Artificial Intelligence

CS 165A June 6, 2023

Instructor: Prof. Yu-Xiang Wang

1

20

 \rightarrow First Order Logic

Recap: Wumpus World

- Logical Reasoning as a CSP
- B_{ij} = breeze felt
- $S_{ij} = \text{stench smelt}$
- $P_{ij} = pit$ here
- W_{ij} = wumpus here
- G = gold

http://thiagodnf.github.io/wumpus-world-simulator/

*The agent can only observe blocks that she has visited. *Cannot observe the state directly. So cannot solve offline with search.

Recap: KB Agents

True sentences

Domain specific content; facts

Domain independent algorithms; can deduce new facts from the KB

- Need a formal logic system to work
- Need a data structure to represent known facts
- Need an algorithm to answer ASK questions

Recap: syntax and semantics

- Two components of a logic system
- Syntax --- How to construct sentences
 - The symbols
 - The operators that connect symbols together
 - A precedence ordering
- Semantics --- Rules the assignment of sentences to truth
 - For every possible worlds (or "models" in logic jargon)
 - The truth table is a semantics

Recap: Entailment

A is entailed by B, if A is true in all possible worlds consistent with B under the semantics.

Recap: Inference procedure

- Inference procedure
 - Rules (algorithms) that we apply (often recursively) to derive truth from other truth.
 - Could be specific to a particular set of semantics, a particular realization of the world.
- Soundness and completeness of an inference procedure
 - Soundness: All truth discovered are valid.
 - Completeness: All truth that are entailed can be discovered.

Recap: Propositional Logic

- Syntax:
 - *True, false,* propositional symbols
 - (), ¬ (not), ∧ (and), ∨ (or), \Rightarrow (implies), \Leftrightarrow (equivalent)

• Semantics:

- Assigning values to the variables. Each row is a "model".

Р	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
False	False	True	False	False	True	True
False	True	True	False	True	True	False
True	False	False	False	True	False	False
True	True	False	True	True	True	True

Recap: Logical Inference in Propositional Logic

- A simple algorithm for checking: KB entails α
 - Enumerate M(KB)
 - Check that it is contained in $M(\alpha)$
- This inference algorithm is **sound** and **complete**.
- Are there other ways to do logical inference?
- Are they sound / complete?

Recap: Using propositional logic: rules of inference

- Inference rules capture patterns of sound inference
 - Once established, don't need to show the truth table every time
 - E.g., we can define an inference rule: $((P \lor H) \land \neg H) \vdash P$ for variables *P* and *H*
- Alternate notation for inference rule $\alpha \vdash \beta$:

"If we know α , then we can conclude β "

(where α and β are propositional logic sentences)

Recap: Inference

• We're particularly interested in

• Inference steps

$$\frac{\mathbf{KB}}{\beta_1} \rightarrow \frac{\mathbf{KB}, \beta_1}{\beta_2} \rightarrow \frac{\mathbf{KB}, \beta_1, \beta_2}{\beta_3} \rightarrow \cdots$$

So we need a mechanism to do this!

Inference rules that can be applied to sentences in our KB

Recap: Resolution Rule: one rule for all inferences

$$\frac{p \lor q, \quad \neg q \lor r}{p \lor r}$$
 Propositional calculus resolution

Remember: $p \Rightarrow q \Leftrightarrow \neg p \lor q$, so let's rewrite it as:

$$\frac{\neg p \Rightarrow q, \quad q \Rightarrow r}{\neg p \Rightarrow r} \quad \text{or} \quad \frac{a \Rightarrow b, \quad b \Rightarrow c}{a \Rightarrow c}$$

Resolution is really the "chaining" of implications.

Recap: Conversion to Conjunctive Normal Form: CNF

- Resolution rule is stated for conjunctions of disjunctions
- Question:
 - Can every statement in PL be represented this way?
- Answer: Yes
 - Can show every sentence in propositional logic is equivalent to conjunction of disjunctions
 - Conjunctive normal form (CNF)
- Procedure for obtaining CNF
 - Replace $(P \Leftrightarrow Q)$ with $(P \Rightarrow Q)$ and $(Q \Rightarrow P)$
 - Eliminate implications: Replace $(P \Rightarrow Q)$ with $(\neg P \lor Q)$
 - Move \neg inwards: $\neg \neg$, \neg (P \lor Q), \neg (P \land Q)
 - Distribute \land over \lor , e.g.: $(P \land Q) \lor R$ becomes $(P \lor R) \land (Q \lor R)$ [What about $(P \lor Q) \land R$?]
 - Flatten nesting: $(P \land Q) \land R$ becomes $P \land Q \land R$

Recap: Complexity of reasoning

- Validity
 - NP-complete
- Satisfiability
 - NP-complete
- α is valid iff $\neg \alpha$ is unsatisfiable
- Efficient decidability test for validity iff efficient decidability test for satisfiability.
- To check if $KB \models \alpha$, test if $(KB \land \neg \alpha)$ is unsatisfiable.
- For a restricted set of formulas (Horn clauses), this check can be made in linear time.
 - Forward chaining
 - Backward chaining

Recap: Propositional logic is quite limited

- Propositional logic has simple syntax and semantics, and limited expressiveness
 - Though it is handy to illustrate the process of inference
- However, it only has one representational device, the proposition, and cannot generalize
 - Input: facts; Output: facts
 - Result: Many, many rules are necessary to represent any nontrivial world
 - It is impractical for even very small worlds
- The solution?
 - **First-order logic**, which can represent propositions, objects, and relations between objects
 - Worlds can be modeled with many fewer rules

This lecture: First order logic

- More expressive language
 - Relations and functions of objects.
 - Quantifiers such as, All, Exists.
- Easier to construct a KB.
 - Need much smaller number of sentences to capture a domain.

• Inference algorithms for First order logic

Propositional logic

- "All men are mortal"
- "Tom is a man"
- What can you infer?
 - Men => Mortal?
 - Tom \Rightarrow Man?
 - Tom \Rightarrow Mortal?

Propositional logic vs. FOL

- Propositional logic:
 - **P** stands for "All men are mortal"
 - **Q** stands for "Tom is a man"
 - What can you infer from P and Q?
 - Nothing!
- First-order logic:
 - $\forall x \operatorname{Man}(x) \Rightarrow \operatorname{Mortal}(x)$
 - Man(Tom)
 - What can you infer from these?
 - Can infer Mortal(Tom)

First-Order Logic (FOL)

A method of analysis or calculation using a special symbolic notation

- Also known as *First-Order Predicate Calculus*
 - Propositional logic is also known as *Propositional Calculus*
- An extension to propositional logic in which <u>quantifiers</u> can bind <u>variables</u> in sentences
 - Universal quantifier (\forall)
 - Existential quantifier (\exists)
 - Variables: *x*, *y*, *z*, *a*, *joe*, *table*...
- Examples
 - $\forall x \text{ Beautiful}(x)$
 - $\exists x \text{ Beautiful}(x)$

First-Order Logic (cont.)

- It is by far the most studied and best understood logic in use
- It does have limits, however
 - Quantifiers (∀ and ∃) can only be applied to objects, not to functions or predicates
 - Cannot write $\forall P \ P(\text{mom}) = \text{good}$
 - This is why it's called *first-order*
 - This limits its expressiveness
- Let's look at the syntax of first-order logic
 - I.e., what logical expressions can you legally construct?

FOL Syntax

- Symbols
 - Object symbols (constants): P, Q, Fred, Desk, True, False, ...
 - These refer to *things*
 - Predicate symbols: *Heavy, Smart, Mother, ...*
 - These are *true or false statements* about objects: Smart(*rock*)
 - Function symbols: Cosine, IQ, MotherOf, ...
 - These return objects, exposing *relations*: IQ(*rock*)
 - Variables: $x, y, \lambda, ...$
 - These represent unspecified objects
 - Logical connectives to construct complex sentences: \neg , \land , \lor , \Rightarrow , \Leftrightarrow
 - Quantifiers: \forall (universal), \exists (existential)
 - Equality: =
- Usually variables will be lower-case, other symbols capitalized

FOL Syntax (cont.)

- Terms
 - Logical expressions that refer to objects (evaluates to an object)
 - Can be constants, variables, functions
- Examples
 - -P
 - 2001
 - Richard
 - *x*
 - *y*
 - BrotherOf(*Richard*)
 - Age(NephewOf(x)) [Why not AgeOf()? (No reason...!)]

Remember – syntax and semantics are different, and separate!!

FOL Syntax

- Note on predicates and functions: **typical** usage
 - Beautiful(y) \rightarrow "y is beautiful"
 - Mother(x) \rightarrow "x is a Mother"
 - BrotherOf(x, y) \rightarrow "x is a brother of y"
 - NextTo(x, y) \rightarrow "x is next to y"
 - BrotherOf(x) \rightarrow "the brother of x"

 - NextIo(y) → "the thing next to y"
 SquareRoot(x) → "the square root of x"

FOL Sentences

- Sentences state facts
 - Just like in propositional logic...
- 3 types of sentences:
 - Atomic sentences (atoms)
 - Logical (complex) sentences
 - Quantified sentences \forall (universal), \exists (existential)

Sentences

1. Atomic sentence

- A predicate applied to some terms
 - Brothers(Bill, FatherOf(John))
 - LessThan(3, 5)

Constant, variable, or function – evaluates to an object

- Equality states that two terms refer to the same object
 - x = MotherOf(y)
 - Instructor (cs165a) = Wang
 - This is equivalent to the predicate: Equal(Instructor(cs165a), Wang)
- 2. Logical (complex) sentence logical combination of other sentences
 - – Brothers(Bill, HusbandOf(Sue))
 - Above(Sky, Ground) \Rightarrow Below(Ground, Sky)
 - Brothers (Bill, John) \Leftrightarrow Brothers (John, Bill)
- 3. Quantified sentence sentences with quantified variables
 - $\forall x, y \text{ ParentOf}(x, y) \Rightarrow \text{ChildOf}(y, x)$
 - $\exists x \text{ US-President}(x)$

Universal Quanitifer ("For all...")

- ∀ <variables> <sentence>
 - $\forall x "For all x..."$
 - $\forall x, y "For all x and y..."$
- Examples
 - "Everything is beautiful"
 - $\forall x \text{ Beautiful}(x)$
 - Equivalent to: $\prod_i \text{Beautiful}(x_i)$
 - Beautiful(Joe) ^ Beautiful(Mary) ^ Beautiful(apple) ^
 Beautiful(dirt) ^ Beautiful(death) ^ ...
 - "All men are mortal"
 - $\forall x \operatorname{Man}(x) \Rightarrow \operatorname{Mortal}(x)$
 - "Everyone in the class is smart"
 - $\forall x \text{ Enrolled}(x, \operatorname{cs165a}) \Rightarrow \operatorname{Smart}(x)$
 - What does this mean:
 - $\forall x \text{ Enrolled}(x, cs165a) \land \text{Smart}(x)$

Expansion of universal quantifier

- $\forall x \text{ Enrolled}(x, cs165a) \Rightarrow \text{Smart}(x)$
- This is equivalent to
 - Enrolled (Tom, cs165a) \Rightarrow Smart (Tom) \land Enrolled (Mary, cs165a) \Rightarrow Smart (Mary) \land Enrolled (Chris, cs165a) \Rightarrow Smart (Chris) \land Enrolled (chair, cs165a) \Rightarrow Smart (chair) \land Enrolled (dirt, cs165a) \Rightarrow Smart (dirt) \land Enrolled (surfboard, cs165a) \Rightarrow Smart (surfboard) \land Enrolled (tooth, cs165a) \Rightarrow Smart (tooth) \land Enrolled (Mars, cs165a) \Rightarrow Smart (Mars) \land ...
 - Everything!
- So, $\forall x \text{ Enrolled}(x, cs165a) \land \text{Smart}(x)$ is equivalent to
 - Enrolled(Tom, cs165a) \land Smart(Tom) \land Enrolled(chair, cs165a) \land Smart(chair) \land ...

Existential Quantifier ("There exists...")

- 3 <variables> <sentence>
 - $\exists x$ "There exists an x such that..."
 - $\exists x, y "There exist x and y such that..."$
- Examples
 - "Somebody likes me"
 - $\exists x \text{ Likes}(x, \text{Me}) ???$
 - Equivalent to: $\sum_{i} \text{Likes}(x_i, \text{Me})$
 - Likes(Joe, Me) ∨ Likes(Mary, Me) ∨ Likes(apple, Me) ∨ Likes(dirt, Me) ∨ Likes(death, Me) ∨ ...
 - Really "Something likes me"
 - $\exists x \operatorname{Person}(x) \wedge \operatorname{Likes}(x, \operatorname{Me})$
 - $\exists x \text{ Enrolled}(x, cs165a) \land \text{WillReceiveAnA}+(x)$

Scope of Quantifiers

- Scope the portion of the {program, function, definition, sentence...} in which the object can be referred to by its simple name
- Parentheses can clarify the scope (make it explicit)

 $- \forall x (\exists y < sentence>)$

- However, the scope of quantifiers is often implicit
 - $\forall w \forall x \exists y \exists z < sentence >$

is the same as

$$- \forall w (\forall x (\exists y (\exists z < sentence>))))$$

 $- \forall w \forall x \exists y \exists z < term-1 > \land < term-2 >$

is the same as

$$- \forall w \forall x \exists y \exists z \ (< term-1 > \land < term-2 >)$$

Scope of Quantifiers (cont.)

• $\exists x < sentence - 1 > \land \exists x < sentence - 2 >$

Equivalent

- $\exists x (< sentence 1 >) \land \exists x (< sentence 2 >)$
- $\exists x (< sentence-1 >) \land \exists y (< sentence-2-subst-y-for-x >)$
- $\exists x \operatorname{Rich}(x) \land \operatorname{Beautiful}(x)$
 - "Someone is both rich and beautiful"
- $\exists x \operatorname{Rich}(x) \land \exists x \operatorname{Beautiful}(x)$
 - "Someone is rich and someone is beautiful"
 - Same as $\exists x \operatorname{Rich}(x) \land \exists y \operatorname{Beautiful}(y)$
- How about
 - $\exists x (\operatorname{Rich}(x) \land \exists x (\operatorname{Beautiful}(x)))$
 - The same as $\exists x \operatorname{Rich}(x) \land \exists x \operatorname{Beautiful}(x)$

Same as in scope of variables in programming (C/C++, Java, etc.)

Order, nesting of Quantifiers

- Implied nesting:
 - $\forall x \forall y < sentence > is the same as \forall x (\forall y < sentence >)$
 - $\exists x \forall y < sentence > is the same as \exists x (\forall y < sentence >)$
- ∀ x ∀ y <sentence> is the same as ∀ y ∀ x <sentence>
 Also, ∀ x, y <sentence>
- ∃ x ∃ y <sentence> is the same as ∃ y ∃ x <sentence>
 Also, ∃ x, y <sentence>
- ∃ x ∀ y <sentence> is not the same as ∀ y ∃ x <sentence>
 Try ∃ x ∀ y Loves(x, y) and ∀ y ∃ x Loves(x, y)

Example of quantifier order

- $\exists x \forall y \text{ Loves}(x, y)$
 - $\exists x [\forall y Loves(x, y)]$
 - $\exists x \ [Loves(x, Fred) \land Loves(x, Mary) \land Loves(x, Chris) \land ...]$
 - "There is at least one person who loves everybody"
 - Assuming the domain consists of only people
- $\forall y \exists x \text{ Loves}(x, y)$
 - $\forall y [\exists x Loves(x, y)]$
 - $\forall y \ [Loves(Joe, y) \lor Loves(Sue, y) \lor Loves(Kim, y) \lor ...]$
 - "Everybody is loved by at least one person"

Logical equivalences about \forall and \exists

- \forall can be expressed using \exists
 - $\forall x$ Statement-about-x ... is equivalent to ...
 - $\neg \exists x \neg$ Statement-about-x
 - Example: $\forall x$ Likes(x, IceCream)
 - $\neg \exists x \neg \text{Likes}(x, \text{IceCream})$
- \exists can be expressed using \forall
 - $\exists x$ Statement-about-x ... is equivalent to ...
 - $\neg \forall x \neg$ Statement-about-x
 - Example: $\exists x \text{ Likes}(x, \text{Spinach})$
 - $\neg \forall x \neg \text{Likes}(x, \text{Spinach})$

Examples of FOL

- Brothers are siblings
 - $\forall x, y \text{ Brother}(x, y) \Rightarrow \text{Sibling}(x, y)$
- Sibling is transitive
 - $\forall x, y, z \text{ Sibling}(x, y) \land \text{Sibling}(y, z) \Rightarrow \text{Sibling}(x, z)$
- One's mother is one's sibling's mother
 - $\forall x, y, z \text{ Mother}(x, y) \land \text{Sibling}(y, z) \Rightarrow \text{Mother}(x, z)$
- A first cousin is a child of a parent's sibling
 - $\forall x, y \text{ FirstCousin}(x, y) \Leftrightarrow$ $\exists v, w \text{Parent}(v, x) \land \text{Sibling}(v, w) \land \text{Parent}(w, y)$

Implication and Equivalence

- Note the difference between \Rightarrow and \Leftrightarrow
 - Implication / conditional (\Rightarrow)
 - $A \Rightarrow B$: "A implies B", "If A then B"
 - Equivalence / biconditional (\Leftrightarrow)
 - $A \Leftrightarrow B$: "A is equivalent to B"
 - Same as $(A \Rightarrow B) \land (B \Rightarrow A)$: "A if and only if B", "A iff B"
- For "Sisters are siblings", which one?

 $\forall x, y \; \operatorname{Sister}(x, y) \Leftrightarrow \operatorname{Sibling}(x, y) \\ \forall x, y \; \operatorname{Sister}(x, y) \Rightarrow \operatorname{Sibling}(x, y)$

Where we are...

- Basics of logic: Propositional logic
- More general logic representation: First-order logic
- Now, let's see how to use FOL to do logical inference
 I.e., to reason about the world

Reminder

- Term
 - Constant, variable, function()
- Atomic sentence
 - Predicate(), term₁ = term₂
- Literal
 - An atomic sentence or a negated atomic sentence
- Sentence
 - Atomic sentence, sentences with quantifiers and/or connectives

Simple example of inference in FOL

Bob is a buffalo Pat is a pig Buffaloes outrun pigs

Does Bob outrun Pat?

KB₀ Buffalo(Bob) **Pig(Pat)** $Buffalo(x) \land Pig(y) \Longrightarrow Outrun(x,y)$ KB entails Outrun(Bob, Pat)? S KB₀ $KB_0 \mid -Buffalo(Bob) \land Pig(Pat)$ KB₁ (And-Introduction) $KB_1 \mid -Buffalo(Bob) \land Pig(Pat) \Longrightarrow Outrun(Bob, Pat)$ KB₂ (Universal Instantiation) [coming soon] KB_2 – Outrun(Bob, Pat) KB₃ (Modus Ponens)

Using FOL to express knowledge

- One can express the knowledge of a particular domain in first-order logic
- Example: The "kinship domain"
 - **Objects:** people
 - **Properties:** gender, family relationships
 - Unary predicates: Male, Female
 - Binary predicates: Parent, Sibling, Brother, Sister, Son, Daughter, Father, Mother, Uncle, Aunt, Grandparent, Grandfather, Grandmother, Husband, Wife, Spouse, Brother-in-law, Stepmother, etc....
 - Functions: MotherOf, FatherOf...
- Note: There is usually (always?) more than one way to specify knowledge

Kinship domain

- Write down what we know (what we want to be in the KB)
 - One's mother is one's female parent
 - $\forall m, c \text{ Mother}(m, c) \Leftrightarrow \text{Female}(m) \land \text{Parent}(m, c)$
 - $\forall m, c$ TheMotherOf(c) = m \Leftrightarrow Female(m) \land Parent(m, c)
 - One's husband is one's male spouse
 - $\forall w, h \text{ Husband}(h, w) \Leftrightarrow \text{Male}(h) \land \text{Spouse}(h, w)$
 - One is either male or female
 - $\forall x \text{ Male}(x) \Leftrightarrow \neg \text{Female}(x)$
 - Parent-child relationship
 - $\forall p, c$ Parent $(p, c) \Leftrightarrow$ Child(c, p)
 - Grandparent-grandchild relationship
 - $\forall g, c$ Grandparent $(g, c) \Leftrightarrow \exists p \text{ Parent}(g, p) \land \text{Parent}(p, c)$ - Etc...
- Now we can reason about family relationships. (How?)

Kinship domain (cont.)

Assertions ("Add this sentence to the KB")

TELL(KB, $\forall m, c \text{ Mother}(c) = m \Leftrightarrow \text{Female}(m) \land \text{Parent}(m, c)$)

TELL(KB, $\forall w, h$ Husband(h, w) \Leftrightarrow Male(h) \land Spouse(h, w))

TELL(KB, $\forall x \text{ Male}(x) \Leftrightarrow \neg \text{Female}(x)$)

TELL(KB, Female(Mary) ^ Parent(Mary, Frank) ^ Parent(Frank, Ann))

- Note: TELL(KB, S1 \land S2) = TELL(KB, S1) and TELL(KB, S2) (because of <u>and-elimination</u> and <u>and-introduction</u>)

Queries ("Does the KB entail this sentence?")

Ask(KB, Grandparent(Mary, Ann)) \rightarrow True

ASK(KB, $\exists x \text{ Child}(x, \text{Frank})) \rightarrow \text{True}$

- But a better answer would be $\rightarrow \{ x / Ann \}$
- This returns a **substitution** or **binding**

(3 min discussion) Using first order logic to represent Minesweeper

Rules of the game:

- In Minesweeper, mines (that resemble naval mines in the classic theme) are scattered throughout a board, which is divided into cells. Cells have two states: unopened, opened. An unopened cell is blank and clickable, while an opened cell is exposed.
- A player left-clicks a cell to open it. If a player opens a mined cell, the game ends, as there is only one life per game. Otherwise, the opened cell displays either a number, indicating the number of mines diagonally and/or adjacent to it, or a blank tile (or "0"), and all adjacent non-mined cells will automatically be opened.
- The player wins when all non-mine cells are opened.

(3 min discussion) Using first order logic to represent Minesweeper

If a player opens a mined cell, the game ends.

• The opened cell displays either a number, indicating the number of mines diagonally and / or adjacent to it, or a blank.

Recap: Implementing ASK: Inference

• We want a <u>sound</u> and <u>complete</u> inference algorithm so that we can produce (or confirm) *entailed* sentences from the KB

 $KB \models \alpha \qquad KB \vdash \alpha$

The resolution rule, along with a complete search algorithm, provides a <u>complete inference algorithm</u> to confirm or refute a sentence α in propositional logic (Sec. 7.5)

- Based on proof by contradiction (refutation)

• Refutation: To prove that the KB entails P, assume ¬P and show a contradiction:

$$(KB \land \neg P \implies False) \equiv (KB \implies P)$$

Prove this!

Inference in First-Order Logic

- Inference rules for propositional logic:
 - Modus ponens, and-elimination, and-introduction, or-introduction, resolution, etc.
 - These are valid for FOL also
- But since these don't deal with quantifiers and variables, we need new rules, especially those that allow for substitution (binding) of variables to objects

– These are called *lifted* inference rules

Substitution and variable binding

- Notation for substitution:
 - SUBST (**Binding list**, **Sentence**)
 - Binding list: { *var* / ground term, *var* / ground term, ... }
 - "ground term" = term with no variables
 - SUBST({*var*/gterm}, Func(*var*)) = Func(gterm)
 - SUBST (θ, p)
 - Examples:
 - SUBST({*x*/Mary}, FatherOf(*x*)) = FatherOf(Mary)
 - SUBST($\{x/\text{Joe}, y/\text{Lisa}\}$, Siblings(x,y)) = Siblings(Joe, Lisa)

Three new inference rules using $SUBST(\theta, p)$

• Universal Instantiation

 $\frac{\forall v \ \alpha}{SUBST(\{v \mid g\}, \alpha)}$

g – ground term

• Existential Instantiation

 $\frac{\exists v \ \alpha}{SUBST(\{v \, / \, k\}, \, \alpha)}$

k – constant that does not appear elsewhere in the knowledge base

• Existential Introduction

 $\overline{\exists v \; SUBST(\{g \, / \, v\}, \alpha)}$

α

v – variable not in α g – ground term in α

To Add to These Rules

Okonomic Modus Ponens or Implication-Elimination: (From an implication and the premise of the implication, you can infer the conclusion.)

$$\frac{\alpha \Rightarrow \beta, \quad \alpha}{\beta}$$

♦ And-Elimination: (From a conjunction, you can infer any of the conjuncts.)

$$\frac{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n}{\alpha_i}$$

♦ And-Introduction: (From a list of sentences, you can infer their conjunction.)

$$\frac{\alpha_1, \alpha_2, \ldots, \alpha_n}{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n}$$

♦ **Or-Introduction**: (From a sentence, you can infer its disjunction with anything else at all.)

$$\frac{\alpha_i}{\alpha_1 \vee \alpha_2 \vee \ldots \vee \alpha_n}$$

Ouble-Negation Elimination: (From a doubly negated sentence, you can infer a positive sentence.)

$\frac{\alpha}{\alpha}$

♦ Unit Resolution: (From a disjunction, if one of the disjuncts is false, then you can infer the other one is true.)

$$\frac{\alpha \lor \beta, \qquad \neg \beta}{\alpha}$$

 \diamond **Resolution**: (This is the most difficult. Because β cannot be both true and false, one of the other disjuncts must be true in one of the premises. Or equivalently, implication is transitive.)

$$\frac{\alpha \lor \beta, \quad \neg \beta \lor \gamma}{\alpha \lor \gamma} \quad \text{or equivalently} \quad \frac{\neg \alpha \Rightarrow \beta, \quad \beta \Rightarrow \gamma}{\neg \alpha \Rightarrow \gamma}$$

47

Universal Instantiation – examples

g – ground term

 $\frac{\forall v \ \alpha}{SUBST(\{v \mid g\}, \alpha)}$

- $\forall x \text{ Sleepy}(x)$
 - SUBST($\{x/Joe\}, \alpha$)
 - Sleepy(Joe)
- $\forall x \operatorname{Mother}(x) \Rightarrow \operatorname{Female}(x)$
 - SUBST({x/Mary}, α)
 - Mother(Mary) \Rightarrow Female(Mary)
 - SUBST($\{x/Dad\}, \alpha$)
 - Mother(Dad) \Rightarrow Female(Dad)
- $\forall x, y \operatorname{Buffalo}(x) \land \operatorname{Pig}(y) \Longrightarrow \operatorname{Outrun}(x, y)$
 - SUBST($\{x/Bob\}, \alpha$)
 - $\forall y \operatorname{Buffalo}(\operatorname{Bob}) \land \operatorname{Pig}(y) \Longrightarrow \operatorname{Outrun}(\operatorname{Bob}, y)$

Existential Instantiation – examples

 $\frac{\exists v \ \alpha}{SUBST(\{v \, / \, k\}, \, \alpha)}$

k – constant that does not appear elsewhere in the knowledge base

- $\exists x \text{ BestAction}(x)$
 - SUBST($\{x/B_A\}, \alpha$)
 - BestAction(B_A)
 - "B_A" is a constant; it is not in our universe of actions
- $\exists y \text{ Likes}(y, \text{Broccoli})$
 - SUBST($\{y/Bush\}, \alpha$)
 - Likes(Bush, Broccoli)
 - "Bush" is a constant; it is not in our universe of people

Existential Introduction – examples

 $\frac{\alpha}{\exists v \ SUBST(\{g/v\},\alpha)}$

v – variable not in α g – ground term in α

- Likes(Jim, Broccoli)
 - SUBST($\{Jim/\underline{x}\}, \alpha$)
 - $\exists x \text{ Likes}(x, \text{Broccoli})$
- $\forall x \text{ Likes}(x, \text{Broccoli}) \Rightarrow \text{Healthy}(x)$
 - SUBST({Broccoli/y}, α)
 - $\exists y \forall x \operatorname{Likes}(x, y) \Rightarrow \operatorname{Healthy}(x)$

We can formulate the logical inference problem as a search problem.

- Formulate a search process:
 - Initial state
 - KB
 - Operators
 - Inference rules
 - Goal test
 - KB contains S
- What is a node?
 - KB + new sentences (generated by applying the inference rules)
 - In other words, the new state of the KB
- What kind of search to use?
 - I.e., which node to expand next?
- How to apply inference rules? $\alpha \Rightarrow \beta$
 - Need to match the premise pattern α

Question: What's our goal here?

Historical AI figure in Logical Reasoning

- Built a calculating machine that could add and subtract (which Pascal's couldn't)
- But his dream was much grander to reduce human reasoning to a kind of calculation and to ultimately build a machine capable of carrying out such calculations

• Co-inventor of the calculus

Gottfried Leibniz (1646-1716)

"For it is unworthy of excellent men to lose hours like slaves in the labor of calculation which could safely be relegated to anyone else if the machine were used."

George Boole (1815-1864) British

- More than 100 years later, he didn't know about Leibniz, but proceeded to bring to life part of Leibniz' dream
- His insight: Logical relationships are expressible as a kind of algebra
 - Letters represent classes (rather than numbers)
 - So logic can be viewed as a form of mathematics
- Published The Laws of Thought
- He extended Aristotle's simple syllogisms to a broader range of reasoning
 - Syllogism: Premise_1, Premise_2 \rightarrow Conclusion
 - His logic: Propositional logic

Gottlob Frege (1848-1925) German

- He provided the first fully developed system of logic that encompassed all of the deductive reasoning in ordinary mathematics.
- He intended for logic to be the *foundation* of mathematics all of mathematics could be based on, and derived from, logic
- In 1879 he published *Begriffsschrift*, subtitled "A formula language, modeled upon that of arithmetic, for pure thought"
 - This can be considered the ancestor of all current computer programming languages
 - Made the distinction between *syntax* and *semantics* critical
- He invented what we today call predicate calculus (or first-order logic)

Inference algorithms in first order logic will not be covered in the final. (FOL will be!)

- However, it is a powerful tool.
 - Expert systems (since 1970s)
 - Large scale industry deployment.
- It is however fragile and rely on the correct / error-free representation of the world in black and white
 - This limits its use in cases when the evidence is collected stochastically and imprecisely by people's opinions in large scale.
- Somewhat superseded by machine learning on many problems, but:
 - Research on logic agent is coming back.
 - Add knowledge and reasoning to ML-based solution
 - After all, ML are just reflex agents usually.