s turn

O’s turn

X’s wins

start

21

Game trees

• A game tree is like a search tree in many ways …
– nodes are search states, with full details about a position

• characterize the arrangement of game pieces on the
game board

– edges between nodes correspond to moves
– leaf nodes correspond to a set of goals

• { win, lose, draw }
• usually determined by a score for or against player

– at each node it is one or other player’s turn to move
• A game tree is not like a search tree because you have

an opponent!

22

Two players: MIN and MAX

• In a zero-sum game:
– payoff to Player 1 = - payoff to Player 2

• The goal of Player 1 is to maximizing her payoff.

• The goal of Player 2 is to maximizing her payoff as well
– Equivalent to minimizing Player 1’s payoff.

23

Minimax search

• Assume that both players play perfectly
– do not assume player will miss good moves or make

mistakes

• Score(s): The score that MAX will get towards
the end if both player play perfectly from s
onwards.

• Consider MIN’s strategy
– MIN’s best strategy:

• choose the move that minimizes the score that will
result when MAX chooses the maximizing move

– MAX does the opposite
24

Minimaxing

• Your opponent will
choose smaller numbers

• If you move left, your
opponent will choose 3

• If you move right, your
opponent will choose -8

• Thus your choices are
only 3 or -8

• You should move left

Opponent’s
move

7 3 -8 50

Your move

MIN

MAX

25

Minimaxing

• Your opponent will
choose smaller numbers

• If you move left, your
opponent will choose 3

• If you move right, your
opponent will choose -8

• Thus your choices are
only 3 or -8

• You should move left

Opponent’s
move

7 3 -8 50

Your move

3MIN

MAX

25

Minimaxing

• Your opponent will
choose smaller numbers

• If you move left, your
opponent will choose 3

• If you move right, your
opponent will choose -8

• Thus your choices are
only 3 or -8

• You should move left

Opponent’s
move

7 3 -8 50

Your move

3 -8MIN

MAX

25

Minimaxing

• Your opponent will
choose smaller numbers

• If you move left, your
opponent will choose 3

• If you move right, your
opponent will choose -8

• Thus your choices are
only 3 or -8

• You should move left

Opponent’s
move

7 3 -8 50

Your move

3 -8

3

MIN

MAX

25

Minimaxing

• Your opponent will
choose smaller numbers

• If you move left, your
opponent will choose 3

• If you move right, your
opponent will choose -8

• Thus your choices are
only 3 or -8

• You should move left

Opponent’s
move

7 3 -8 50

Your move

3 -8

3

MIN

MAX

25

Each move is called a “ply”. One round is K-plies for a K-player game.

Minimax example

Which move to choose?

26

Minimax example

Which move to choose?

26

Minimax example

Which move to choose?

26

Minimax example

Which move to choose?

26

Minimax example

Which move to choose?

26

Minimax example

The minimax decision is move A1

Which move to choose?

26

Another example

• In the game, it’s your move. Which move will the
minimax algorithm choose – A, B, C, or D? What is the
minimax value of the root node and nodes A, B, C, and
D?

1 7 2 5 2 8 9 4 6 3 3 5

A B C D

MAX

MIN

27

Another example

• In the game, it’s your move. Which move will the
minimax algorithm choose – A, B, C, or D? What is the
minimax value of the root node and nodes A, B, C, and
D?

1 7 2 5 2 8 9 4 6 3 3 5

A B C D

MAX

MIN1

27

Another example

• In the game, it’s your move. Which move will the
minimax algorithm choose – A, B, C, or D? What is the
minimax value of the root node and nodes A, B, C, and
D?

1 7 2 5 2 8 9 4 6 3 3 5

A B C D

MAX

MIN1 2

27

Another example

• In the game, it’s your move. Which move will the
minimax algorithm choose – A, B, C, or D? What is the
minimax value of the root node and nodes A, B, C, and
D?

1 7 2 5 2 8 9 4 6 3 3 5

A B C D

MAX

MIN1 2 4

27

Another example

• In the game, it’s your move. Which move will the
minimax algorithm choose – A, B, C, or D? What is the
minimax value of the root node and nodes A, B, C, and
D?

1 7 2 5 2 8 9 4 6 3 3 5

A B C D

MAX

MIN1 2 4 3

27

Another example

• In the game, it’s your move. Which move will the
minimax algorithm choose – A, B, C, or D? What is the
minimax value of the root node and nodes A, B, C, and
D?

1 7 2 5 2 8 9 4 6 3 3 5

A B C D

MAX

MIN1 2 4 3

4

27

Another example

• In the game, it’s your move. Which move will the
minimax algorithm choose – A, B, C, or D? What is the
minimax value of the root node and nodes A, B, C, and
D?

1 7 2 5 2 8 9 4 6 3 3 5

A B C D

MAX

MIN1 2 4 3

4

27

28

Minimax search

59

28

Minimax search

• The minimax decision maximizes the utility under the
assumption that the opponent seeks to minimize it (if it
uses the same evaluation function)

60

28

Minimax search

• The minimax decision maximizes the utility under the
assumption that the opponent seeks to minimize it (if it
uses the same evaluation function)

• Generate the tree of minimax values
– Then choose best (maximum) move
– Don’t need to keep all values around

• Good memory property

61

28

Minimax search

• The minimax decision maximizes the utility under the
assumption that the opponent seeks to minimize it (if it
uses the same evaluation function)

• Generate the tree of minimax values
– Then choose best (maximum) move
– Don’t need to keep all values around

• Good memory property

• Depth-first search is used to implement minimax
– Expand all the way down to leaf nodes
– Recursive implementation

62

29

Minimax properties

• Optimal?

• Complete?

• Time complexity?

• Space complexity?

Yes, against an optimal opponent, if
the tree is finite

Yes, if the tree is finite

Exponential: O(bm)

Polynomial: O(bm)

63

30

But this could take forever…

• Exact search is intractable
– Tic-Tac-Toe is 9! = 362,880
– For chess, b » 35 and m » 100 for “reasonable” games
– Go is 361! »10750

64

30

But this could take forever…

• Exact search is intractable
– Tic-Tac-Toe is 9! = 362,880
– For chess, b » 35 and m » 100 for “reasonable” games
– Go is 361! »10750

• Idea 1: Pruning

65

30

But this could take forever…

• Exact search is intractable
– Tic-Tac-Toe is 9! = 362,880
– For chess, b » 35 and m » 100 for “reasonable” games
– Go is 361! »10750

• Idea 1: Pruning

• Idea 2: Cut off early and use a heuristic function

66

31

Pruning

• What’s really needed is “smarter,” more efficient search
– Don’t expand “dead-end” nodes!

• Pruning – eliminating a branch of the search tree from
consideration

67

31

Pruning

• What’s really needed is “smarter,” more efficient search
– Don’t expand “dead-end” nodes!

• Pruning – eliminating a branch of the search tree from
consideration

• Alpha-beta pruning, applied to a minimax tree, returns
the same “best” move, while pruning away unnecessary
branches
– Many fewer nodes might be expanded
– Hence, smaller effective branching factor
– …and deeper search
– …and better performance

• Remember, minimax is depth-first search

68

32

Alpha pruning

69

A

B C D

10 25 15 5

MAX

MIN

MAX

32

Alpha pruning

70

A

B C D

10 25 15 5

≥ 10

10

MAX

MIN

MAX

33

Beta pruning

71

C D

10 25 15 50
MIN

MAXB

MINA

33

Beta pruning

72

C D

10 25 15 50

≤25

25

MIN

MAXB

MINA

Improvements via alpha/beta pruning

34

Improvements via alpha/beta pruning

• Depends on the ordering of expansion

34

Improvements via alpha/beta pruning

• Depends on the ordering of expansion

• Perfect ordering

34

O(bm/2)
<latexit sha1_base64="UPAC1ZIS433QeDQBDcYMPV5UI14=">AAAB8XicbZDLSgMxFIbP1Futt6pLN8Ei1E2dKYIui27cWcFesB1LJs20oUlmSDJCGfoWblwo4ta3cefbmLaz0NYfAh//OYec8wcxZ9q47reTW1ldW9/Ibxa2tnd294r7B00dJYrQBol4pNoB1pQzSRuGGU7bsaJYBJy2gtH1tN56okqzSN6bcUx9gQeShYxgY62H23LwmIqz6uS0Vyy5FXcmtAxeBiXIVO8Vv7r9iCSCSkM41rrjubHxU6wMI5xOCt1E0xiTER7QjkWJBdV+Ott4gk6s00dhpOyTBs3c3xMpFlqPRWA7BTZDvVibmv/VOokJL/2UyTgxVJL5R2HCkYnQ9HzUZ4oSw8cWMFHM7orIECtMjA2pYEPwFk9ehma14lm+Oy/VrrI48nAEx1AGDy6gBjdQhwYQkPAMr/DmaOfFeXc+5q05J5s5hD9yPn8AUQuQBA==</latexit><latexit sha1_base64="UPAC1ZIS433QeDQBDcYMPV5UI14=">AAAB8XicbZDLSgMxFIbP1Futt6pLN8Ei1E2dKYIui27cWcFesB1LJs20oUlmSDJCGfoWblwo4ta3cefbmLaz0NYfAh//OYec8wcxZ9q47reTW1ldW9/Ibxa2tnd294r7B00dJYrQBol4pNoB1pQzSRuGGU7bsaJYBJy2gtH1tN56okqzSN6bcUx9gQeShYxgY62H23LwmIqz6uS0Vyy5FXcmtAxeBiXIVO8Vv7r9iCSCSkM41rrjubHxU6wMI5xOCt1E0xiTER7QjkWJBdV+Ott4gk6s00dhpOyTBs3c3xMpFlqPRWA7BTZDvVibmv/VOokJL/2UyTgxVJL5R2HCkYnQ9HzUZ4oSw8cWMFHM7orIECtMjA2pYEPwFk9ehma14lm+Oy/VrrI48nAEx1AGDy6gBjdQhwYQkPAMr/DmaOfFeXc+5q05J5s5hD9yPn8AUQuQBA==</latexit><latexit sha1_base64="UPAC1ZIS433QeDQBDcYMPV5UI14=">AAAB8XicbZDLSgMxFIbP1Futt6pLN8Ei1E2dKYIui27cWcFesB1LJs20oUlmSDJCGfoWblwo4ta3cefbmLaz0NYfAh//OYec8wcxZ9q47reTW1ldW9/Ibxa2tnd294r7B00dJYrQBol4pNoB1pQzSRuGGU7bsaJYBJy2gtH1tN56okqzSN6bcUx9gQeShYxgY62H23LwmIqz6uS0Vyy5FXcmtAxeBiXIVO8Vv7r9iCSCSkM41rrjubHxU6wMI5xOCt1E0xiTER7QjkWJBdV+Ott4gk6s00dhpOyTBs3c3xMpFlqPRWA7BTZDvVibmv/VOokJL/2UyTgxVJL5R2HCkYnQ9HzUZ4oSw8cWMFHM7orIECtMjA2pYEPwFk9ehma14lm+Oy/VrrI48nAEx1AGDy6gBjdQhwYQkPAMr/DmaOfFeXc+5q05J5s5hD9yPn8AUQuQBA==</latexit><latexit sha1_base64="UPAC1ZIS433QeDQBDcYMPV5UI14=">AAAB8XicbZDLSgMxFIbP1Futt6pLN8Ei1E2dKYIui27cWcFesB1LJs20oUlmSDJCGfoWblwo4ta3cefbmLaz0NYfAh//OYec8wcxZ9q47reTW1ldW9/Ibxa2tnd294r7B00dJYrQBol4pNoB1pQzSRuGGU7bsaJYBJy2gtH1tN56okqzSN6bcUx9gQeShYxgY62H23LwmIqz6uS0Vyy5FXcmtAxeBiXIVO8Vv7r9iCSCSkM41rrjubHxU6wMI5xOCt1E0xiTER7QjkWJBdV+Ott4gk6s00dhpOyTBs3c3xMpFlqPRWA7BTZDvVibmv/VOokJL/2UyTgxVJL5R2HCkYnQ9HzUZ4oSw8cWMFHM7orIECtMjA2pYEPwFk9ehma14lm+Oy/VrrI48nAEx1AGDy6gBjdQhwYQkPAMr/DmaOfFeXc+5q05J5s5hD9yPn8AUQuQBA==</latexit>

Improvements via alpha/beta pruning

• Depends on the ordering of expansion

• Perfect ordering

• Random ordering

34

O(bm/2)
<latexit sha1_base64="UPAC1ZIS433QeDQBDcYMPV5UI14=">AAAB8XicbZDLSgMxFIbP1Futt6pLN8Ei1E2dKYIui27cWcFesB1LJs20oUlmSDJCGfoWblwo4ta3cefbmLaz0NYfAh//OYec8wcxZ9q47reTW1ldW9/Ibxa2tnd294r7B00dJYrQBol4pNoB1pQzSRuGGU7bsaJYBJy2gtH1tN56okqzSN6bcUx9gQeShYxgY62H23LwmIqz6uS0Vyy5FXcmtAxeBiXIVO8Vv7r9iCSCSkM41rrjubHxU6wMI5xOCt1E0xiTER7QjkWJBdV+Ott4gk6s00dhpOyTBs3c3xMpFlqPRWA7BTZDvVibmv/VOokJL/2UyTgxVJL5R2HCkYnQ9HzUZ4oSw8cWMFHM7orIECtMjA2pYEPwFk9ehma14lm+Oy/VrrI48nAEx1AGDy6gBjdQhwYQkPAMr/DmaOfFeXc+5q05J5s5hD9yPn8AUQuQBA==</latexit><latexit sha1_base64="UPAC1ZIS433QeDQBDcYMPV5UI14=">AAAB8XicbZDLSgMxFIbP1Futt6pLN8Ei1E2dKYIui27cWcFesB1LJs20oUlmSDJCGfoWblwo4ta3cefbmLaz0NYfAh//OYec8wcxZ9q47reTW1ldW9/Ibxa2tnd294r7B00dJYrQBol4pNoB1pQzSRuGGU7bsaJYBJy2gtH1tN56okqzSN6bcUx9gQeShYxgY62H23LwmIqz6uS0Vyy5FXcmtAxeBiXIVO8Vv7r9iCSCSkM41rrjubHxU6wMI5xOCt1E0xiTER7QjkWJBdV+Ott4gk6s00dhpOyTBs3c3xMpFlqPRWA7BTZDvVibmv/VOokJL/2UyTgxVJL5R2HCkYnQ9HzUZ4oSw8cWMFHM7orIECtMjA2pYEPwFk9ehma14lm+Oy/VrrI48nAEx1AGDy6gBjdQhwYQkPAMr/DmaOfFeXc+5q05J5s5hD9yPn8AUQuQBA==</latexit><latexit sha1_base64="UPAC1ZIS433QeDQBDcYMPV5UI14=">AAAB8XicbZDLSgMxFIbP1Futt6pLN8Ei1E2dKYIui27cWcFesB1LJs20oUlmSDJCGfoWblwo4ta3cefbmLaz0NYfAh//OYec8wcxZ9q47reTW1ldW9/Ibxa2tnd294r7B00dJYrQBol4pNoB1pQzSRuGGU7bsaJYBJy2gtH1tN56okqzSN6bcUx9gQeShYxgY62H23LwmIqz6uS0Vyy5FXcmtAxeBiXIVO8Vv7r9iCSCSkM41rrjubHxU6wMI5xOCt1E0xiTER7QjkWJBdV+Ott4gk6s00dhpOyTBs3c3xMpFlqPRWA7BTZDvVibmv/VOokJL/2UyTgxVJL5R2HCkYnQ9HzUZ4oSw8cWMFHM7orIECtMjA2pYEPwFk9ehma14lm+Oy/VrrI48nAEx1AGDy6gBjdQhwYQkPAMr/DmaOfFeXc+5q05J5s5hD9yPn8AUQuQBA==</latexit><latexit sha1_base64="UPAC1ZIS433QeDQBDcYMPV5UI14=">AAAB8XicbZDLSgMxFIbP1Futt6pLN8Ei1E2dKYIui27cWcFesB1LJs20oUlmSDJCGfoWblwo4ta3cefbmLaz0NYfAh//OYec8wcxZ9q47reTW1ldW9/Ibxa2tnd294r7B00dJYrQBol4pNoB1pQzSRuGGU7bsaJYBJy2gtH1tN56okqzSN6bcUx9gQeShYxgY62H23LwmIqz6uS0Vyy5FXcmtAxeBiXIVO8Vv7r9iCSCSkM41rrjubHxU6wMI5xOCt1E0xiTER7QjkWJBdV+Ott4gk6s00dhpOyTBs3c3xMpFlqPRWA7BTZDvVibmv/VOokJL/2UyTgxVJL5R2HCkYnQ9HzUZ4oSw8cWMFHM7orIECtMjA2pYEPwFk9ehma14lm+Oy/VrrI48nAEx1AGDy6gBjdQhwYQkPAMr/DmaOfFeXc+5q05J5s5hD9yPn8AUQuQBA==</latexit>

O(b3m/4)
<latexit sha1_base64="B3oZKIafUIezbJKVviSST0mGPeU=">AAAB8nicbZDLSgMxFIbP1Futt6pLN8Ei1E2d0YIui27cWcFeYDqWTJq2oclkSDJCGfoYblwo4tancefbmLaz0NYfAh//OYec84cxZ9q47reTW1ldW9/Ibxa2tnd294r7B00tE0Vog0guVTvEmnIW0YZhhtN2rCgWIaetcHQzrbeeqNJMRg9mHNNA4EHE+oxgYy3/rhw+phfirDo57RZLbsWdCS2Dl0EJMtW7xa9OT5JE0MgQjrX2PTc2QYqVYYTTSaGTaBpjMsID6luMsKA6SGcrT9CJdXqoL5V9kUEz9/dEioXWYxHaToHNUC/WpuZ/NT8x/asgZVGcGBqR+Uf9hCMj0fR+1GOKEsPHFjBRzO6KyBArTIxNqWBD8BZPXobmecWzfF8t1a6zOPJwBMdQBg8uoQa3UIcGEJDwDK/w5hjnxXl3PuatOSebOYQ/cj5/AMkKkEM=</latexit><latexit sha1_base64="B3oZKIafUIezbJKVviSST0mGPeU=">AAAB8nicbZDLSgMxFIbP1Futt6pLN8Ei1E2d0YIui27cWcFeYDqWTJq2oclkSDJCGfoYblwo4tancefbmLaz0NYfAh//OYec84cxZ9q47reTW1ldW9/Ibxa2tnd294r7B00tE0Vog0guVTvEmnIW0YZhhtN2rCgWIaetcHQzrbeeqNJMRg9mHNNA4EHE+oxgYy3/rhw+phfirDo57RZLbsWdCS2Dl0EJMtW7xa9OT5JE0MgQjrX2PTc2QYqVYYTTSaGTaBpjMsID6luMsKA6SGcrT9CJdXqoL5V9kUEz9/dEioXWYxHaToHNUC/WpuZ/NT8x/asgZVGcGBqR+Uf9hCMj0fR+1GOKEsPHFjBRzO6KyBArTIxNqWBD8BZPXobmecWzfF8t1a6zOPJwBMdQBg8uoQa3UIcGEJDwDK/w5hjnxXl3PuatOSebOYQ/cj5/AMkKkEM=</latexit><latexit sha1_base64="B3oZKIafUIezbJKVviSST0mGPeU=">AAAB8nicbZDLSgMxFIbP1Futt6pLN8Ei1E2d0YIui27cWcFeYDqWTJq2oclkSDJCGfoYblwo4tancefbmLaz0NYfAh//OYec84cxZ9q47reTW1ldW9/Ibxa2tnd294r7B00tE0Vog0guVTvEmnIW0YZhhtN2rCgWIaetcHQzrbeeqNJMRg9mHNNA4EHE+oxgYy3/rhw+phfirDo57RZLbsWdCS2Dl0EJMtW7xa9OT5JE0MgQjrX2PTc2QYqVYYTTSaGTaBpjMsID6luMsKA6SGcrT9CJdXqoL5V9kUEz9/dEioXWYxHaToHNUC/WpuZ/NT8x/asgZVGcGBqR+Uf9hCMj0fR+1GOKEsPHFjBRzO6KyBArTIxNqWBD8BZPXobmecWzfF8t1a6zOPJwBMdQBg8uoQa3UIcGEJDwDK/w5hjnxXl3PuatOSebOYQ/cj5/AMkKkEM=</latexit><latexit sha1_base64="B3oZKIafUIezbJKVviSST0mGPeU=">AAAB8nicbZDLSgMxFIbP1Futt6pLN8Ei1E2d0YIui27cWcFeYDqWTJq2oclkSDJCGfoYblwo4tancefbmLaz0NYfAh//OYec84cxZ9q47reTW1ldW9/Ibxa2tnd294r7B00tE0Vog0guVTvEmnIW0YZhhtN2rCgWIaetcHQzrbeeqNJMRg9mHNNA4EHE+oxgYy3/rhw+phfirDo57RZLbsWdCS2Dl0EJMtW7xa9OT5JE0MgQjrX2PTc2QYqVYYTTSaGTaBpjMsID6luMsKA6SGcrT9CJdXqoL5V9kUEz9/dEioXWYxHaToHNUC/WpuZ/NT8x/asgZVGcGBqR+Uf9hCMj0fR+1GOKEsPHFjBRzO6KyBArTIxNqWBD8BZPXobmecWzfF8t1a6zOPJwBMdQBg8uoQa3UIcGEJDwDK/w5hjnxXl3PuatOSebOYQ/cj5/AMkKkEM=</latexit>

Improvements via alpha/beta pruning

• Depends on the ordering of expansion

• Perfect ordering

• Random ordering

• For specific games like Chess, you can get to almost
perfect ordering.

34

O(bm/2)
<latexit sha1_base64="UPAC1ZIS433QeDQBDcYMPV5UI14=">AAAB8XicbZDLSgMxFIbP1Futt6pLN8Ei1E2dKYIui27cWcFesB1LJs20oUlmSDJCGfoWblwo4ta3cefbmLaz0NYfAh//OYec8wcxZ9q47reTW1ldW9/Ibxa2tnd294r7B00dJYrQBol4pNoB1pQzSRuGGU7bsaJYBJy2gtH1tN56okqzSN6bcUx9gQeShYxgY62H23LwmIqz6uS0Vyy5FXcmtAxeBiXIVO8Vv7r9iCSCSkM41rrjubHxU6wMI5xOCt1E0xiTER7QjkWJBdV+Ott4gk6s00dhpOyTBs3c3xMpFlqPRWA7BTZDvVibmv/VOokJL/2UyTgxVJL5R2HCkYnQ9HzUZ4oSw8cWMFHM7orIECtMjA2pYEPwFk9ehma14lm+Oy/VrrI48nAEx1AGDy6gBjdQhwYQkPAMr/DmaOfFeXc+5q05J5s5hD9yPn8AUQuQBA==</latexit><latexit sha1_base64="UPAC1ZIS433QeDQBDcYMPV5UI14=">AAAB8XicbZDLSgMxFIbP1Futt6pLN8Ei1E2dKYIui27cWcFesB1LJs20oUlmSDJCGfoWblwo4ta3cefbmLaz0NYfAh//OYec8wcxZ9q47reTW1ldW9/Ibxa2tnd294r7B00dJYrQBol4pNoB1pQzSRuGGU7bsaJYBJy2gtH1tN56okqzSN6bcUx9gQeShYxgY62H23LwmIqz6uS0Vyy5FXcmtAxeBiXIVO8Vv7r9iCSCSkM41rrjubHxU6wMI5xOCt1E0xiTER7QjkWJBdV+Ott4gk6s00dhpOyTBs3c3xMpFlqPRWA7BTZDvVibmv/VOokJL/2UyTgxVJL5R2HCkYnQ9HzUZ4oSw8cWMFHM7orIECtMjA2pYEPwFk9ehma14lm+Oy/VrrI48nAEx1AGDy6gBjdQhwYQkPAMr/DmaOfFeXc+5q05J5s5hD9yPn8AUQuQBA==</latexit><latexit sha1_base64="UPAC1ZIS433QeDQBDcYMPV5UI14=">AAAB8XicbZDLSgMxFIbP1Futt6pLN8Ei1E2dKYIui27cWcFesB1LJs20oUlmSDJCGfoWblwo4ta3cefbmLaz0NYfAh//OYec8wcxZ9q47reTW1ldW9/Ibxa2tnd294r7B00dJYrQBol4pNoB1pQzSRuGGU7bsaJYBJy2gtH1tN56okqzSN6bcUx9gQeShYxgY62H23LwmIqz6uS0Vyy5FXcmtAxeBiXIVO8Vv7r9iCSCSkM41rrjubHxU6wMI5xOCt1E0xiTER7QjkWJBdV+Ott4gk6s00dhpOyTBs3c3xMpFlqPRWA7BTZDvVibmv/VOokJL/2UyTgxVJL5R2HCkYnQ9HzUZ4oSw8cWMFHM7orIECtMjA2pYEPwFk9ehma14lm+Oy/VrrI48nAEx1AGDy6gBjdQhwYQkPAMr/DmaOfFeXc+5q05J5s5hD9yPn8AUQuQBA==</latexit><latexit sha1_base64="UPAC1ZIS433QeDQBDcYMPV5UI14=">AAAB8XicbZDLSgMxFIbP1Futt6pLN8Ei1E2dKYIui27cWcFesB1LJs20oUlmSDJCGfoWblwo4ta3cefbmLaz0NYfAh//OYec8wcxZ9q47reTW1ldW9/Ibxa2tnd294r7B00dJYrQBol4pNoB1pQzSRuGGU7bsaJYBJy2gtH1tN56okqzSN6bcUx9gQeShYxgY62H23LwmIqz6uS0Vyy5FXcmtAxeBiXIVO8Vv7r9iCSCSkM41rrjubHxU6wMI5xOCt1E0xiTER7QjkWJBdV+Ott4gk6s00dhpOyTBs3c3xMpFlqPRWA7BTZDvVibmv/VOokJL/2UyTgxVJL5R2HCkYnQ9HzUZ4oSw8cWMFHM7orIECtMjA2pYEPwFk9ehma14lm+Oy/VrrI48nAEx1AGDy6gBjdQhwYQkPAMr/DmaOfFeXc+5q05J5s5hD9yPn8AUQuQBA==</latexit>

O(b3m/4)
<latexit sha1_base64="B3oZKIafUIezbJKVviSST0mGPeU=">AAAB8nicbZDLSgMxFIbP1Futt6pLN8Ei1E2d0YIui27cWcFeYDqWTJq2oclkSDJCGfoYblwo4tancefbmLaz0NYfAh//OYec84cxZ9q47reTW1ldW9/Ibxa2tnd294r7B00tE0Vog0guVTvEmnIW0YZhhtN2rCgWIaetcHQzrbeeqNJMRg9mHNNA4EHE+oxgYy3/rhw+phfirDo57RZLbsWdCS2Dl0EJMtW7xa9OT5JE0MgQjrX2PTc2QYqVYYTTSaGTaBpjMsID6luMsKA6SGcrT9CJdXqoL5V9kUEz9/dEioXWYxHaToHNUC/WpuZ/NT8x/asgZVGcGBqR+Uf9hCMj0fR+1GOKEsPHFjBRzO6KyBArTIxNqWBD8BZPXobmecWzfF8t1a6zOPJwBMdQBg8uoQa3UIcGEJDwDK/w5hjnxXl3PuatOSebOYQ/cj5/AMkKkEM=</latexit><latexit sha1_base64="B3oZKIafUIezbJKVviSST0mGPeU=">AAAB8nicbZDLSgMxFIbP1Futt6pLN8Ei1E2d0YIui27cWcFeYDqWTJq2oclkSDJCGfoYblwo4tancefbmLaz0NYfAh//OYec84cxZ9q47reTW1ldW9/Ibxa2tnd294r7B00tE0Vog0guVTvEmnIW0YZhhtN2rCgWIaetcHQzrbeeqNJMRg9mHNNA4EHE+oxgYy3/rhw+phfirDo57RZLbsWdCS2Dl0EJMtW7xa9OT5JE0MgQjrX2PTc2QYqVYYTTSaGTaBpjMsID6luMsKA6SGcrT9CJdXqoL5V9kUEz9/dEioXWYxHaToHNUC/WpuZ/NT8x/asgZVGcGBqR+Uf9hCMj0fR+1GOKEsPHFjBRzO6KyBArTIxNqWBD8BZPXobmecWzfF8t1a6zOPJwBMdQBg8uoQa3UIcGEJDwDK/w5hjnxXl3PuatOSebOYQ/cj5/AMkKkEM=</latexit><latexit sha1_base64="B3oZKIafUIezbJKVviSST0mGPeU=">AAAB8nicbZDLSgMxFIbP1Futt6pLN8Ei1E2d0YIui27cWcFeYDqWTJq2oclkSDJCGfoYblwo4tancefbmLaz0NYfAh//OYec84cxZ9q47reTW1ldW9/Ibxa2tnd294r7B00tE0Vog0guVTvEmnIW0YZhhtN2rCgWIaetcHQzrbeeqNJMRg9mHNNA4EHE+oxgYy3/rhw+phfirDo57RZLbsWdCS2Dl0EJMtW7xa9OT5JE0MgQjrX2PTc2QYqVYYTTSaGTaBpjMsID6luMsKA6SGcrT9CJdXqoL5V9kUEz9/dEioXWYxHaToHNUC/WpuZ/NT8x/asgZVGcGBqR+Uf9hCMj0fR+1GOKEsPHFjBRzO6KyBArTIxNqWBD8BZPXobmecWzfF8t1a6zOPJwBMdQBg8uoQa3UIcGEJDwDK/w5hjnxXl3PuatOSebOYQ/cj5/AMkKkEM=</latexit><latexit sha1_base64="B3oZKIafUIezbJKVviSST0mGPeU=">AAAB8nicbZDLSgMxFIbP1Futt6pLN8Ei1E2d0YIui27cWcFeYDqWTJq2oclkSDJCGfoYblwo4tancefbmLaz0NYfAh//OYec84cxZ9q47reTW1ldW9/Ibxa2tnd294r7B00tE0Vog0guVTvEmnIW0YZhhtN2rCgWIaetcHQzrbeeqNJMRg9mHNNA4EHE+oxgYy3/rhw+phfirDo57RZLbsWdCS2Dl0EJMtW7xa9OT5JE0MgQjrX2PTc2QYqVYYTTSaGTaBpjMsID6luMsKA6SGcrT9CJdXqoL5V9kUEz9/dEioXWYxHaToHNUC/WpuZ/NT8x/asgZVGcGBqR+Uf9hCMj0fR+1GOKEsPHFjBRzO6KyBArTIxNqWBD8BZPXobmecWzfF8t1a6zOPJwBMdQBg8uoQa3UIcGEJDwDK/w5hjnxXl3PuatOSebOYQ/cj5/AMkKkEM=</latexit>

35

Heuristic (Evaluation function)

• It is usually impossible to solve games completely

• Rather, cut the search off early and apply a heuristic
evaluation function to the leaves
– h(s) estimates the expected utility of the game from a given

position (node/state) s
– like depth bounded depth first, lose completeness
– Explore game tree using combination of evaluation function and

search

78

35

Heuristic (Evaluation function)

• It is usually impossible to solve games completely

• Rather, cut the search off early and apply a heuristic
evaluation function to the leaves
– h(s) estimates the expected utility of the game from a given

position (node/state) s
– like depth bounded depth first, lose completeness
– Explore game tree using combination of evaluation function and

search

• The performance of a game-playing program depends on
the quality (and speed!) of its evaluation function

79

36

Heuristics (Evaluation function)

• Typical evaluation function for game: weighted linear
function
– h(s) = w1 f1(s) + w2 f2(s) + … + wd fd(s)
– weights · features [dot product]

80

36

Heuristics (Evaluation function)

• Typical evaluation function for game: weighted linear
function
– h(s) = w1 f1(s) + w2 f2(s) + … + wd fd(s)
– weights · features [dot product]

• For example, in chess
– W = { 1, 3, 3, 5, 8 }
– F = { # pawns advantage, # bishops advantage, # knights

advantage, # rooks advantage, # queens advantage }

81

36

Heuristics (Evaluation function)

• Typical evaluation function for game: weighted linear
function
– h(s) = w1 f1(s) + w2 f2(s) + … + wd fd(s)
– weights · features [dot product]

• For example, in chess
– W = { 1, 3, 3, 5, 8 }
– F = { # pawns advantage, # bishops advantage, # knights

advantage, # rooks advantage, # queens advantage }
– Is this what Deep Blue used?

82

36

Heuristics (Evaluation function)

• Typical evaluation function for game: weighted linear
function
– h(s) = w1 f1(s) + w2 f2(s) + … + wd fd(s)
– weights · features [dot product]

• For example, in chess
– W = { 1, 3, 3, 5, 8 }
– F = { # pawns advantage, # bishops advantage, # knights

advantage, # rooks advantage, # queens advantage }
– Is this what Deep Blue used?
– What are some problems with this?

83

36

Heuristics (Evaluation function)

• Typical evaluation function for game: weighted linear
function
– h(s) = w1 f1(s) + w2 f2(s) + … + wd fd(s)
– weights · features [dot product]

• For example, in chess
– W = { 1, 3, 3, 5, 8 }
– F = { # pawns advantage, # bishops advantage, # knights

advantage, # rooks advantage, # queens advantage }
– Is this what Deep Blue used?
– What are some problems with this?

• More complex evaluation functions may involve learning
– Adjusting weights based on outcomes
– Perhaps non-linear functions
– How to choose the features?

84

Tic-Tac-Toe revisited

a partial game tree
for Tic-Tac-Toe

37

Evaluation function for Tic-Tac-Toe

• A simple evaluation function for Tic-Tac-Toe
– count the number of rows where X can win
– subtract the number of rows where O can win

• Value of evaluation function at start of game is zero
– on an empty game board there are 8 possible winning rows for

both X and O

8-8 = 0

38

Evaluating Tic-Tac-Toe

evalX = (number of rows where X can win) –
(number of rows where O can win)

• After X moves in center, score for X is +4
• After O moves, score for X is +2
• After X’s next move, score for X is +4

8-8 = 0 6-4 = 28-4 = 4 6-2 = 4

39

Evaluating Tic-Tac-Toe

evalO = (number of rows where O can win) –
(number of rows where X can win)

• After X moves in center, score for O is -4
• After O moves, score for O is +2
• After X’s next move, score for O is -4

8-8 = 0 4-6 = -24-8 = -4 2-6 = -4

40

Search depth cutoff

Tic-Tac-Toe with
search depth 2

Evaluations shown for X

-2

41

Expectimax: Playing against a benign
opponent
• Sometimes your opponents are not clever.

– They behave randomly.
– You can take advantage of that by modeling your opponent.

• Example of game of chance:
– Slot machines
– Tetris

42

Expectimax example

• Your opponent behave
randomly with a given
probability distribution,

• If you move left, your
opponent will select
actions with probability
[0.5,0.5]

• If you move right, your
opponent will select
actions with [0.6,0.4]

Opponent’s
random

move
7 3 -8 50

Your move

AVERAGE

MAX

43

Expectimax example

• Your opponent behave
randomly with a given
probability distribution,

• If you move left, your
opponent will select
actions with probability
[0.5,0.5]

• If you move right, your
opponent will select
actions with [0.6,0.4]

Opponent’s
random

move
7 3 -8 50

Your move

5AVERAGE

MAX

43

Expectimax example

• Your opponent behave
randomly with a given
probability distribution,

• If you move left, your
opponent will select
actions with probability
[0.5,0.5]

• If you move right, your
opponent will select
actions with [0.6,0.4]

Opponent’s
random

move
7 3 -8 50

Your move

5 15.2AVERAGE

MAX

43

Expectimax example

• Your opponent behave
randomly with a given
probability distribution,

• If you move left, your
opponent will select
actions with probability
[0.5,0.5]

• If you move right, your
opponent will select
actions with [0.6,0.4]

Opponent’s
random

move
7 3 -8 50

Your move

5 15.2

15.2

AVERAGE

MAX

43

Expectimax example

• Your opponent behave
randomly with a given
probability distribution,

• If you move left, your
opponent will select
actions with probability
[0.5,0.5]

• If you move right, your
opponent will select
actions with [0.6,0.4]

Opponent’s
random

move
7 3 -8 50

Your move

5 15.2

15.2

AVERAGE

MAX

43

Expectimax example

• Your opponent behave
randomly with a given
probability distribution,

• If you move left, your
opponent will select
actions with probability
[0.5,0.5]

• If you move right, your
opponent will select
actions with [0.6,0.4]

Opponent’s
random

move
7 3 -8 50

Your move

5 15.2

15.2

AVERAGE

MAX

43

Note: pruning becomes tricky in expectimax… think about why.

Summary of game playing

• Minimax search

• Game tree

• Alpha-beta pruning

• Early stop with an evaluation function

• Expectimax

44

More reading / resources about game playing

• Required reading: AIMA 5.1-5.3

• Stochastic game / Expectiminimax: AIMA 5.5
– Backgammon. TD-Gammon
– Blackjack, Poker

• Famous game AI: Read the “Historical notes” of the
AIMA Chapter 5
– Deep blue
– TD Gammon

• AlphaGo: https://www.nature.com/articles/nature16961
45

