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CS 165A
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Instructor: Prof. Yu-Xiang Wang

® Examples of heuristics in A*-search
® Games and Adversarial Search
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Project 1 submissions so far 

• Most students have submitted
– A few reports are still missing

• Most submissions got full credits for the coding part
– We are still grading the reports

• Feel free to talk to us if you find it challenging.

• Notes:
– You could still submit (late days will be automatically applied)
– Bonus questions have no deadline.
– Project 2 is out. Please start early!
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Recap:  Search algorithms

• State-space diagram  vs Search Tree

• Uninformed Search algorithms
– BFS / DFS
– Depth Limited Search
– Iterative Deepening Search. 
– Uniform cost search.

• Informed Search (with an heuristic function h):
– Greedy Best-First-Search.  (not complete / optimal)
– A* Search (complete / optimal if h is admissible)
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Recap: Summary table of uninformed search
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(Section 3.4.7 in the AIMA book.)
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Recap: A* Search (Pronounced “A-Star”)

• Uniform-cost search minimizes g(n) (“past” cost)

• Greedy search minimizes h(n) (“expected” or “future” cost)

• “A* Search” combines the two:
– Minimize  f(n) = g(n) + h(n)
– Accounts for the “past” and the “future”
– Estimates the cheapest solution (complete path) through node n

function A*-SEARCH(problem, h) returns a solution or failure
return BEST-FIRST-SEARCH(problem, f )
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Recap: Avoiding Repeated States using A* 
Search
• Is GRAPH-SEARCH optimal with A*?
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Recap: Avoiding Repeated States using A* 
Search
• Is GRAPH-SEARCH optimal with A*?
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GRAPH-SEARCH

Graph Search  
Step 1: Among B, C, E, Choose C
Step 2: Among B, E, D, Choose B
Step 3: Among D, E, Choose E.   (you are not going to 
select C again)
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Recap: Consistency (Monotonicity) of 
heuristic h
• A heuristic is consistent (or monotonic) provided 

– for any node n, for any successor n’ generated by action a with 
cost c(n,a,n’)

• h(n) ≤ c(n,a,n’) + h(n’)
– akin to triangle inequality.
– guarantees admissibility (proof?).
– values of f(n) along any path are non-decreasing (proof?).

• Contours of constant f in the state space

• GRAPH-SEARCH using consistent f(n) is optimal.
• Note that h(n) = 0 is consistent and admissible.

n n’
c(n,a,n’)

h(n)
h(n’)

g



This lecture

• Example of heuristics / A* search
– Effective branching factor

• Games

• Adversarial Search
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Heuristics

• What’s a heuristic for
– Driving distance (or time) from city A to city B ?
– 8-puzzle problem ?
– M&C ?
– Robot navigation ? 



9

Heuristics

• What’s a heuristic for
– Driving distance (or time) from city A to city B ?
– 8-puzzle problem ?
– M&C ?
– Robot navigation ? 

• Admissible heuristic
– Does not overestimate the cost to reach the goal
– “Optimistic”

• Consistent heuristic:
– Satisfy a triangular inequality: h(n) ≤ c(n,a,n’) + h(n’)



9

Heuristics

• What’s a heuristic for
– Driving distance (or time) from city A to city B ?
– 8-puzzle problem ?
– M&C ?
– Robot navigation ? 

• Admissible heuristic
– Does not overestimate the cost to reach the goal
– “Optimistic”

• Consistent heuristic:
– Satisfy a triangular inequality: h(n) ≤ c(n,a,n’) + h(n’)

• Are the above heuristics admissible? Consistent?
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Example: 8-Puzzle



11

Comparing and combining heuristics 

• Heuristics generated by considering relaxed versions of a problem.
• Heuristic h1 for 8-puzzle

– Number of out-of-order tiles
• Heuristic h2 for 8-puzzle

– Sum of Manhattan distances of each tile
• h2 dominates h1 provided h2(n) ≥ h1(n).

– h2 will likely prune more than h1.
• max(h1,h2 , .. ,hn) is

– admissible if each hi is
– consistent if each hi is

• Cost of sub-problems and pattern databases
– Cost for 4 specific tiles
– Can these be added for disjoint sets of tiles?
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Effective Branching Factor
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Effective Branching Factor

• Though informed search methods may have poor worst-
case performance, they often do quite well if the heuristic 
is good
– Even if there is a huge branching factor
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Effective Branching Factor

• Though informed search methods may have poor worst-
case performance, they often do quite well if the heuristic 
is good
– Even if there is a huge branching factor

• One way to quantify the effectiveness of the heuristic: the 
effective branching factor, b*

– N: total number of nodes expanded
– d: solution depth
– N = 1 + b* + (b*)2 + … + (b*)d
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Effective Branching Factor

• Though informed search methods may have poor worst-
case performance, they often do quite well if the heuristic 
is good
– Even if there is a huge branching factor

• One way to quantify the effectiveness of the heuristic: the 
effective branching factor, b*

– N: total number of nodes expanded
– d: solution depth
– N = 1 + b* + (b*)2 + … + (b*)d

• For a good heuristic, b* is close to 1
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Example: 8-puzzle problem

Averaged over 100 trials each at different solution lengths

Solution length

Ave. # of nodes expanded
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Memory Bounded Search
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Memory Bounded Search

• Memory, not computation, is usually the limiting factor in 
search problems
– Certainly true for A* search
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search problems
– Certainly true for A* search

• Why? What takes up memory in A* search?
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Memory Bounded Search

• Memory, not computation, is usually the limiting factor in 
search problems
– Certainly true for A* search

• Why? What takes up memory in A* search?

• Solution: Memory-bounded A* search
– Iterative Deepening A*  (IDA*)
– Simplified Memory-bounded A* (SMA*)
– (Read the textbook for more details.)



Summary of informed search

• How to use a heuristic function to improve search
– Greedy Best-first search + Uniform-cost search = A* Search

• When is A* search optimal?
– h is Admissible (optimistic) for Tree Search
– h is Consistent for Graph Search

• Choosing heuristic functions
– A good heuristic function can reduce time/space cost of search by

orders of magnitude.
– Good heuristic function may take longer to evaluate.
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Games and Adversarial Search
• Games: problem setup

• Minimax search

• Alpha-beta pruning
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Illustrative example of a simple game (1 min 
discussion)
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(Example taken from Liang and Sadigh)



Game as a search problem
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Game as a search problem

• S0 The initial state
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Game as a search problem

• S0 The initial state
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Game as a search problem

• S0 The initial state

• PLAYER(s): Returns which player has the move

• ACTIONS(s): Returns the legal moves.
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Game as a search problem

• S0 The initial state

• PLAYER(s): Returns which player has the move

• ACTIONS(s): Returns the legal moves.

• RESULT(s, a): Output the state we transition to.

• TERMINAL-TEST(s): Returns True if the game is over.

• UTILITY(s,p): The payoff of player p at terminal state s.
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Two-player, Turn-based, Perfect information,
Deterministic, Zero-Sum Game
• Two-player: Tic-Tac-Toe, Chess, Go!

• Turn-based: The players take turns in round-robin fashion.

• Perfect information: The State is known to everyone

• Deterministic: Nothing is random

• Zero-sum: The total payoff for all players is a constant.

19

• The 8-puzzle is a one-player, perfect info,
deterministic, zero-sum game.

• How about Rock-Paper-Scissors?
• How about Monopoly?
• How about Starcraft?



Tic-Tac-Toe

• The first player is X and the 
second is O

• Object of game: get three of 
your symbol in a horizontal, 
vertical or diagonal row on a
3x3 game board

• X always goes first
• Players alternate placing Xs and Os on the game board 
• Game ends when a player has three in a row (a wins) or all 

nine squares are filled (a draw)
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Tic-Tac-Toe

• The first player is X and the 
second is O

• Object of game: get three of 
your symbol in a horizontal, 
vertical or diagonal row on a
3x3 game board

• X always goes first
• Players alternate placing Xs and Os on the game board 
• Game ends when a player has three in a row (a wins) or all 

nine squares are filled (a draw)
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What’s the state, action, transition, payoff for Tic-Tac-Toe?



Partial game tree for Tic-Tac-Toe

X’s turn

O’s turn

X’s turn

O’s turn

X’s turn

O’s turn

X’s wins

start
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Game trees

• A game tree is like a search tree in many ways …
– nodes are search states, with full details about a position

• characterize the arrangement of game pieces on the 
game board

– edges between nodes correspond to moves
– leaf nodes correspond to a set of goals

• { win, lose, draw }
• usually determined by a score for or against player

– at each node it is one or other player’s turn to move
• A game tree is not like a search tree because you have 

an opponent!
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Two players: MIN and MAX

• In a zero-sum game:
– payoff to Player 1 = - payoff to Player 2

• The goal of Player 1 is to maximizing her payoff.

• The goal of Player 2 is to maximizing her payoff as well
– Equivalent to minimizing Player 1’s payoff.
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Minimax search

• Assume that both players play perfectly
– do not assume player will miss good moves or make 

mistakes

• Score(s): The score that MAX will get towards
the end if both player play perfectly from s
onwards.

• Consider MIN’s strategy
– MIN’s best strategy:

• choose the move that minimizes the score that will 
result when MAX chooses the maximizing move

– MAX does the opposite
24



Minimaxing

• Your opponent will 
choose smaller numbers

• If you move left, your 
opponent will choose 3

• If you move right, your 
opponent will choose -8

• Thus your choices are 
only 3 or -8

• You should move left

Opponent’s
move

7 3 -8 50

Your move

MIN

MAX
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Each move is called a “ply”.  One round is K-plies for a K-player game.



Minimax example

Which move to choose?
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Minimax example
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Minimax example

Which move to choose?
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Minimax example

Which move to choose?
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Minimax example

The minimax decision is move A1

Which move to choose?
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Another example 

• In the game, it’s your move. Which move will the 
minimax algorithm choose – A, B, C, or D? What is the 
minimax value of the root node and nodes A, B, C, and 
D?

1 7 2 5 2 8 9 4 6 3 3 5

A B C D

MAX

MIN

27
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Minimax search
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Minimax search

• The minimax decision maximizes the utility under the 
assumption that the opponent seeks to minimize it (if it 
uses the same evaluation function)
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Minimax search

• The minimax decision maximizes the utility under the 
assumption that the opponent seeks to minimize it (if it 
uses the same evaluation function)

• Generate the tree of minimax values
– Then choose best (maximum) move
– Don’t need to keep all values around

• Good memory property
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Minimax search

• The minimax decision maximizes the utility under the 
assumption that the opponent seeks to minimize it (if it 
uses the same evaluation function)

• Generate the tree of minimax values
– Then choose best (maximum) move
– Don’t need to keep all values around

• Good memory property

• Depth-first search is used to implement minimax
– Expand all the way down to leaf nodes
– Recursive implementation
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Minimax properties

• Optimal?

• Complete?

• Time complexity?

• Space complexity?

Yes, against an optimal opponent, if
the tree is finite

Yes, if the tree is finite

Exponential: O( bm )

Polynomial: O( bm )
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30

But this could take forever…

• Exact search is intractable
– Tic-Tac-Toe is 9! = 362,880
– For chess, b » 35 and m » 100 for “reasonable” games
– Go is 361! »10750
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But this could take forever…

• Exact search is intractable
– Tic-Tac-Toe is 9! = 362,880
– For chess, b » 35 and m » 100 for “reasonable” games
– Go is 361! »10750

• Idea 1: Pruning

• Idea 2: Cut off early and use a heuristic function

66
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Pruning

• What’s really needed is “smarter,” more efficient search
– Don’t expand “dead-end” nodes!

• Pruning – eliminating a branch of the search tree from 
consideration
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Pruning

• What’s really needed is “smarter,” more efficient search
– Don’t expand “dead-end” nodes!

• Pruning – eliminating a branch of the search tree from 
consideration

• Alpha-beta pruning, applied to a minimax tree, returns 
the same “best” move, while pruning away unnecessary 
branches
– Many fewer nodes might be expanded
– Hence, smaller effective branching factor
– …and deeper search
– …and better performance

• Remember, minimax is depth-first search
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Alpha pruning

69

A
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Alpha pruning
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Beta pruning
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Beta pruning

72

C D

10 25 15 50

≤25

25

MIN

MAXB

MINA



Improvements via alpha/beta pruning
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Improvements via alpha/beta pruning

• Depends on the ordering of expansion

• Perfect ordering

• Random ordering
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Improvements via alpha/beta pruning

• Depends on the ordering of expansion

• Perfect ordering

• Random ordering

• For specific games like Chess, you can get to almost
perfect ordering.
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Heuristic (Evaluation function)

• It is usually impossible to solve games completely

• Rather, cut the search off early and apply a heuristic 
evaluation function to the leaves
– h(s) estimates the expected utility of the game from a given 

position (node/state) s
– like depth bounded depth first, lose completeness
– Explore game tree using combination of evaluation function and 

search
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Heuristic (Evaluation function)

• It is usually impossible to solve games completely

• Rather, cut the search off early and apply a heuristic 
evaluation function to the leaves
– h(s) estimates the expected utility of the game from a given 

position (node/state) s
– like depth bounded depth first, lose completeness
– Explore game tree using combination of evaluation function and 

search

• The performance of a game-playing program depends on 
the quality (and speed!) of its evaluation function
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Heuristics (Evaluation function)

• Typical evaluation function for game: weighted linear 
function
– h(s) = w1 f1(s) + w2 f2(s) + … + wd fd(s)
– weights · features [dot product]
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• Typical evaluation function for game: weighted linear 
function
– h(s) = w1 f1(s) + w2 f2(s) + … + wd fd(s)
– weights · features [dot product]

• For example, in chess
– W = { 1, 3, 3, 5, 8 }
– F = { # pawns advantage, # bishops advantage, # knights 

advantage, # rooks advantage, # queens advantage }
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Heuristics (Evaluation function)

• Typical evaluation function for game: weighted linear 
function
– h(s) = w1 f1(s) + w2 f2(s) + … + wd fd(s)
– weights · features [dot product]

• For example, in chess
– W = { 1, 3, 3, 5, 8 }
– F = { # pawns advantage, # bishops advantage, # knights 

advantage, # rooks advantage, # queens advantage }
– Is this what Deep Blue used?
– What are some problems with this?

• More complex evaluation functions may involve learning
– Adjusting weights based on outcomes
– Perhaps non-linear functions
– How to choose the features?
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Tic-Tac-Toe revisited

a partial game tree
for Tic-Tac-Toe
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Evaluation function for Tic-Tac-Toe

• A simple evaluation function for Tic-Tac-Toe
– count the number of rows where X can win
– subtract the number of rows where O can win

• Value of evaluation function at start of game is zero
– on an empty game board there are 8 possible winning rows for 

both X and O

8-8 = 0
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Evaluating Tic-Tac-Toe

evalX = (number of rows where X can win)  –
(number of rows where O can win)

• After X moves in center, score for X is +4
• After O moves, score for X is +2
• After X’s next move, score for X is +4

8-8 = 0 6-4 = 28-4 = 4 6-2 = 4
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Evaluating Tic-Tac-Toe

evalO = (number of rows where O can win)  –
(number of rows where X can win)

• After X moves in center, score for O is -4
• After O moves, score for O is +2
• After X’s next move, score for O is -4

8-8 = 0 4-6 = -24-8 = -4 2-6 = -4
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Search depth cutoff

Tic-Tac-Toe with
search depth 2

Evaluations shown for X

-2
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Expectimax: Playing against a benign 
opponent
• Sometimes your opponents are not clever.

– They behave randomly. 
– You can take advantage of that by modeling your opponent.

• Example of game of chance:
– Slot machines
– Tetris
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Expectimax example

• Your opponent behave 
randomly with a given 
probability distribution, 

• If you move left, your 
opponent will select 
actions with probability 
[0.5,0.5]

• If you move right, your 
opponent will select 
actions with [0.6,0.4]

Opponent’s
random 

move
7 3 -8 50

Your move

AVERAGE

MAX
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Note:  pruning becomes tricky in expectimax… think about why.



Summary of game playing

• Minimax search

• Game tree

• Alpha-beta pruning

• Early stop with an evaluation function

• Expectimax
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More reading / resources about game playing

• Required reading: AIMA 5.1-5.3

• Stochastic game / Expectiminimax:  AIMA 5.5
– Backgammon.  TD-Gammon
– Blackjack, Poker

• Famous game AI:  Read the “Historical notes” of the  
AIMA Chapter 5
– Deep blue
– TD Gammon

• AlphaGo: https://www.nature.com/articles/nature16961
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