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Recap: Wumpus World

• Logical Reasoning as a CSP

§ Bij = breeze felt

§ Sij = stench smelt

§ Pij = pit here

§ Wij = wumpus here

§ G = gold

http://thiagodnf.github.io/wumpus-world-simulator/

*The agent can only observe blocks that she has visited.
*Cannot observe the state directly. So cannot solve offline with search.

http://thiagodnf.github.io/wumpus-world-simulator/


• Need a formal logic system to work

• Need a data structure to represent known facts

• Need an algorithm to answer ASK questions
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Knowledge Base

Inference engine

Domain specific content; facts

ASK

TELL

Domain independent algorithms; can 
deduce new facts from the KB

Recap: KB Agents
True sentences



Recap: syntax and semantics

• Two components of a logic system

• Syntax --- How to construct sentences
– The symbols
– The operators that connect symbols together
– A precedence ordering

• Semantics --- Rules the assignment of sentences to truth
– For every possible worlds (or “models” in logic jargon)
– The truth table is a semantics
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Recap: Entailment

Representation

World

Fact
FOLLOWS

ENTAILS

Facts

Sentences

Sem
antics

Sentence

Sem
antics

A is entailed by B, if A is true in all possible worlds consistent with B
under the semantics.



Recap: Inference procedure

• Inference procedure
– Rules (algorithms) that we apply (often recursively) to derive truth

from other truth.
– Could be specific to a particular set of semantics, a particular

realization of the world.

• Soundness and completeness of an inference procedure
– Soundness: All truth discovered are valid.
– Completeness: All truth that are entailed can be discovered.
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Recap: Propositional Logic

• Syntax:
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• Syntax
– True, false, propositional symbols
– (  ) , ¬ (not), Ù (and), Ú (or), Þ (implies), Û (equivalent)

• Semantics:
– Assigning values to the variables. Each row is a “model”.



Recap: Logical Inference in Propositional
Logic
• A simple algorithm for checking: KB entails 𝛼

– Enumerate M(KB)
– Check that it is contained in M(𝛼)

• This inference algorithm is sound and complete.

• Are there other ways to do logical inference?

• Are they sound / complete?
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Recap: Using propositional logic: rules of 
inference
• Inference rules capture patterns of sound inference

– Once established, don’t need to show the truth table every time
– E.g., we can define an inference rule: ((P Ú H) Ù ¬H)      P for 

variables P and H

a
b

“If we know a, then we can conclude b”

• Alternate notation for inference rule a b :

(where a and b are propositional logic sentences)
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Recap: Inference

KB
b1

KB, b1
b2

KB, b1, b2
b3

…® ® ®

• Inference steps

KB
b

a1, a 2, …
b

or

• We’re particularly interested in

So we need a mechanism to do this!
Inference rules that can be applied to sentences in our KB 
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Recap: Resolution Rule: one rule for all 
inferences

rp
rqqp

Ú
Ú¬Ú ,

Propositional calculus resolution

rp
rqqp

Þ¬
ÞÞ¬ ,

ca
cbba

Þ
ÞÞ ,or

Remember:  p Þ q Û ¬p Ú q, so let’s rewrite it as:

Resolution is really the “chaining” of implications.



12

Recap: Conversion to Conjunctive Normal 
Form: CNF
• Resolution rule is stated for conjunctions of disjunctions
• Question: 

– Can every statement in PL be represented this way?
• Answer: Yes

– Can show every sentence in propositional logic is equivalent to 
conjunction of disjunctions

• Conjunctive normal form (CNF)
• Procedure for obtaining CNF

– Replace (P Û Q) with (P Þ Q) and (Q Þ P)
– Eliminate implications: Replace (P Þ Q) with (¬P Ú Q)
– Move ¬ inwards: ¬¬, ¬(P Ú Q), ¬(P Ù Q)
– Distribute Ù over Ú, e.g.: (P Ù Q) Ú R  becomes  (P Ú R) Ù (Q Ú R)      

[What about (P Ú Q) Ù R ?]
– Flatten nesting: (P Ù Q) Ù R   becomes P Ù Q Ù R
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Recap: Complexity of reasoning 

• Validity
– NP-complete

• Satisfiability
– NP-complete

• α is valid iff ¬ α  is unsatisfiable
• Efficient decidability test for validity iff efficient 

decidability test for satisfiability.
• To check if  KB    a, test if  (KB ˄¬ α) is unsatisfiable.
• For a restricted set of formulas (Horn clauses), this check 

can be made in linear time.
– Forward chaining
– Backward chaining 
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Recap: Propositional logic is quite limited

• Propositional logic has simple syntax and semantics, and 
limited expressiveness
– Though it is handy to illustrate the process of inference

• However, it only has one representational device, the 
proposition, and cannot generalize
– Input: facts; Output: facts
– Result: Many, many rules are necessary to represent any non-

trivial world
– It is impractical for even very small worlds

• The solution?
– First-order logic, which can represent propositions, objects, and 

relations between objects
– Worlds can be modeled with many fewer rules



This lecture: First order logic

• More expressive language
– Relations and functions of objects.
– Quantifiers such as, All, Exists.

• Easier to construct a KB.
– Need much smaller number of sentences to capture a domain.

• Inference algorithms for First order logic
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Propositional logic

• “All men are mortal”
• “Tom is a man”
• What can you infer?

– Men  => Mortal?
– Tom => Man?
– Tom => Mortal?
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Propositional logic vs. FOL

• Propositional logic:
– P stands for “All men are mortal”
– Q stands for “Tom is a man”
– What can you infer from P and Q?

• Nothing!

• First-order logic:
– "x Man(x) Þ Mortal(x)
– Man(Tom)
– What can you infer from these?

• Can infer Mortal(Tom)
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First-Order Logic (FOL)

• Also known as First-Order Predicate Calculus
– Propositional logic is also known as Propositional Calculus

• An extension to propositional logic in which quantifiers
can bind variables in sentences
– Universal quantifier ( " )

– Existential quantifier ( $ )
– Variables: x, y, z, a, joe, table…

• Examples
– "x Beautiful (x)
– $x Beautiful (x)

A method of analysis or 
calculation using a 
special symbolic 
notation
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First-Order Logic (cont.)

• It is by far the most studied and best understood logic in 
use

• It does have limits, however
– Quantifiers (" and $) can only be applied to objects, not to 

functions or predicates
• Cannot write "P P (mom) = good
• This is why it’s called first-order

– This limits its expressiveness
• Let’s look at the syntax of first-order logic

– I.e., what logical expressions can you legally construct?
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FOL Syntax

• Symbols
– Object symbols (constants): P, Q, Fred, Desk, True, False, …

• These refer to things
– Predicate symbols: Heavy, Smart, Mother, …

• These are true or false statements about objects: Smart(rock)
– Function symbols: Cosine, IQ, MotherOf, …

• These return objects, exposing relations: IQ(rock)
– Variables: x, y, l, …

• These represent unspecified objects

– Logical connectives to construct complex sentences: ¬, Ù, Ú, Þ, Û
– Quantifiers: " (universal), $ (existential)
– Equality:  =

• Usually variables will be lower-case, other symbols capitalized
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FOL Syntax (cont.)

• Terms
– Logical expressions that refer to objects (evaluates to an object)
– Can be constants, variables, functions

• Examples
– P
– 2001
– Richard
– x
– y
– BrotherOf(Richard)
– Age(NephewOf(x))     [Why not AgeOf( ) ?  (No reason...!)]

Remember – syntax and semantics are different, and separate!!
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FOL Syntax

• Note on predicates and functions: typical usage
– Beautiful(y) ® “y is beautiful”
– Mother(x) ® “x is a Mother”
– BrotherOf(x, y) ® “x is a brother of y”
– NextTo(x, y) ® “x is next to y”

– BrotherOf(x) ® “the brother of x”
– NextTo(y) ® “the thing next to y”
– SquareRoot(x) ® “the square root of x”

Predicates

Functions
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FOL Sentences

• Sentences state facts
– Just like in propositional logic…

• 3 types of sentences:
– Atomic sentences (atoms)
– Logical (complex) sentences
– Quantified sentences – " (universal), $ (existential)
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Sentences

1. Atomic sentence
– A predicate applied to some terms

• Brothers(Bill, FatherOf(John))    
• LessThan(3, 5)

– Equality – states that two terms refer to the same object
• x = MotherOf(y)
• Instructor(cs165a) = Wang
• This is equivalent to the predicate:  Equal(Instructor(cs165a), Wang)

2. Logical (complex) sentence – logical combination of other sentences
– ¬Brothers(Bill, HusbandOf(Sue))
– Above(Sky, Ground) Þ Below(Ground, Sky)
– Brothers(Bill, John) Û Brothers(John, Bill)

3. Quantified sentence – sentences with quantified variables
– " x,y ParentOf(x, y) Þ ChildOf(y, x)
– $ x  US-President(x)

Constant, variable, or 
function – evaluates to an 
object
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Universal Quanitifer (“For all…”)

• " <variables> <sentence>
– " x  – “For all x…”
– " x, y  – “For all x and y…”

• Examples
– “Everything is beautiful”

• " x  Beautiful(x)
• Equivalent to:  Õi Beautiful(xi)

– Beautiful(Joe) Ù Beautiful(Mary) Ù Beautiful(apple) Ù
Beautiful(dirt) Ù Beautiful(death) Ù…

– “All men are mortal”
• " x  Man(x) Þ Mortal(x)

– “Everyone in the class is smart”
• " x  Enrolled(x, cs165a) Þ Smart(x)

– What does this mean:
• " x  Enrolled(x, cs165a) Ù Smart(x)
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Expansion of universal quantifier

• " x  Enrolled(x, cs165a) Þ Smart(x)
• This is equivalent to

– Enrolled(Tom, cs165a) Þ Smart(Tom) Ù
Enrolled(Mary, cs165a) Þ Smart(Mary) Ù
Enrolled(Chris, cs165a) Þ Smart(Chris) Ù
Enrolled(chair, cs165a) Þ Smart(chair) Ù
Enrolled(dirt, cs165a) Þ Smart(dirt) Ù
Enrolled(surfboard, cs165a) Þ Smart(surfboard) Ù
Enrolled(tooth, cs165a) Þ Smart(tooth) Ù
Enrolled(Mars, cs165a) Þ Smart(Mars) Ù …

– Everything!

• So, " x  Enrolled(x, cs165a) Ù Smart(x) is equivalent to
– Enrolled(Tom, cs165a) Ù Smart(Tom) Ù

Enrolled(chair, cs165a) Ù Smart(chair) Ù …
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Existential Quantifier (“There exists…”)

• $ <variables> <sentence>
– $ x  – “There exists an x such that…”
– $ x, y  – “There exist x and y such that…”

• Examples
– “Somebody likes me”

• $ x  Likes(x, Me) ???
• Equivalent to:  åi Likes(xi, Me)

– Likes(Joe, Me) Ú Likes(Mary, Me) Ú Likes(apple, Me) Ú
Likes(dirt, Me) Ú Likes(death, Me) Ú …

• Really “Something likes me”
– $ x  Person(x) Ù Likes(x, Me)
– $ x  Enrolled(x, cs165a) Ù WillReceiveAnA+(x)
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Scope of Quantifiers

• Scope – the portion of the {program, function, definition, 
sentence…} in which the object can be referred to by its 
simple name

• Parentheses can clarify the scope (make it explicit)
– " x ( $ y  <sentence> )

• However, the scope of quantifiers is often implicit
– " w " x $ y $ z  <sentence>

is the same as
– " w (" x ($ y ($ z  <sentence>) ) )

– " w " x $ y $ z  <term-1> Ù <term-2>
is the same as

– " w " x $ y $ z  (<term-1> Ù <term-2>)
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Scope of Quantifiers (cont.)

• $ x <sentence-1> Ù $ x <sentence-2> 
– $ x (<sentence-1>) Ù $ x (<sentence-2>)
– $ x (<sentence-1>) Ù $ y (<sentence-2-subst-y-for-x>)
– $ x  Rich(x) Ù Beautiful(x)

• “Someone is both rich and beautiful”
– $ x  Rich(x) Ù $ x  Beautiful(x)

• “Someone is rich and someone is beautiful”
• Same as $ x  Rich(x) Ù $ y  Beautiful(y)

• How about
– $ x ( Rich(x) Ù $ x (Beautiful(x)) )
– The same as $ x Rich(x) Ù $ x Beautiful(x)

Same as in scope of variables in programming (C/C++, Java, etc.)

Equivalent
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Order, nesting of Quantifiers

• Implied nesting:  
– " x " y <sentence>   is the same as " x (" y <sentence>)
– $ x " y <sentence>   is the same as $ x (" y <sentence>)

• " x " y <sentence>   is the same as " y " x <sentence> 
– Also,  " x, y <sentence> 

• $ x $ y <sentence>   is the same as $ y $ x <sentence>
– Also,  $ x, y <sentence>

• $ x " y <sentence>   is not the same as " y $ x <sentence>
– Try $ x " y  Loves(x, y)  and  " y $ x  Loves(x, y)
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Example of quantifier order

• $ x " y  Loves(x, y)
– $ x [ " y  Loves(x, y) ]
– $ x  [ Loves(x, Fred) Ù Loves(x, Mary) Ù Loves(x, Chris) Ù … ]
– “There is at least one person who loves everybody”

• Assuming the domain consists of only people

• " y $ x  Loves(x, y)
– " y [ $ x  Loves(x, y) ]
– " y [ Loves(Joe, y) Ú Loves(Sue, y) Ú Loves(Kim, y) Ú … ]
– “Everybody is loved by at least one person”



32

Logical equivalences about " and $

• " can be expressed using $
– " x  Statement-about-x       … is equivalent to …
– ¬$ x ¬Statement-about-x
– Example: " x  Likes(x, IceCream)

• ¬$ x ¬Likes(x, IceCream)

• $ can be expressed using "
– $ x  Statement-about-x       … is equivalent to …
– ¬" x ¬Statement-about-x
– Example: $ x Likes(x, Spinach)

• ¬" x  ¬ Likes(x, Spinach)



• Brothers are siblings

• Sibling is transitive

• One’s mother is one’s sibling’s mother

• A first cousin is a child of a parent’s sibling
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Examples of FOL

•
– " x, y  Brother(x, y)  Þ Sibling(x, y)

•
– " x, y, z  Sibling(x, y) Ù Sibling(y, z) Þ Sibling(x, z)

•
– " x, y, z  Mother(x, y) Ù Sibling(y, z) Þ Mother(x, z)

– " x, y  FirstCousin(x, y) Û
$ v, w Parent(v, x) Ù Sibling(v, w) Ù Parent(w, y)
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Implication and Equivalence

• Note the difference between Þ and Û
– Implication / conditional ( Þ )

• A Þ B : “A implies B”, “If A then B”
– Equivalence / biconditional ( Û )

• A Û B : “A is equivalent to B”
• Same as (A Þ B) Ù (B Þ A) : “A if and only if B”, “A iff B”

• For “Sisters are siblings”, which one?
" x, y  Sister(x, y) Û Sibling(x, y)
" x, y  Sister(x, y) Þ Sibling(x, y)
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Where we are…

• Basics of logic: Propositional logic

• More general logic representation: First-order logic

• Now, let’s see how to use FOL to do logical inference
– I.e., to reason about the world
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Reminder

• Term
– Constant, variable, function( )

• Atomic sentence
– Predicate( ), term1 = term2

• Literal
– An atomic sentence or a negated atomic sentence

• Sentence
– Atomic sentence, sentences with quantifiers and/or connectives
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Simple example of inference in FOL

Bob is a buffalo
Pat is a pig
Buffaloes outrun pigs

Does Bob outrun Pat?

Buffalo(Bob)
Pig(Pat)

Buffalo(x) Ù Pig(y) Þ Outrun(x,y)

KB entails Outrun(Bob, Pat)?

KB0 |– Buffalo(Bob) Ù Pig(Pat)

(And-Introduction)

KB1 |– Buffalo(Bob) Ù Pig(Pat) Þ Outrun(Bob, Pat)
(Universal Instantiation) [coming soon]

KB2 |– Outrun(Bob, Pat)
(Modus Ponens)

KB1

KB0

KB2

KB3

KB0

S
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Using FOL to express knowledge

• One can express the knowledge of a particular domain in 
first-order logic

• Example:  The “kinship domain”
– Objects: people
– Properties: gender, family relationships
– Unary predicates: Male, Female
– Binary predicates: Parent, Sibling, Brother, Sister, Son, 

Daughter, Father, Mother, Uncle, Aunt, Grandparent, Grandfather, 
Grandmother, Husband, Wife, Spouse, Brother-in-law, 
Stepmother, etc….

– Functions: MotherOf, FatherOf…

• Note: There is usually (always?) more than one way to 
specify knowledge
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Kinship domain

• Write down what we know (what we want to be in the KB)
– One’s mother is one’s female parent

• " m, c Mother(m, c)  Û Female(m) Ù Parent(m, c)
• " m, c TheMotherOf(c) = m  Û Female(m) Ù Parent(m, c)

– One’s husband is one’s male spouse
• " w, h Husband(h, w)  Û Male(h) Ù Spouse(h, w)

– One is either male or female
• " x Male(x)  Û ¬Female(x)

– Parent-child relationship
• " p, c Parent(p, c)  Û Child(c, p)

– Grandparent-grandchild relationship
• " g, c Grandparent(g, c)  Û $ p  Parent(g, p) Ù Parent(p, c)

– Etc…
• Now we can reason about family relationships.  (How?)
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Kinship domain (cont.)

Assertions (“Add this sentence to the KB”)
TELL( KB, " m, c Mother(c) = m  Û Female(m) Ù Parent(m, c) )
TELL( KB, " w, h Husband(h, w)  Û Male(h) Ù Spouse(h, w) )
TELL( KB, " x Male(x)  Û ¬Female(x) )
TELL( KB, Female(Mary) Ù Parent(Mary, Frank) Ù Parent(Frank, Ann) )

– Note: TELL( KB, S1 Ù S2 )  º TELL( KB, S1) and TELL( KB, S2) 
(because of and-elimination and and-introduction)

Queries (“Does the KB entail this sentence?”)
ASK( KB, Grandparent(Mary, Ann) ) ® True
ASK( KB, $ x  Child(x, Frank) ) ® True

– But a better answer would be ® { x / Ann }
– This returns a substitution or binding



(3 min discussion) Using first order logic to
represent Minesweeper
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Rules of the game:



(3 min discussion) Using first order logic to
represent Minesweeper
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• If a player opens a mined cell, the game ends.

• The opened cell displays either a number, indicating the
number of mines diagonally and / or adjacent to it, or a
blank.
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Recap: Implementing ASK: Inference 

• We want a sound and complete inference algorithm so that 
we can produce (or confirm) entailed sentences from the 
KB

KB     a KB     a

• The resolution rule, along with a complete search 
algorithm, provides a complete inference algorithm to 
confirm or refute a sentence a in propositional logic
(Sec. 7.5)
– Based on proof by contradiction (refutation)

• Refutation:  To prove that the KB entails P, assume ¬P and 
show a contradiction:

(KB Ù ¬P  Þ False) ≡ (KB Þ P)
Prove this!
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Inference in First-Order Logic

• Inference rules for propositional logic:
– Modus ponens, and-elimination, and-introduction, or-introduction, 

resolution, etc. 
– These are valid for FOL also

• But since these don’t deal with quantifiers and variables, 
we need new rules, especially those that allow for 
substitution (binding) of variables to objects
– These are called lifted inference rules
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Substitution and variable binding

• Notation for substitution:
– SUBST ( Binding list, Sentence )

• Binding list: { var / ground term,  var / ground term, … }
• “ground term” = term with no variables

– SUBST( {var/gterm}, Func (var) ) = Func (gterm)
• SUBST (q, p)

– Examples:
• SUBST ( {x/Mary}, FatherOf (x) ) = FatherOf (Mary)
• SUBST ( {x/Joe, y/Lisa}, Siblings (x,y) ) = Siblings (Joe, Lisa)
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Three new inference rules using SUBST(q, p)

• Universal Instantiation

)},/({ a
a
gvSUBST

v"

• Existential Instantiation

)},/({ a
a
kvSUBST

v$ k – constant that does not appear 
elsewhere in the knowledge base

g – ground term

• Existential Introduction

)},/({ a
a

vgSUBSTv$
v – variable not in a
g – ground term in a
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To Add to These Rules



48

Universal Instantiation – examples 

)},/({ a
a
gvSUBST

v" g – ground term

• "x  Sleepy(x)
– SUBST({x/Joe}, a)

• Sleepy(Joe)
• "x Mother(x) Þ Female(x)

– SUBST({x/Mary}, a)
• Mother(Mary) Þ Female(Mary)

– SUBST({x/Dad}, a)
• Mother(Dad) Þ Female(Dad)

• "x, y Buffalo(x) Ù Pig(y) Þ Outrun(x,y)
– SUBST({x/Bob}, a)

• "y Buffalo(Bob) Ù Pig(y) Þ Outrun(Bob,y)
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Existential Instantiation – examples

)},/({ a
a
kvSUBST

v$ k – constant that does not appear 
elsewhere in the knowledge base

• $x BestAction(x)
– SUBST({x/B_A}, a)

• BestAction(B_A)
– “B_A” is a constant; it is not in our universe of actions

• $y Likes(y, Broccoli)
– SUBST({y/Bush}, a)

• Likes(Bush, Broccoli)
– “Bush” is a constant; it is not in our universe of people
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Existential Introduction – examples 

)},/({ a
a

vgSUBSTv$
v – variable not in a
g – ground term in a

• Likes(Jim, Broccoli)
– SUBST({Jim/x}, a)

• $x Likes(x, Broccoli)

• "x Likes(x, Broccoli) Þ Healthy(x)
– SUBST({Broccoli/y}, a)

• $y "x Likes(x, y) Þ Healthy(x)
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We can formulate the logical inference
problem as a search problem.
• Formulate a search process:

– Initial state
• KB

– Operators
• Inference rules

– Goal test
• KB contains S

• What is a node?
– KB + new sentences (generated by applying the inference rules)
– In other words, the new state of the KB

• What kind of search to use?
– I.e., which node to expand next?

• How to apply inference rules? a Þ b
– Need to match the premise pattern a

Question: What’s our goal here?
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Historical AI figure in Logical Reasoning

• Built a calculating machine that could 
add and subtract (which Pascal’s 
couldn’t)

• But his dream was much grander – to 
reduce human reasoning to a kind of 
calculation and to ultimately build a 
machine capable of carrying out such 
calculations

• Co-inventor of the calculus

“For it is unworthy of excellent men to lose hours like slaves in the labor of 
calculation which could safely be relegated to anyone else if the machine 
were used.”

Gottfried Leibniz (1646-1716)
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George Boole (1815-1864)

• More than 100 years later, he didn’t know 
about Leibniz, but proceeded to bring to life 
part of Leibniz’ dream

• His insight: Logical relationships are 
expressible as a kind of algebra
– Letters represent classes (rather than numbers)
– So logic can be viewed as a form of 

mathematics
• Published The Laws of Thought

British

• He extended Aristotle's simple syllogisms to a broader 
range of reasoning
– Syllogism:  Premise_1, Premise_2 à Conclusion
– His logic: Propositional logic
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Gottlob Frege (1848-1925)

• He provided the first fully developed system of 
logic that encompassed all of the deductive 
reasoning in ordinary mathematics.

• He intended for logic to be the foundation of 
mathematics – all of mathematics could be 
based on, and derived from, logic

• In 1879 he published Begriffsschrift, subtitled 
“A formula language, modeled upon that of 
arithmetic, for pure thought”
– This can be considered the ancestor of all 

current computer programming languages
– Made the distinction between syntax and 

semantics critical

German

• He invented what we today call predicate calculus (or first-order logic)



Inference algorithms in first order logic will
not be covered in the final. (FOL will be!)
• However, it is a powerful tool.

– Expert systems (since 1970s)
– Large scale industry deployment.

• It is however fragile and rely on the correct / error-free
representation of the world in black and white
– This limits its use in cases when the evidence is collected

stochastically and imprecisely by people’s opinions in large scale.

• Somewhat superseded by machine learning on many
problems, but:
– Research on logic agent is coming back.
– Add knowledge and reasoning to ML-based solution
– After all, ML are just reflex agents usually. 55


