
Homework 3 of CS 165A (Spring 2023)

University of California, Santa Barbara

To be discussed on May 17, 2023 (Wednesday)

Notes:

• The homework is optional. You do not need to submit your solutions anywhere and
you will not be evaluated by these.

• To maximize your learning, you should try understanding the problems and try solving
them as much as you can before the discussion class.

• Feel free to discuss with your peers / form small groups to solve these problems.

• Feel free to discuss any questions with the instructor and the TA in office hours or on
Piazza.

Why should I do this homework?

This optional homework offers simple practices to help you understand how Game solving
agents work (Problem 1 and 2), and for you to understand Markov decision processes (MDPs)
(Problem 3 and 4). In particular, Problem 3 is a (somewhat tedious) hands-on practice that
are best done by writing Python / numpy codes interactively, e.g., in a Jupyter notebook
environments. It helps you to understand MDPs and gain further insight into value functions
and Bellman equations. Problem 4 helps you to understand how “value iteration” works with
a few simple mathematical derivations.

Why study game AI? Because games are fun! Being able to think strategically in com-
plex game plays (sometimes as a simulation of real life) is what makes us so different from
other animals. Solving games with minimax search and an evaluation function (a heuristic
function) is a simple but powerful technique and arguably used implicitly by human game
players. You will probably be able to beat the best chess player in your household with
relatively simple heuristics and searching for only a handful of plies. Expectimax also offers
a bridge between search and MDPs (try to figure out the precise connection and differences
between two seemingly related things is a great way of learning known as “Near-Miss”).



Why study MDPs? MDP is the main mathematical model we consider when studying
Reinforcement Learning, which would be the single most important topic that we will spend
many lectures on during the second half of the course. MDPs can be used to model discrete
(and continuous) controlled processes such as robot navigation, chemical reactions, queuing
systems, inventory managements, epidemic control and even for designing macro-economic
policies. Understanding the basics of MDPs will help you to spot new applications whenever
MDP is applicable. More pragmatically, if you still struggle with solving coding questions
involving dynamic programming algorithms (e.g., variants of knapsack problems), you will
be surprised to know how many of them are special cases of value iterations and MDPs.
Learning MDPs well will help to to master the a big hammer for cracking tech interview
questions (if you are graduating soon).

Finally, attempting these problems and showing up in the recitations may help you with
Coding Project 2, 3 and the final exam.

Problem 1 Minimax Search, Pruning, and Expectimax

The following is a game-tree, whether the two players take turn to choose actions. You are
the MAX player and you go first.

(a) Follow the Minimax algorithm and put a number in each circle in the following game
tree in Figure 1.

(b) Assume that the order of expanding nodes is from left to right. Rerun the minimax
algorithm with alpha-beta pruning in Figure 2

Indicate which nodes (subtrees) are pruned and the type of pruning (alpha or beta).
Indicate the values of alpha and beta at each pruning step 1.

(c) Suppose that the adversary adopt an ε-greedy algorithm:

With probability ε, the adversary choose a random action; and with prob-
ability 1− ε, the adversary chooses the minimum.

1The values of alpha and beta are the bounds based on the evidence that we have already collected



Now you are asked to do an Expectimax search and mark the values of every node in
Figure 3, in which you need to maximize the expectation of reward over all next posi-
tions the adversary may choose (instead of the minimal reward as is in Minimax settings).

The parameter 0 ≤ ε ≤ 1. Write down the ranges of ε, for which the optimal first action
of Player MAX will be LEFT, MIDDLE and RIGHT respectively.
Hint: you can make it in a similar way as Minimax search, by writing an expectation on
each adversarial circle, and a maximum on each player’s circle in Figure 3.



Figure 1: A game tree. [Provide your marked answers for Q1(a) in this figure.]

Figure 2: A game tree. [Provide your marked answers for Q1(b) in this figure.]

Figure 3: A game tree. [Provide your marked answers for Q1(c) in this figure.]



Problem 2 Tic-Tac-Toe with Evaluation functions

This problem exercises the basic concepts of game playing, using tic-tac-toe (noughts and
crosses) as an example. We define Xn as the number of rows, columns, or diagonals with
exactly n X’s and no O’s. Similarly, On is the number of rows, columns, or diagonals with
just n O’s. The utility functions assigns +1 to any state with X3 = 1 and −1 to any state
with O3 = 1. All other terminal states have utility 0. For non-terminal states, we use a
linear evaluation function defined as Eval(s) = 3X2(s) +X1(s)− (3O2(s) +O1(s)).

(a) What is the total number of states for the game of tic-tac-toe?

(b) (Challenge question) How many possible game trees are there for tic-tac-toe? Include
your workings towards an answer. If you write code to calculate the answer, please
attach your code.

(c) Show the whole game tree starting from an empty board down to depth 2 (i.e., one X
and one O on the board). One way to simplify your game-tree is to take symmetry into
account (namely, at the beginning there are essentially only three moves that player X
can take; other moves will be equivalent to these three moves due to symmetry.).

(d) Mark on your tree the evaluations of all the states at depth 2.

(e) Using the minimax algorithm, mark on your tree the backed-up values for the states at
depth 1 and 0, and use those values to choose the best starting move.

(f) Circle the nodes at depth 2 that would not be evaluated if alpha-beta pruning were
applied, assuming the nodes are generated in the optimal order for alpha-beta pruning.



Figure 4: (a) A simple 4 × 3 environment that presents the agent with a sequential. (b)
Illustration of the transition model of the environment: the “intended” outcome occurs with
probability 0.8, but with probability 0.2 the agent moves towards one of the two directions
perpendicular to the intended direction (0.1 for each such direction). A collision with a wall
results in no movement (the agent stays where she is). When the agent transitions into the
two terminal states a reward of +1 and –1 is received and the game ends. In addition, each
unit time the agent spends in the environment costs 0.04 (a reward of −0.04 for every action
taken).

Problem 3: MDP, Policy, V-function and Q-function in

the 4× 3 Grid World

In this problem, we will work with the the 4 × 3 grid world shown in Figure 4. This is the
example we covered in the lecture. This question makes sure that you understand MDP.

The problem is best solved by writing python codes. You are feel free to structure
your code in anyway you want. A good strategy would be to modularize your code by
caching intermediate variables and writing functions. Representing the parameters of the
MDP that you come up with in Part (a) as matrices and vectors is absolutely critical for a
clean representation. So make sure you are representing the MDP parameters correctly (do
dimension checks!) and can run the MDP as a simulator of the task environment.

(a) Recall that an MDP is determined by a tuple (S,A, r, P, d1, T ), where S is the state-
space, A is the action space, r : S ×A×S → R is the reward function, P (s′|s, a) is the
state-transition probability denoted by a conditional probability distribution2, d1 is the
distribution of the initial state and T is the horizon of the MDP.

Read the description of the grid world environment in Figure 4 carefully and translate
that description into an MDP. In particular, specify the all items in this tuple.

2This is a conditional probability table (CPT) when S and A are both discrete, for this homework we
are only considering finite state spaces and action spaces, so we denote S := |S| and A := |A|. Note that S
and A are sets, so | · | with an input being a set outputs the cardinality of a set, or simply the number of
items in a set.



(Hint 1: In the infinite horizon case T = ∞. You can think about hitting the terminal
states the same as transitioning into a dummy sinking state ⊥ with 0 rewards and it
only transitions into itself. This is the case in this question.
Hint 2: In this example, r is a function of the state you transition into only, and you
collect the reward / loss after the state-transition.
Hint 3: Do the dimension check for all elements in this tuple that describes an MDP.
Use an extra piece of paper to carefully write down the matrices and vectors and fill in
the numbers. This will help you understand MDP and help you with Q4 too. )

(b) Consider a fixed pre-defined sequence of actions [Up, Up, Right, Right, Right ] ( you take
this sequence of actions without considering which state you are in.) Calculate which
squares can be reached when you start from (1, 1) and with what probabilities.

(Hint: the easiest way of calculating these probabilities will be to write a piece of code
that manipulates your specified matrices and vectors from Part (a). )

(c) A policy is a “look-up table”, or a “book of decision rules”. Policy π determines at a
given state s, which action a ∈ A to take. We use the notation a = π(s) for deterministic
policies. When π is stochastic, this book records the probability to taking each action
given s, so a convenient notation to denote this policy is by the conditional distribution
π(a|s). A policy is called stationary if it does not depend on time t; otherwise it is called
non-stationary, in which case we use πt to denote the policy and it needs to be specified
for all t = 1, 2, ..., T .

In this example, a deterministic policy can be described a figure with arrows as in those
in Figure 5.

i. Can the above sequence of actions in Part (b) be generated by a stationary policy? If
so, write π down. If not, write down a non-stationary policy π (consists of π1, ..., π5)
that produces this sequence of actions.

ii. Let T = 5, calculate the value of this non-stationary policy π using your results
in Part (b). Recall that the value of a policy in a finite horizon case (without
discounting) is given by

vπ = Eπ

[
T∑
t=1

Rt

]
=
∑
t

∑
s

dπt (s)rπt (s)

where dπt (s) denotes the probability of St = s under policy π and

rπt (s) = Eπ[Rt|St = s] =
∑
a

πt(a|s)
∑
s′

P (s′|s, a)r(s, a, s′).

iii. Let T = 5, calculate the V π
t function and the Qπ

t function for t = 1, 2, 3, 4, 5.

(Hint 1: Use the Bellman equations

V π
t (s) =

∑
a

πt(a|s)
∑
s′

P (s′|s, a)(r(s, a, s′) + V π
t+1(s

′))



Figure 5: An optimal policy for the stochastic environment with r(s, a, s′) = −0.04, γ = 1,
T =∞ when s′ is a non-terminal states.

and

Qπ
t (s, a) =

∑
s′

P (s′|s, a)

(
r(s, a, s′) +

∑
a′

πt+1(a
′|s′)Qπ

t+1(s
′, a′)

)
.

Hint 2: Write a backup function that calculates Vt given Vt+1. Recursively call this
function from t = 5 and go backwards. Define V π

6 (·) ≡ 0, Q6(·, ·) ≡ 0. )

iv. Now let us use the alternative way of calculating the value of the policy π. vπ =∑
s d1(s)V

π
1 (s). Include your code and the output of the code. Verify that you

calculations are correct by comparing this with Part (ii).

v. Now let us do a one step policy iteration. Define π′ to be π′t(s) = argmaxaQ
π
t (s, a).

Repeat your steps in Part iii and calculate V π′
t for t = 1, 2, 3, 4, 5. Is π′ a better

policy than π?

(d) Now let’s move on to infinite horizon, discounted MDP. Take T =∞. The main differ-
ence is that whenever the agent is at a state s, the future will be identical no matter
what t it is that the agent is at. Therefore, the optimal policy will be stationary in this
case.

i. The policy in Figure 5 is the optimal policy for this problem when γ = 1. Let us
call it π∗. Now calculate the 5-step expected cumulative reward by Monte Carlo
— obtaining many samples by repeatedly running this policy π∗ starting from (1, 1)
for 5 steps. Then calculate the sample average of the cumulative rewards. Submit
your code that implements it.

Yet another way of calculating this expression is to invoke your function from Part
ii with s = (1, 1), π = π∗ and T = 5. A good idea of testing that your solution is
correct is to check whether you get the approximately the same numbers using these
two approaches.)

ii. Write the python function that takes an initial state s, a policy π and the MDP as



an input, then calculate the T -step cumulative reward using

V̂ π(s) := Eπ

[
T∑
t=1

Rt

∣∣∣∣∣S1 = s

]
= rπ(s) +

T∑
t=2

∑
s′

dπt (s′|S1 = s)rπ(s′).

where rπ(s) :=
∑

a π(a|s)
∑

s′ P (s′|s, a)r(s, a, s′), which measures the expected re-
ward under s.

Take T = 100 will give a good approximation of T =∞. Call the function with all
s, print a table of the results.

(Hint: dπt (s′|S1 = s) denotes the probability of St = s′ when S1 = s when all actions
are taken by policy π. Think about a t − 1-step random walk starting at state s,
what is the transition matrix under π?)

iii. Write a function to calculate the scalar version of Bellman error. The function takes
a vector V̂ ∈ RS, γ and the MDP as an input and outputs a scalar√√√√∑

s

(
V̂ (s)−max

a

∑
s′

P (s′|s, a)(r(s, a, s′) + γV̂ (s′))

)2

.

If the Bellman error is 0, then we know that V̂ = V ∗.

Substitute V̂ π∗ that you obtained in Part ii into this function with γ chosen to be 1
and calculate the Bellman error. Is this close to 0?

Submit your output, the python function and the script that runs this function.

iv. So far, we are only validating that the policy in Figure 5 is optimal. Write a python
function that takes value iterations:

Vi+1(s)← max
a

{∑
s′

P (s′|s, a)(r(s, a, s′) + γVi(s
′))

}
.

The function takes an arbitrary vector V0 ∈ RS, integer k, and the MDP as inputs,
then it runs value iterations for k iterations, then output Vk ∈ RS. Take γ = 0.9,
plot the Bellman error as a function of k.

v. Write down the formula to obtain the optimal policy π∗ using V ∗ associated with a
discounting factor of γ. Use this formula to derive a policy πk by plugging Vk (from
Part iv) in place of V ∗ the policy that comes from the previous question.

• Take γ = 0.9, k = 100 and print out the policy πk. Is the policy same as the
one in Figure 5?

• How about when γ = 0.5, k = 100?



Problem 4: MDPs and Value Iterations (Challenge prob-

lem, try this if you’s like a bit more math)

Let Vi ∈ RS be the value function estimate for all the states at ith iteration. A Bellman
update used in the Value Iteration is the following3:

Vi+1(s)← max
a

{
r(s, a) + γ

∑
s′

P (s′|s, a)Vi(s
′)

}
.

where 0 < γ < 1.

If we note this update as an operator B, then we have:

Vi+1 ← B Vi.

Notice that the operation B V is not a matrix-to-vector product. Now we are going to prove
that the Bellman operator B is a contraction.

(a) Show that, for any functions f and g,

|max
a
f(a)−max

a
g(a)| ≤ max

a
|f(a)− g(a)|

(Hint: Discuss the two cases of the absolute value on the LHS. Also, it might be helpful
to define ã := argmaxaf(a) and ã′ := argmaxag(a). Similar to Q5 in HW1, a good way
of thinking about maxa f(a) is that it is larger than f(a′) for any a′. )

(b) Substitute the definition of the Bellman operator into |B Vi(s)−B V
′
i (s)|, such that you

can apply your result in Part (a).

(c) A max norm is defined as follows:

‖V ‖max := max
s∈{1,2,3,...,S}

|V (s)|.

Prove that for any two value function estimates V, V ′ ∈ RS, we have:

‖B V − B V ′‖max ≤ γ ‖V − V ′‖max .

(Hint: Apply the result in Part (a) to what you get in Part (b). Explicitly state how
you are instantiating the result in Part (a) — what is f and what is g here. )

(d) Use the result in Part (c) to prove that the value iteration works, namely, as i → ∞,
Vi → V ∗.

3When the reward function depends on s, a, s′ as in the lecture, then r(s, a) =
∑

s′ P (s′|s, a)r(s, a, s′).
Check that this is the same as the value iteration updates we define in Slide 11 of Lecture 13


