Artificial Intelligence CS 165A Apr 27, 2023

Instructor: Prof. Yu-Xiang Wang

1

- $\square \rightarrow \text{Problem solving by search (continue)}$
 - \rightarrow Search algorithms

0

20

Coding Project 1 is due midnight today

- Submit your code today!
- Leaderboard and report will be open until next Thursday.
- Declare your collaboration (help you've received)
- Project 2 is released (instruction and code are on the course website)

Recap: Problem Formulation and Search

- Problem formulation
 - State-space description $\{S\}, S_0, \{S_G\}, \{O\}, \{g\} >$
 - S: Possible states
 - S_0 : Initial state of the agent
 - **S**_G: Goal state(s)
 - Or equivalently, a goal test **G(S)**
 - **O**: Operators O: {S} => {S}
 - Describes the possible actions of the agent
 - g: Path cost function, assigns a cost to a path/action
- At any given time, which possible action O_i is best?
 - Depends on the goal, the path cost function, the future sequence of actions....
- Agent's strategy: Formulate, Search, and Execute
 - This is *offline* problem solving

This lecture

- More examples on "Problem Solving by Search"
- Search algorithms
 - BFS / DFS
 - Depth-limited search
 - Iterative Deepening search
 - Bidirectional search
 - Uniform cost search
- Tree search vs Graph search
- Informed Search
 - A*-Search

Example: Missionaries and Cannibals (3 min discussion) $G_{00}(2, 0, 0) \in J_{S}^{2}$

Problem: Three missionaries and three cannibals are on one side of a river, along with a boat that can hold one or two people. Find a way to get everyone to the other side, without ever leaving a group of missionaries in one place outnumbered by the cannibals in that place (2,2) for (2,2)

• States, operators, goal test, path cost? 3 3 Boot onleft #4C #4M #AM - #or

MMM

> (2,3, The)

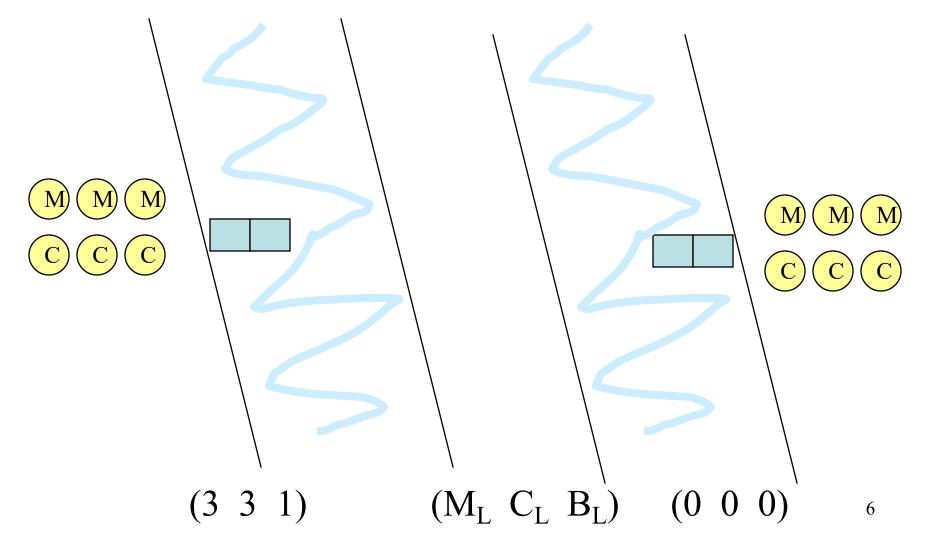
1,3, [alse].

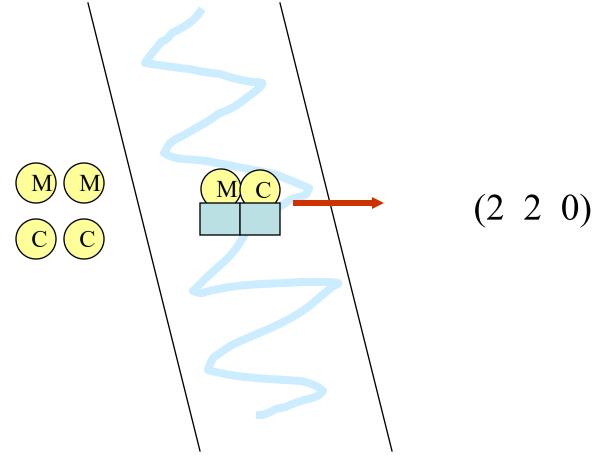
Hofm- H-fc on thright

M&C (cont.)

• Initial state

• Goal state





M&C (cont.)

- Problem description <{S}, S₀, {S_{Gi}}, {O_i}, {g_i}>
- {**S**} : { ({0,1,2,3} {0,1,2,3} {0,1}) }
- $S_0: (3 \ 3 \ 1)$
- $S_G: (0 \ 0 \ 0)$
- **g** = 1
- $\{\mathbf{O}\}$: { (x y b) \rightarrow (x' y' b') }
- Safe state: $(x \ y \ b)$ is safe iff - x > 0 implies $x \ge y$ and

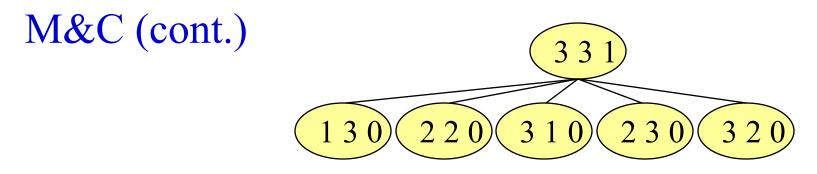
x < 3 implies $y \ge x$

- Can be restated as

(x = 1 or x = 2) implies (x = y)

Operators:

 $(x y 1) \rightarrow (x-2 y 0)$ $(x y 1) \rightarrow (x-1 y-1 0)$ $(x y 1) \rightarrow (x y-2 0)$ $(x y 1) \rightarrow (x y-1 y 0)$ $(x y 1) \rightarrow (x y-1 0)$ $(x y 0) \rightarrow (x+2 y 1)$ $(x y 0) \rightarrow (x+1 y+1 1)$ $(x y 0) \rightarrow (x y+2 1)$ $(x y 0) \rightarrow (x +1 y 1)$ $(x y 0) \rightarrow (x y+1 1)$



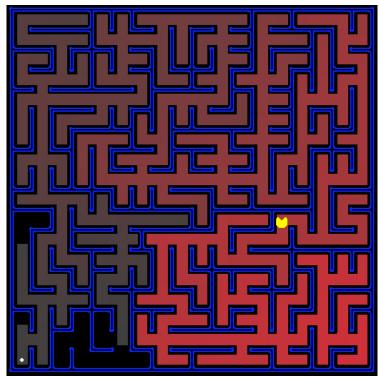
- 11 steps
- $5^{11} = 48$ million states to explore

One solution path:

- (3 3 1)
- (2 2 0)
- (3 2 1)
- (3 0 0)
- (3 1 1)
- $(1\ 1\ 0)$
- (2 2 1)
- (0 2 0)
- (0 3 1)
- (0 1 0)
- (0 2 1)
- $(0\ 0\ 0)$

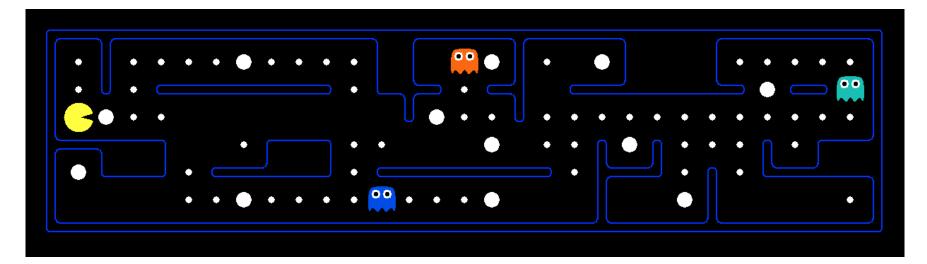
Example: PACMAN

- The goal of a simplified PACMAN is to get to the pellet as quick as possible.
 - For a grid of size 30*30. Everything static.
 - What is a reasonable representation of the State, Operators, Goal test and Path cost?



Example: PACMAN with static ghosts

• The goal is to eat all pellets as quickly as possible while staying alive. Eating the "Power pellet" will allow the pacman to eat the ghost.



• Think about how to formulate this problem. We will revisit it in the next lecture.

Quick summary on problem formulation

- Formulate problems as a search problem
 - Decide your level of abstraction. State, Action, Goal, Cost.
 - Represented by a state-diagram
 - Required solution: A sequence of actions
 - Optimal solution: A sequence of actions with minimum cost.
- Caveats:
 - Might not be a finite graph
 - Might not have a solution
 - Often takes exponential time to find the optimal solution

Let's try solving it anyways!

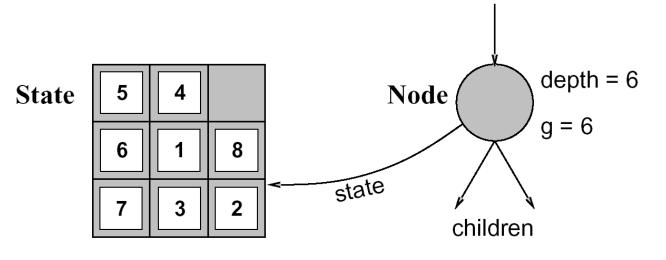
- Do we need an exact optimal solution?
- Are problems in practice worst case?

Searching for Solutions

- Finding a solution is done by searching through the state space
 - While maintaining a set of partial solution sequences
- The *search strategy* determines which states should be expanded first
 - Expand a state = Applying the operators to the current state and thereby generating a new set of successor states
- Conceptually, the search process builds up a *search tree* that is superimposed over the state space
 - Root node of the tree \leftrightarrow Initial state
 - Leaves of the tree \leftrightarrow States to be expanded (or expanded to null)
 - At each step, the search algorithm chooses a leaf to expand

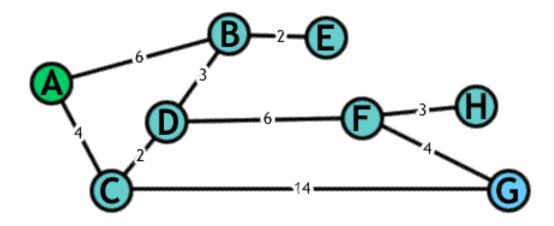
State Space vs. Search Tree

- The state space and the search tree are not the same thing!
 - A *state* represents a (possibly physical) configuration
 - A *search tree node* is a <u>data structure</u> which includes:
 - { parent, children, depth, path cost }
 - States do not have parents, children, depths, path costs
 - Number of states ≠ number of nodes in the search tree parent



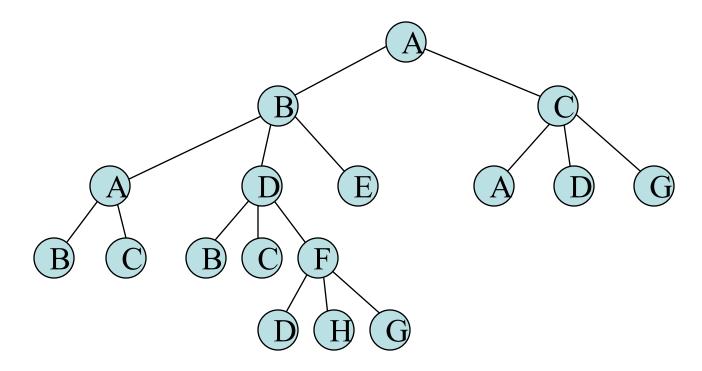
State Space vs. Search Tree (cont.)

State space: 8 states



State Space vs. Search Tree (cont.)

Search tree (partially expanded)



Search Strategies

- Uninformed (blind) search
 - Can only distinguish goal state from non-goal state
- Informed (heuristic) search
 - Can evaluate states

Uninformed ("Blind") Search Strategies

- No information is available other than
 - The current state
 - Its parent (perhaps complete path from initial state)
 - Its operators (to produce successors)
 - The goal test
 - The current path cost (cost from start state to current state)

- Blind search strategies
 - Breadth-first search
 - Uniform cost search
 - Depth-first search
 - Depth-limited search
 - Iterative deepening search
 - Bidirectional search

General Search Algorithm (Version 1)

• Various strategies are merely variations of the following function:

```
function GENERAL-SEARCH(problem, strategy) returns a solution or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end
```

(Called "Tree-Search" in the textbook)

General Search Algorithm (Version 2)

- Uses a queue (a list) and a **queuing function** to implement a *search strategy*
 - Queuing-Fn(queue, elements) inserts a set of elements into the queue and determines the order of node expansion

```
function GENERAL-SEARCH(problem, QUEUING-FN) returns a solution or failure
nodes ← MAKE-QUEUE(MAKE-NODE(INITIAL-STATE[problem]))
loop do
if nodes is empty then return failure
node ← REMOVE-FRONT(nodes)
if GOAL-TEST[problem] applied to STATE(node) succeeds then return node
nodes ← QUEUING-FN(nodes, EXPAND(node, OPERATORS[problem]))
end
```

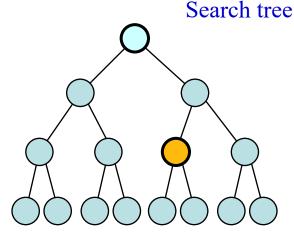
"Nodes" is also known as a "frontier" --- the set of states we haven't yet explored/expanded. "EXPAND" is known as the "successor function" --- the set of all states that you could expand on.

How do we evaluate a search algorithm?

- Primary criteria to evaluate search strategies
 - Completeness
 - Is it guaranteed to find a solution (if one exists)?
 - **Optimality** *Note that this is not saying it's space/time complexity is optimal.
 - Does it find the "best" solution (if there are more than one)?
 - Time complexity
 - Number of nodes generated/expanded
 - (How long does it take to find a solution?)
 - Space complexity
 - How much memory does it require?
- Some performance measures
 - Best case
 - Worst case
 - Average case
 - Real-world case

How do we evaluate a search algorithm?

- Complexity analysis and O() notation (see Appendix A)
 - -b = Maximum branching factor of the search tree
 - d = Depth of an optimal solution (may be more than one)
 - -m = maximum depth of the search tree (may be infinite)
- Examples
 - $O(b^3 d^2) polynomial time$
 - $O(b^d) exponential time$



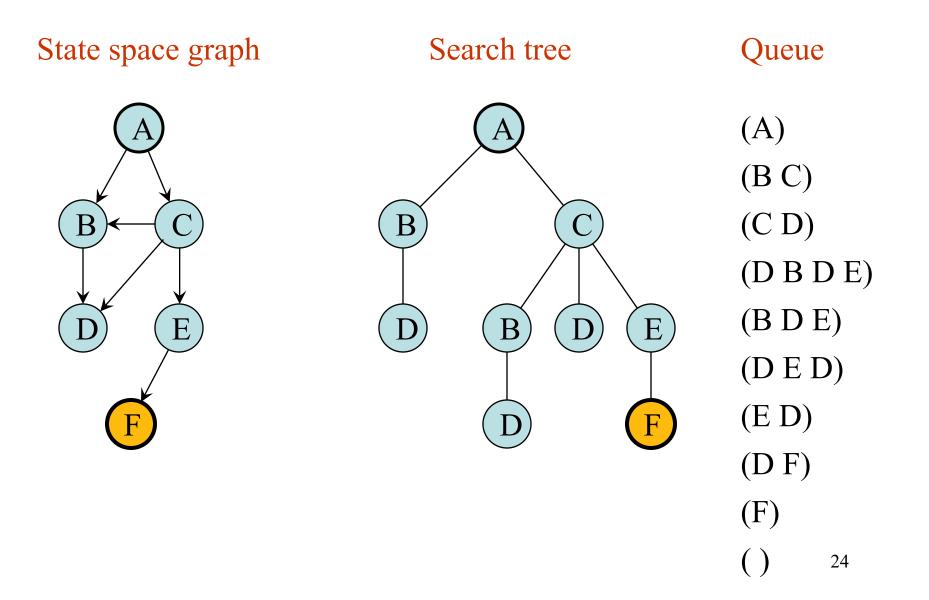
For chess, $b_{ave} = 35$

b = 2, d = 2, m = 3

Breadth-First Search

- All nodes at depth *d* in the search tree are expanded before any nodes at depth d+1
 - First consider all paths of length N, then all paths of length N+1, etc.
- Doesn't consider path cost finds the solution with the shortest path
- Uses FIFO queue

function BREADTH-FIRST-SEARCH(*problem*) **returns** a solution or failure **return GENERAL-SEARCH**(*problem*, ENQUEUE-AT-END)



Breadth-First Search

- Complete? Yes
- Optimal? If shallowest goal is optimal
- Time complexity? Exponential: $O(b^{d+1})$
- Space complexity? Exponential: $O(b^{d+1})$

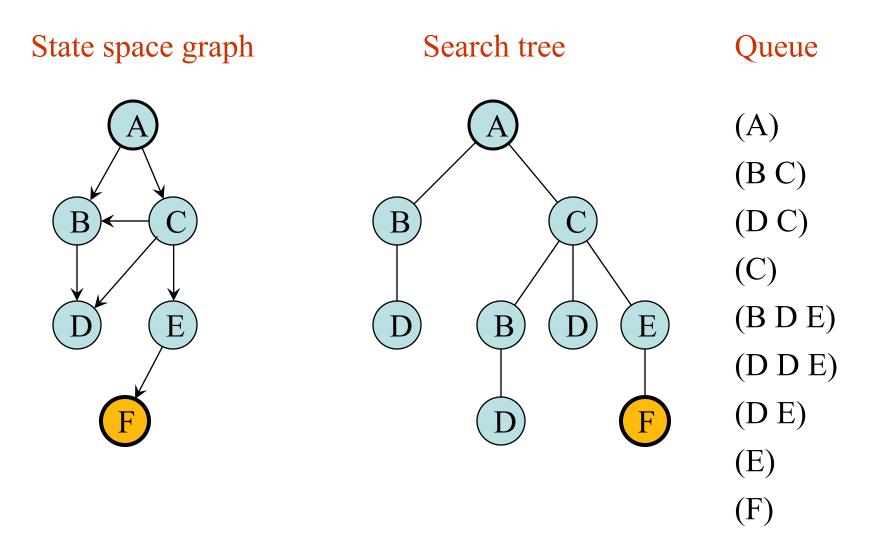
In practice, the memory requirements are typically worse than the time requirements

- b = branching factor (require finite b)
- d = depth of shallowest solution

Depth-First Search

- Always expands one of the nodes at the deepest level of the tree
 - Low memory requirements
 - Problem: depth could be infinite
- Uses a stack (LIFO)

function DEPTH-FIRST-SEARCH(*problem*) **returns** a solution or failure **return GENERAL-SEARCH**(*problem*, ENQUEUE-AT-FRONT)



Depth-First Search

- Complete? No
- Optimal? No
- Time complexity? Exponential: **O**(*b^m*)
- Space complexity? Polynomial: **O(***bm***)**

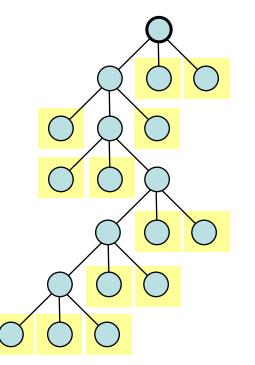
m = maximum depth of the search tree (may be infinite)

What is the difference between the BFS / DFS that you learned from the algorithm / data structure course?

- Nothing, except:
 - Now you are applying them to solve an AI problem
 - The graph can be infinitely large
 - The graph does not need to be known ahead of time (you only need local information: goal-state checker, successor function)

Space complexity of DFS

- Why is the *space* complexity (memory usage) of depthfirst search O(*bm*)?
 - Remove expanded node when all descendents evaluated
 - At each of the m levels, you have to keep b nodes in memory



Example:

b = 3 m = 6Nodes in memory: bm+1 = 19

Actually, (b-1)m + 1 = 13 nodes, the way we have been keeping our node list

Depth-Limited Search

- Like depth-first search, but uses a depth cutoff to avoid long (possibly infinite), unfruitful paths
 - Do depth-first search up to depth limit l
 - Depth-first is special case with limit = *inf*
- Problem: How to choose the depth limit *l* ?
 - Some problem statements make it obvious (e.g., TSP), but others don't (e.g., MU-puzzle, from the supplementary slide last time)

function DEPTH-LIMITED-SEARCH(*problem, depth-limit*) **returns** a solution or failure **return GENERAL-SEARCH**(*problem,* ENQUEUE-AT-FRONT-IF-UNDER-DEPTH-LIMIT)

Must explicitly represent node depth

Depth-Limited Search

l = depth limit

- Complete? No, unless $d \le l$
- Optimal? No
- Time complexity? Exponential: **O**(*b*^{*l*})
- Space complexity? Exponential: **O(***bl***)**

Iterative-Deepening Search

• Since the depth limit is difficult to choose in depth-limited search, use depth limits of *l* = 0, 1, 2, 3, ...

- Do depth-limited search at each level

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution or
failure
for depth ← 0 to ∞ do
 if DEPTH-LIMITED-SEARCH(problem, depth) succeeds then return result
end
return failure

Iterative-Deepening Search

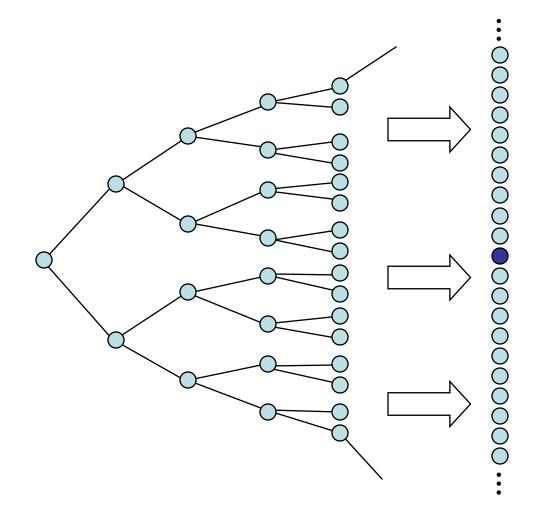
- IDS has advantages of
 - Breadth-first search similar optimality and completeness guarantees
 - Depth-first search Modest memory requirements
- This is the preferred blind search method when the search space is *large* and the solution depth is *unknown*
- Many states are expanded multiple times
 - Is this terribly inefficient?
 - No... and it's great for memory (compared with breadth-first)
 - Why is it not particularly inefficient?

Iterative-Deepening Search: Efficiency

- Complete? Yes
- Optimal? Same as BFS
- Time complexity? Exponential: $O(b^d)$
- Space complexity? Polynomial: **O**(*bd*)

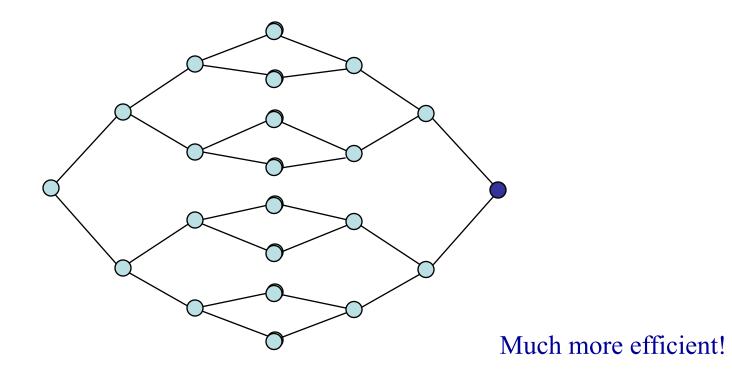
Bidirectional Search

Forward search only:

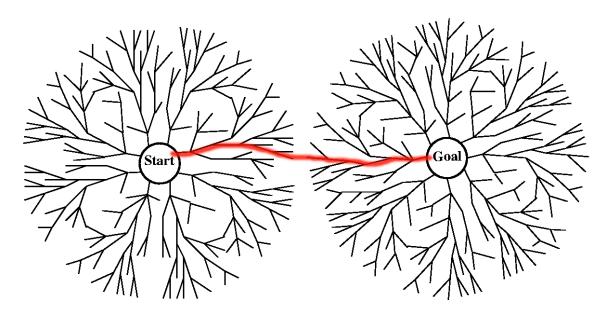


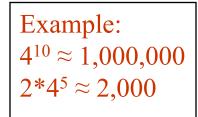
Bidirectional Search

Simultaneously search forward from the initial state and backward from the goal state



Bidirectional Search





- $O(b^{d/2})$ rather than $O(b^d)$ hopefully
- Both actions and predecessors (inverse actions) must be defined
- Must test for intersection between the two searches
 - Constant time for test?
- Really a search strategy, not a specific search method
 - Often not practical....

Bidirectional Search

- Complete? Yes
- Optimal? Same as BFS
- Time complexity? Exponential: $O(b^{d/2})$
- Space complexity? Exponential: $O(b^{d/2})$

* Assuming breadth-first search used from both ends

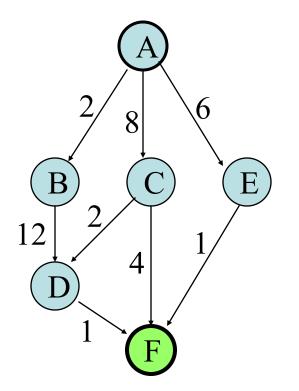
Uniform Cost Search

- Similar to breadth-first search, but always expands the lowest-cost node, as measured by the path cost function, g(n)
 - -g(n) is (actual) cost of getting to node n
 - Breadth-first search is actually a special case of uniform cost search, where g(n) = DEPTH(n)
 - If the path cost is monotonically increasing, uniform cost search will find the optimal solution

function UNIFORM-COST-SEARCH(*problem*) **returns** a solution or failure **return GENERAL-SEARCH**(*problem*, ENQUEUE-IN-COST-ORDER)

(Dijkstra's algorithm of an potentially infinite graph)

Example (3 min work)

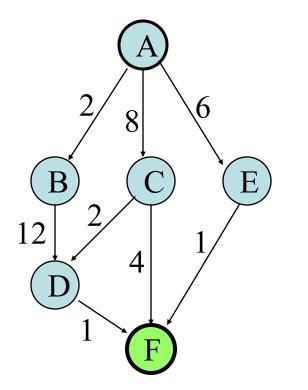


Try breadth-first and uniform cost

Example (3 min work): Breath-First Search

Node to expand:

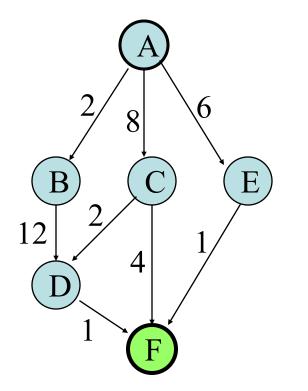
Frontier:



Example (3 min work): Uniform Cost Search

Node to expand:

Frontier:



Uniform-Cost Search

C = optimal cost ϵ = minimum step cost

- Complete? Yes, if $\varepsilon > 0$
- Optimal? Yes
- Time complexity? Exponential: $O(b^{\lfloor C/\epsilon \rfloor})$
- Space complexity? Exponential: $O(b^{\lfloor C/\epsilon \rfloor})$

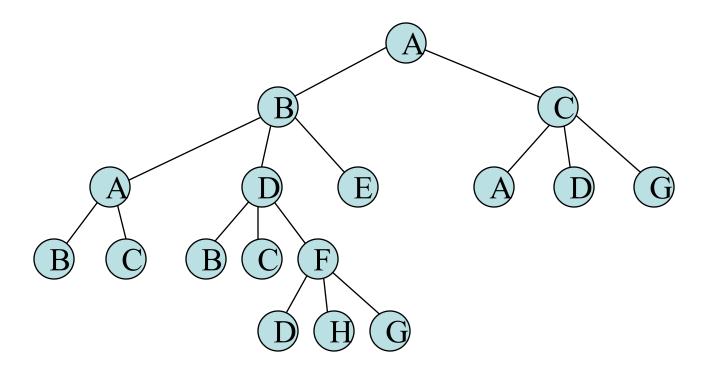
Same as breadth-first if all edge costs are equal

Can we do better than Tree Search?

- Sometimes.
- When the number of states are small
 - Dynamic programming (smart way of doing exhaustive search)

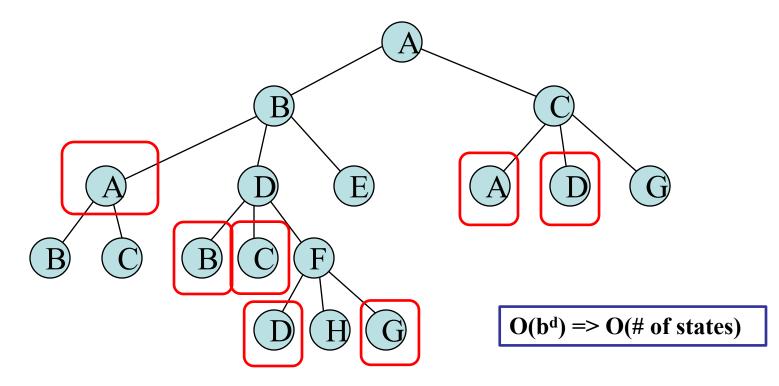
State Space vs. Search Tree (cont.)

Search tree (partially expanded)



Search Tree => Search Graph

Dynamic programming (with book keeping)



Graph Search vs Tree Search

- Tree Search
 - We might repeat some states
 - But we do not need to remember states
- Graph Search
 - We remember all the states that have been explored
 - But we do not repeat some states

Summary table of uninformed search

Criteria	BFS	Uniform-cost	DFS	Depth-limited	IDS	Bidirectional
Complete?	Yes#	Yes ^{#&}	No	No	Yes#	Yes ^{#+}
Time	O(b ^d)	O(b ^{1+[C*/e]})	O (<i>b^m</i>)	O(b')	O(<i>b</i> ^{<i>d</i>})	O(<i>b</i> ^{<i>d</i>/2})
Space	O(b ^d)	O(b ^{1+[C*/e]})	O(bm)	O(bl)	O(bd)	O(<i>b</i> ^{<i>d</i>/2})
Optimal?	Yes ^{\$}	Yes	No	No	Yes ^{\$}	Yes ^{\$+}

- b: Branching factor
- d: Depth of the shallowest goal
- I: Depth limit
- m: Maximum depth of search tree
- e: The lower bound of the step cost
- #: Complete if b is finite
- [&]: Complete if step cost >= e
- \$: Optimal if all step costs are identical
- +: If both direction use BFS

(Section 3.4.6 in the AIMA book.)

Practical note about search algorithms

- The computer can't "see" the search graph like we can
 - No "bird's eye view" make relevant information explicit!
- What information should you keep for a node in the search tree?
 - State
 - (1 2 0)
 - Parent node (or perhaps complete ancestry)
 - Node #3 (or, nodes 0, 2, 5, 11, 14)
 - Depth of the node
 - d = 4
 - Path cost up to (and including) the node
 - g(node) = 12
 - Operator that produced this node
 - Operator #1

Remainder of the lecture

- Informed search
- Some questions / desiderata
 - 1. Can we do better with some side information?
 - 2. We do not wish to make strong assumptions on the side information.
 - 3. If the side information is good, we hope to do better.
 - 4. If the side information is useless, we perform as well as an uninformed search method.

Best-First Search (with an Eval-Fn)

function BEST-FIRST-SEARCH(problem, EVAL-FN) returns a solution or failure QUEUING-FN ← a function that orders nodes by EVAL-FN return GENERAL-SEARCH(problem, QUEUING-FN)

- Uses a heuristic function, *h(n)*, as the EVAL-FN
- h(n) estimates the cost of the best path from state n to a goal state
 - $\circ \quad h(goal) = 0$

Greedy Best-First Search

- Greedy search always expand the node that appears to be the closest to the goal (i.e., with the smallest *h*)
 - Instant gratification, hence "greedy"

function GREEDY-SEARCH(problem, h) returns a solution or failure
return BEST-FIRST-SEARCH(problem, h)

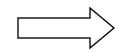
- Greedy search often performs well, but:
 - It doesn't always find the best solution / or any solution
 - It may get stuck
 - It performance completely depends on the particular h function

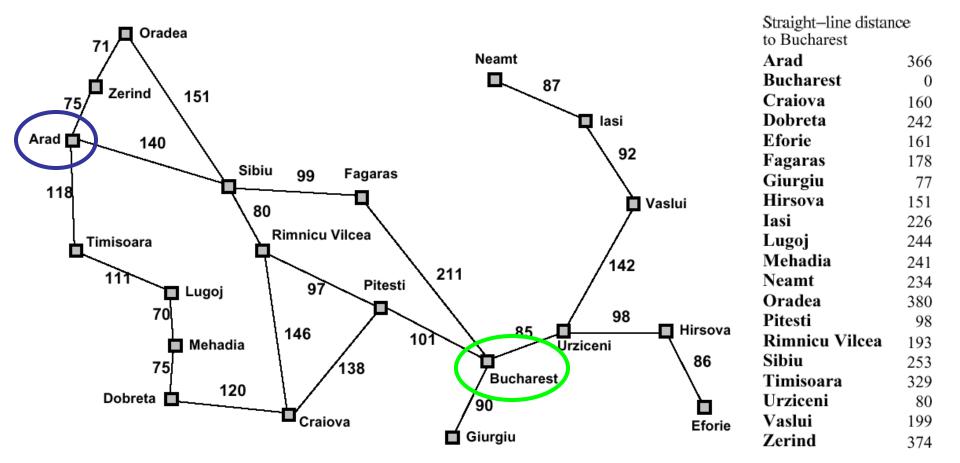
A* Search (Pronounced "A-Star")

- Uniform-cost search minimizes *g(n)* ("past" cost)
- Greedy search minimizes *h(n)* ("expected" or "future" cost)
- "A* Search" combines the two:
 - Minimize f(n) = g(n) + h(n)
 - Accounts for the "past" and the "future"
 - Estimates the cheapest solution (complete path) through node *n*

function A*-SEARCH(problem, h) returns a solution or failure
return BEST-FIRST-SEARCH(problem, f)

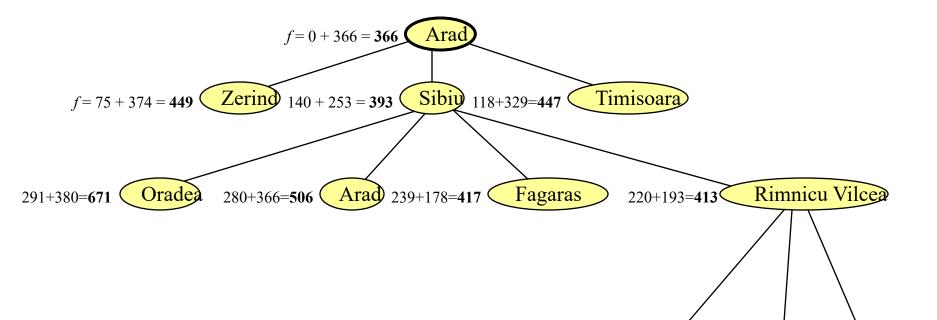
A* Example





f(n) = g(n) + h(n)

A* Example



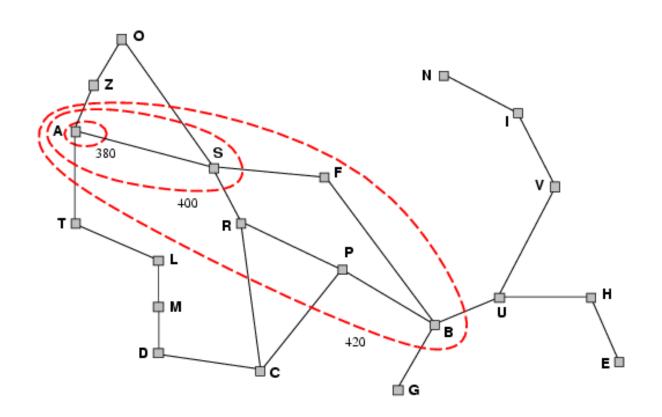
When does A^{*} search "work"?

• Focus on optimality (finding the optimal solution)

- "A* Search" is optimal if h is admissible
 - -h is optimistic it never overestimates the cost to the goal
 - $h(n) \leq$ true cost to reach the goal
 - So f(n) never overestimates the actual cost of the best solution passing through node n

Visualizing A^{*} search

- A^* expands nodes in order of increasing f value
- Gradually adds "*f*-contours" of nodes
- Contour *i* has all nodes with $f=f_i$, where $f_i < f_{i+1}$



Optimality of A^* with an Admissible h

- Let OPT be the optimal path cost.
 - All non-goal nodes on this path have $f \le OPT$.
 - Positive costs on edges
 - The goal node on this path has f = OPT.
- A* search does not stop until an f-value of OPT is reached.
 All other goal nodes have an f cost higher than OPT.
- All non-goal nodes on the optimal path are eventually expanded.
 - The optimal goal node is eventually placed on the priority queue, and reaches the front of the queue.

Optimal Efficiency of A*

A* is <u>optimally efficient</u> for any particular h(n)That is, no other optimal algorithm is guaranteed to expand fewer nodes with the same h(n).

- Need to find a good and efficiently evaluable h(n).

A* Search with an Admissible h

- Optimal? Yes
- Complete? Yes
- Time complexity? Expone
- Space complexity?

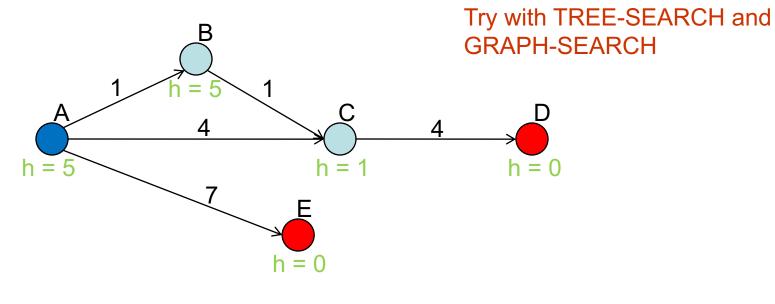
Exponential; better under some conditions Exponential; keeps all nodes in memory

Recall: Graph Search vs Tree Search

- Tree Search
 - We might repeat some states
 - But we do not need to remember states
- Graph Search
 - We remember all the states that have been explored
 - But we do not repeat some states

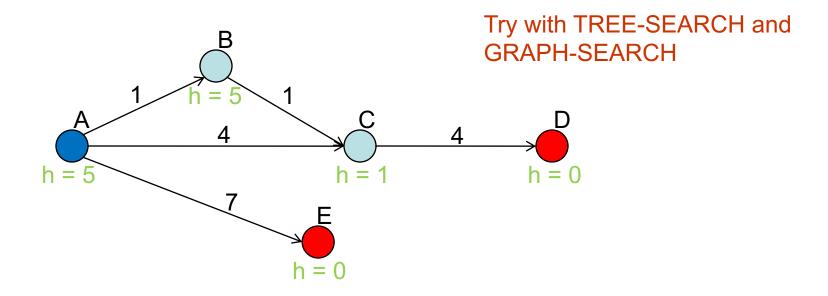
Avoiding Repeated States using A* Search

• Is GRAPH-SEARCH optimal with A*?



Graph Search Step 1: Among B, C, E, Choose C Step 2: Among B, E, D, Choose B Step 3: Among D, E, Choose E. (you are not going to select C again) Avoiding Repeated States using A* Search

• Is GRAPH-SEARCH optimal with A*?



Solution 1: Remember all paths: Need extra bookkeeping

Solution 2: Ensure that the first path to a node is the best!

Consistency (Monotonicity) of heuristic h

- A heuristic is consistent (or monotonic) provided
 - for any node n, for any successor n' generated by action a with cost c(n,a,n')
 - $h(n) \le c(n, a, n') + h(n')$
 - akin to triangle inequality.
 - guarantees admissibility (proof?).
 - values of f(n) along any path are non-decreasing (proof?).
 - Contours of constant f in the state space
- GRAPH-SEARCH using consistent f(n) is optimal.
- Note that h(n) = 0 is consistent and admissible.

h(n')

g

h(n

Next lecture

- Examples
- Choosing heuristics
- Games and Minimax Search

Heuristics

- What's a heuristic for
 - Driving distance (or time) from city A to city B?
 - 8-puzzle problem ?
 - M&C ?
 - Robot navigation ?
 - Reaching the summit ?
- Admissible heuristic
 - Does not overestimate the cost to reach the goal
 - "Optimistic"
- Are the above heuristics admissible? Consistent?

Example: 8-Puzzle

5	4	
6	1	8
7	3	2

Start State

 1
 2
 3

 8
 4

 7
 6
 5

Goal State

Comparing and combining heuristics

- Heuristics generated by considering relaxed versions of a problem.
- Heuristic h₁ for 8-puzzle
 - Number of out-of-order tiles
- Heuristic h₂ for 8-puzzle
 - Sum of Manhattan distances of each tile
- h_2 dominates h_1 provided $h_2(n) \ge h_1(n)$.
 - h_2 will likely prune more than h_1 .
- $\max(h_1, h_2, ..., h_n)$ is
 - admissible if each h_i is
 - consistent if each h_i is
- Cost of sub-problems and pattern databases
 - Cost for 4 specific tiles
 - Can these be added for disjoint sets of tiles?

Effective Branching Factor

- Though <u>informed</u> search methods may have poor *worst-case* performance, they often do quite well if the heuristic is good
 - Even if there is a huge branching factor
- One way to quantify the effectiveness of the heuristic: the effective branching factor, *b**
 - N: total number of nodes expanded
 - d: solution depth
 - $N = 1 + b^* + (b^*)^2 + \ldots + (b^*)^d$
- For a good heuristic, b* is close to 1

Example: 8-puzzle problem

Averaged over 100 trials each at different solution lengths

		Search Cost		Effective Branching Factor					
d	IDS	$A^*(h_1)$	$A^*(h_2)$	IDS	$A^*(h_1)$	$A^*(h_2)$			
2	10	6	6	2.45	1.79	1.79			
4	112	13	12	2.87	1.48	1.45			
6	680	20	18	2.73	1.34	1.30			
8	6384	39	25	2.80	1.33	1.24			
10	47127	93	39	2.79	1.38	1.22			
12	364404	227	73	2.78	1.42	1.24			
14	3473941	539	113	2.83	1.44	1.23			
16	_	1301	211	_	1.45	1.25			
18	_	3056	363	_	1.46	1.26			
20	_	7276	676		1.47	1.27			
22	_	18094	1219		1.48	1.28			
24	-	39135	1641	-	1.48	1.26			
Ave. # of nodes expanded									

Solution length

Summary of informed search

- How to use a heuristic function to improve search
 - Greedy Best-first search + Uniform-cost search = A^* Search
- When is A* search optimal?
 - h is Admissible (optimistic) for Tree Search
 - h is Consistent for Graph Search
- Choosing heuristic functions
 - A good heuristic function can reduce time/space cost of search by orders of magnitude.
 - Good heuristic function may take longer to evaluate.