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Logistic notes

• Online ESCI Survey
– Only a few students completed the survey.
– We can do better! The deadline is Jun 9 (This Friday)
– Please take a moment to complete your feedback!

• Project 3 due today

• Final exam next Wednesday 12 – 3 
– Open book (no digital devices)
– Twice the time but only slightly longer than the midterm
– Covers Minimax Search, MDPs, Bandits, RL, Logic (except FOL

inference) and Responsible AI
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Recap: First-Order Logic (FOL)

• Also known as First-Order Predicate Calculus
– Propositional logic is also known as Propositional Calculus

• An extension to propositional logic in which quantifiers
can bind variables in sentences
– Universal quantifier ( " )

– Existential quantifier ( $ )
– Variables: x, y, z, a, joe, table…

• Examples
– "x Beautiful (x)
– $x Beautiful (x)

A method of analysis or 
calculation using a 
special symbolic 
notation
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Inference in First-Order Logic

• Inference rules for propositional logic:
– Modus ponens, and-elimination, and-introduction, or-introduction, 

resolution, etc. 
– These are valid for FOL also

• But since these don’t deal with quantifiers and variables, 
we need new rules, especially those that allow for 
substitution (binding) of variables to objects
– These are called lifted inference rules
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Substitution and variable binding

• Notation for substitution:
– SUBST ( Binding list, Sentence )

• Binding list: { var / ground term,  var / ground term, … }
• “ground term” = term with no variables

– SUBST( {var/gterm}, Func (var) ) = Func (gterm)
• SUBST (q, p)

– Examples:
• SUBST ( {x/Mary}, FatherOf (x) ) = FatherOf (Mary)
• SUBST ( {x/Joe, y/Lisa}, Siblings (x,y) ) = Siblings (Joe, Lisa)
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Three new inference rules using SUBST(q, p)

• Universal Instantiation

)},/({ a
a
gvSUBST

v"

• Existential Instantiation

)},/({ a
a
kvSUBST

v$ k – constant that does not appear 
elsewhere in the knowledge base

g – ground term

• Existential Introduction

)},/({ a
a

vgSUBSTv$
v – variable not in a
g – ground term in a
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Universal Instantiation – examples 

)},/({ a
a
gvSUBST

v" g – ground term

• "x  Sleepy(x)
– SUBST({x/Joe}, a)

• Sleepy(Joe)
• "x Mother(x) Þ Female(x)

– SUBST({x/Mary}, a)
• Mother(Mary) Þ Female(Mary)

– SUBST({x/Dad}, a)
• Mother(Dad) Þ Female(Dad)

• "x, y Buffalo(x) Ù Pig(y) Þ Outrun(x,y)
– SUBST({x/Bob}, a)

• "y Buffalo(Bob) Ù Pig(y) Þ Outrun(Bob,y)
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Existential Instantiation – examples

)},/({ a
a
kvSUBST

v$ k – constant that does not appear 
elsewhere in the knowledge base

• $x BestAction(x)
– SUBST({x/B_A}, a)

• BestAction(B_A)
– “B_A” is a constant; it is not in our universe of actions

• $y Likes(y, Broccoli)
– SUBST({y/Bush}, a)

• Likes(Bush, Broccoli)
– “Bush” is a constant; it is not in our universe of people
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Existential Introduction – examples 

)},/({ a
a

vgSUBSTv$
v – variable not in a
g – ground term in a

• Likes(Jim, Broccoli)
– SUBST({Jim/x}, a)

• $x Likes(x, Broccoli)

• "x Likes(x, Broccoli) Þ Healthy(x)
– SUBST({Broccoli/y}, a)

• $y "x Likes(x, y) Þ Healthy(x)



Inference algorithms in first order logic will
not be covered in the final. (FOL will be!)
• However, it is a powerful tool.

– Expert systems (since 1970s)
– Large scale industry deployment.

• It is however fragile and rely on the correct / error-free
representation of the world in black and white
– This limits its use in cases when the evidence is collected

stochastically and imprecisely by people’s opinions in large scale.

• Somewhat superseded by machine learning on many
problems, but:
– Research on logic agent is coming back.
– Add knowledge and reasoning to ML-based solution
– After all, ML are just reflex agents usually. 10



Future of AI

• More higher level intelligence
– Logic is coming back
– But more learning based than rule-based

• More stateful systems, more reinforcement learning
– Causal modelling and reasoning

• More AI in the non-iid environment
– Structured
– Adversarial 

• More forms of agent’s perception
– Weak supervision
– Self-supervision (bootstrapping)

• More interactive (natural interface to human)
– Via dialogue / ChatGPT
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The need for responsible AI:
with great power comes great responsibility

• Technology is a double-bladed sword
• It matters who wields it and for what purpose
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A face recognition system



Fairness challenges in AI systems / AI for
decision making

Google’s image recognition system
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AI for predicting recidivism: “COMPAS” is
used by courts… but is it biased?
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Polarizing effects of news recommendation

• Only what you like to read will be recommended to you.
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Privacy issues in data collection and learning
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“Only You, Your Doctor, and Many 
Others May Know”

L. Sweeney. Technology Science, 
2015

“Robust De-anonymization of Large 
Datasets (How to Break Anonymity of the 

Netflix Prize Dataset)”
A. Narayanan & V. Shmatikov. Security and 

Privacy, 2008

Vijay Pandurangan. 
tech.vijayp.ca, 2014

• Anonymization doesn’t work!
• Need robust / provable approaches.



ML models memorize training datasets, even
though they are generalizing well!
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Abstract—We quantitatively investigate how machine learning

models leak information about the individual data records on

which they were trained. We focus on the basic membership

inference attack: given a data record and black-box access to

a model, determine if the record was in the model’s training

dataset. To perform membership inference against a target model,

we make adversarial use of machine learning and train our own

inference model to recognize differences in the target model’s

predictions on the inputs that it trained on versus the inputs

that it did not train on.

We empirically evaluate our inference techniques on classi-

fication models trained by commercial “machine learning as a

service” providers such as Google and Amazon. Using realistic

datasets and classification tasks, including a hospital discharge

dataset whose membership is sensitive from the privacy perspec-

tive, we show that these models can be vulnerable to membership

inference attacks. We then investigate the factors that influence

this leakage and evaluate mitigation strategies.

I. INTRODUCTION

Machine learning is the foundation of popular Internet
services such as image and speech recognition and natural lan-
guage translation. Many companies also use machine learning
internally, to improve marketing and advertising, recommend
products and services to users, or better understand the data
generated by their operations. In all of these scenarios, ac-
tivities of individual users—their purchases and preferences,
health data, online and offline transactions, photos they take,
commands they speak into their mobile phones, locations they
travel to—are used as the training data.

Internet giants such as Google and Amazon are already
offering “machine learning as a service.” Any customer in
possession of a dataset and a data classification task can upload
this dataset to the service and pay it to construct a model.
The service then makes the model available to the customer,
typically as a black-box API. For example, a mobile-app maker
can use such a service to analyze users’ activities and query
the resulting model inside the app to promote in-app purchases
to users when they are most likely to respond. Some machine-
learning services also let data owners expose their models to
external users for querying or even sell them.
Our contributions. We focus on the fundamental question
known as membership inference: given a machine learning
model and a record, determine whether this record was used as

⇤This research was performed while the author was at Cornell Tech.

part of the model’s training dataset or not. We investigate this
question in the most difficult setting, where the adversary’s
access to the model is limited to black-box queries that
return the model’s output on a given input. In summary,
we quantify membership information leakage through the
prediction outputs of machine learning models.

To answer the membership inference question, we turn
machine learning against itself and train an attack model

whose purpose is to distinguish the target model’s behavior
on the training inputs from its behavior on the inputs that it
did not encounter during training. In other words, we turn the
membership inference problem into a classification problem.

Attacking black-box models such as those built by com-
mercial “machine learning as a service” providers requires
more sophistication than attacking white-box models whose
structure and parameters are known to the adversary. To
construct our attack models, we invented a shadow training

technique. First, we create multiple “shadow models” that
imitate the behavior of the target model, but for which we
know the training datasets and thus the ground truth about
membership in these datasets. We then train the attack model
on the labeled inputs and outputs of the shadow models.

We developed several effective methods to generate training
data for the shadow models. The first method uses black-box
access to the target model to synthesize this data. The second
method uses statistics about the population from which the
target’s training dataset was drawn. The third method assumes
that the adversary has access to a potentially noisy version
of the target’s training dataset. The first method does not
assume any prior knowledge about the distribution of the target
model’s training data, while the second and third methods
allow the attacker to query the target model only once before
inferring whether a given record was in its training dataset.

Our inference techniques are generic and not based on any
particular dataset or model type. We evaluate them against
neural networks, as well as black-box models trained using
Amazon ML and Google Prediction API. All of our experi-
ments on Amazon’s and Google’s platforms were done without
knowing the learning algorithms used by these services, nor
the architecture of the resulting models, since Amazon and
Google don’t reveal this information to the customers. For our
evaluation, we use realistic classification tasks and standard
model-training procedures on concrete datasets of images,
retail purchases, location traces, and hospital inpatient stays. In
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Abstract
Machine learning models based on neural networks and
deep learning are being rapidly adopted for many pur-
poses. What those models learn, and what they may
share, is a significant concern when the training data may
contain secrets and the models are public—e.g., when a
model helps users compose text messages using models
trained on all users’ messages.

This paper presents exposure, a simple-to-compute
metric that can be applied to any deep learning model
for measuring the memorization of secrets. Using this
metric, we show how to extract those secrets efficiently
using black-box API access. Further, we show that un-
intended memorization occurs early, is not due to over-
fitting, and is a persistent issue across different types of
models, hyperparameters, and training strategies. We ex-
periment with both real-world models (e.g., a state-of-
the-art translation model) and datasets (e.g., the Enron
email dataset, which contains users’ credit card numbers)
to demonstrate both the utility of measuring exposure
and the ability to extract secrets.

Finally, we consider many defenses, finding some in-
effective (like regularization), and others to lack guaran-
tees. However, by instantiating our own differentially-
private recurrent model, we validate that by appropri-
ately investing in the use of state-of-the-art techniques,
the problem can be resolved, with high utility.

1 Introduction

Once a secret has been learned, it can be difficult not to
share it more widely—whether it is revealed indirectly,
by our actions, by accident, or directly—as artfully ex-
plored in Joseph Conrad’s The Secret Sharer [9].

This issue also arises in the domain of machine learn-
ing: whenever training data contains sensitive informa-
tion, a natural concern is whether the trained model has
learned any secrets, and whether the model may possibly
share those secrets, whether directly or indirectly.

In the machine-learning domain, such unintended
sharing of secrets is a real-world concern of pressing im-
portance. Machine learning is seeing rapid adoption and
it is increasingly common for models to be trained on
data very likely to contain secrets, such as people’s per-
sonal messages, location histories, or medical informa-
tion [4, 37, 49]. We must worry about sharing of se-
crets, since the currently popular deep-learning methods
are prone to both memorizing details about their training
data and inadvertently revealing aspects of those details
in their behavior [44, 57]. Most worryingly, secrets may
be shared widely: models are commonly made available
to third parties, or even the public, through black-box
prediction services on the network, or as white-box pre-
trained models [8, 24].

Contributions. We introduce the entropy-based met-
ric exposure for measuring a models memorization of a
given secret, and show how this metric can be efficiently
estimated using numerical methods. We focus our study
specifically on deep-learning generative sequence mod-
els trained on text data (as used in, e.g., language models
and translation) where the secrets may be, for example,
social-security or credit card numbers. We empirically
establish that secrets are memorized early and quickly
during training, with models often fully memorizing
them in fewer than a dozen epochs, long before train-
ing completes. Furthermore, for a given training data
corpus we show that memorization occurs even when se-
crets are very rare (one in a million) and when models are
small (the number of parameters are a fraction of the cor-
pus size). While common techniques for regularization
(like weight decay, dropout, or early-stopping) may im-
prove generalization, they do not inhibit memorization.
Further, we leverage our exposure metric to provide ad-
ditional evidence for prior results [26, 28, 32, 45, 57].

Building on the above, we develop the first mech-
anisms for efficiently extracting secrets from deep-
learning models, given only black-box access. To
demonstrate their practicality we apply them to real-
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intended memorization occurs early, is not due to over-
fitting, and is a persistent issue across different types of
models, hyperparameters, and training strategies. We ex-
periment with both real-world models (e.g., a state-of-
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email dataset, which contains users’ credit card numbers)
to demonstrate both the utility of measuring exposure
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effective (like regularization), and others to lack guaran-
tees. However, by instantiating our own differentially-
private recurrent model, we validate that by appropri-
ately investing in the use of state-of-the-art techniques,
the problem can be resolved, with high utility.

1 Introduction

Once a secret has been learned, it can be difficult not to
share it more widely—whether it is revealed indirectly,
by our actions, by accident, or directly—as artfully ex-
plored in Joseph Conrad’s The Secret Sharer [9].

This issue also arises in the domain of machine learn-
ing: whenever training data contains sensitive informa-
tion, a natural concern is whether the trained model has
learned any secrets, and whether the model may possibly
share those secrets, whether directly or indirectly.

In the machine-learning domain, such unintended
sharing of secrets is a real-world concern of pressing im-
portance. Machine learning is seeing rapid adoption and
it is increasingly common for models to be trained on
data very likely to contain secrets, such as people’s per-
sonal messages, location histories, or medical informa-
tion [4, 37, 49]. We must worry about sharing of se-
crets, since the currently popular deep-learning methods
are prone to both memorizing details about their training
data and inadvertently revealing aspects of those details
in their behavior [44, 57]. Most worryingly, secrets may
be shared widely: models are commonly made available
to third parties, or even the public, through black-box
prediction services on the network, or as white-box pre-
trained models [8, 24].

Contributions. We introduce the entropy-based met-
ric exposure for measuring a models memorization of a
given secret, and show how this metric can be efficiently
estimated using numerical methods. We focus our study
specifically on deep-learning generative sequence mod-
els trained on text data (as used in, e.g., language models
and translation) where the secrets may be, for example,
social-security or credit card numbers. We empirically
establish that secrets are memorized early and quickly
during training, with models often fully memorizing
them in fewer than a dozen epochs, long before train-
ing completes. Furthermore, for a given training data
corpus we show that memorization occurs even when se-
crets are very rare (one in a million) and when models are
small (the number of parameters are a fraction of the cor-
pus size). While common techniques for regularization
(like weight decay, dropout, or early-stopping) may im-
prove generalization, they do not inhibit memorization.
Further, we leverage our exposure metric to provide ad-
ditional evidence for prior results [26, 28, 32, 45, 57].

Building on the above, we develop the first mech-
anisms for efficiently extracting secrets from deep-
learning models, given only black-box access. To
demonstrate their practicality we apply them to real-
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With appropriate prompt, GPT2 outputs 
sensitive training data verbatim
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Recent/upcoming legislations on privacy
forces companies to revise their data practice

- I can’t keep personal data for
more than three weeks?

- I will have to delete all traces
of a user upon request?

How about my machine learning
models trained on user data?
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Fake-news, fake voice, fake video

• How to tell if something is true or false?
• How to attribute a crime with factual evidence when

people can just claim it’s fake?
20



The rise of generative models 
• We’ve seen Generative Adversarial Networks (GAN)
• We’ve also seen what GPT-3 is able to do

– Generate text / code / table / and so on…

• More recent example: DALL-E 2

21
https://twitter.com/hardmaru/status/1523971427292127232

“An astronaut riding a horse in a photorealistic style.”

https://openai.com/dall-e-2/



Are Github Copilot / DALL-E 2 violating 
copyrights?
• Co-Pilot autocompletes code for you. But … they are 

trained on data all over the internet. From time to time, they 
generate code / image verbatim.  (See the following 
example:  copilot generates code from “Quake”)

• Are the generated content considered plagiarism? 22

https://twitter.com/mitsuhiko/status/1410886329924194309

https://twitter.com/mitsuhiko/status/1410886329924194309


Societal impacts of new technology

• Unemployment
– Making people more productive. Less demand for labor.

• Specific tasks in jobs are being eliminated

• AI is also creating new jobs, but…
– Can your grandpa learn how to code? 23



Who are getting the largest piece of the
technology pie?

24

2020:
Apple: 2.12T
Amazon: 1.59T
Alphabet: 1.22 T

…
Tesla: 600 B +

GDP of Indonesia: 1.05 T

GDP of US: 20.5 T



Safety issue in deploying AI
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Research in Responsible AI

• Issues about fairness
– (A) I want my predictions to be calibrated on all subgroups
– (B) I want the false-positive rate to be the same on all subgroups
– (C) I want the false-negative rate to be the same on all subgroups

26

Impossibility theorem (Kleinberg et al. 2016): Except in trivial
cases, any two of the above implies the third is impossible.

https://arxiv.org/pdf/1609.05807.pdf

What is it that we want? How do we define fairness?
- For recidivism prediction?
- For medical diagnosis?
- Do human decision makers suffer from the same issue?



Research in Responsible AI

• Explanability of AI predictions

27



Another example on explainable AI
predictions

28



Research in Responsible AI

• Provable guarantees against identification in privacy

29
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Midterm results (without bonus)

How does differential privacy work?

Differentially privately released midterm results from Fall 2020 
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Example: Recommender System

“If your recommendation engine is private, then an adversary 
can’t infer whether a particular user was present”

31

Differentially Private Deep Neural 
Network based     

Recommendation Engine



Research in Responsible AI

• Differential privacy implies prevents language models 
from generating sensitive parts of the training data.

32See our recent work: https://arxiv.org/abs/2205.01863



Invisible watermarks for detecting LLM-generated
text and to prevent model-stealing attacks

33See our recent work: https://arxiv.org/abs/2302.03162

https://arxiv.org/abs/2302.03162


Examples of watermarked text: Can you tell
the differences?

• The seemingly arbitrary choices of words are actually deliberate
(determined by a secret key that only we – who injects the watermark -
-- know).

34



UCSB Activities in Responsible AI

35



Final words

• With greater power comes great responsibility.
– Ethics in AI,  Privacy, fairness, social impacts
– Transparency, robustness, explanability
– AI for good causes

• These are very complex issues
– Are humans good decision makers? Are there implicit biases?
– Can we explain our decisions
– Should we regulate? How? To what extent?

• The future is in your hands. Be a good driver!

36


