
Artificial Intelligence
CS 165A

May 2, 2023

Instructor: Prof. Yu-Xiang Wang

® Informed Search and Heuristics
® Games and minimax search
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Notes for Project 1

• Almost everyone has completed
– Don’t forget to submit the report and the leaderboard

• How to catch up if you missed the deadline?
– 4 late days --- no question asked
– 75% credits if submit before this Thursday (for the basic coding)
– 50% credits if submit after this Thursday

• 9 students were able to beat the TA baseline!
– Truly awesome! Keep it coming!

• Start Project 2 early!
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Recap: Search agent and search algorithms

• Representing states, operators and costs
– State-space diagram: What are the vertices, edges, edge weights?
– Examples: Romania, Missionary and Cannibals, Pacman, 8-

puzzle (and the MU puzzle from the quiz)
• Search algorithms

– BFS, DFS, Depth-Limited, IDS, Bidirectional Search

• Four criteria to evaluate the search algorithms:
– Completeness, Optimality, Space complexity, time complexity 3



This lecture

• Uniform cost search

• Informed search, aka Heuristic Search

• Admissible and consistent heuristics

• Tree search vs Graph Search

• (if time permits) Intro to games and adversarial search
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Uniform Cost Search

• Similar to breadth-first search, but always expands the 
lowest-cost node, as measured by the path cost function, 
g(n)
– g(n) is (actual) cost of getting to node n
– Breadth-first search is actually a special case of uniform cost 

search, where g(n) = DEPTH(n)
– If the path cost is monotonically increasing, uniform cost search 

will find the optimal solution

function UNIFORM-COST-SEARCH(problem) returns a solution or failure
return GENERAL-SEARCH(problem, ENQUEUE-IN-COST-ORDER)

(Dijkstra’s algorithm of an potentially infinite graph)
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Example (3 min work)
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Try breadth-first and uniform cost
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Example (3 min work):  Breath-First Search
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Node to expand: Frontier:
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Example (3 min work):  Uniform Cost Search
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Uniform-Cost Search

• Complete?

• Optimal?

• Time complexity?

• Space complexity?

Yes, if ε > 0

Yes

Exponential: O( b└C/ε┘ )

Exponential: O( b└C/ε┘ )

Same as breadth-first if all edge costs are equal

C = optimal cost
ε = minimum step cost



Can we do better than Tree Search?

• Sometimes.

• When the number of states are small
– Dynamic programming (smart way of doing exhaustive search)
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State Space vs. Search Tree (cont.)

B C CB F

D H G

A D GA D E

B C

A

Search tree (partially expanded)
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Search Tree => Search Graph

B C CB F

D H G

A D GA D E

B C

A

Dynamic programming (with book keeping)

O(bd) => O(# of states)



Graph Search vs Tree Search

• Tree Search 
– We might repeat some states
– But we do not need to remember states

• Graph Search
- We remember all the states that have been explored
- But we do not repeat some states
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Summary table of uninformed search
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(Section 3.4.6 in the AIMA book.)
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Practical note about search algorithms

• The computer can’t “see” the search graph like we can
– No “bird’s eye view” – make relevant information explicit!

• What information should you keep for a node in the search tree?
– State

• (1 2 0)
– Parent node (or perhaps complete ancestry)

• Node #3 (or, nodes 0, 2, 5, 11, 14)
– Depth of the node

• d = 4
– Path cost up to (and including) the node

• g(node) = 12
– Operator that produced this node

• Operator #1



Remainder of the lecture

• Informed search

• Some questions / desiderata
1. Can we do better with some side information?
2. We do not wish to make strong assumptions on the side

information.
3. If the side information is good, we hope to do better.
4. If the side information is useless, we perform as well as an

uninformed search method.
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Best-First Search (with an Eval-Fn)

function BEST-FIRST-SEARCH(problem, EVAL-FN) returns a solution or 
failure

QUEUING-FN ¬ a function that orders nodes by EVAL-FN
return GENERAL-SEARCH(problem, QUEUING-FN)

• Uses a heuristic function, h(n), as the EVAL-FN
• h(n) estimates the cost of the best path from state n to a goal state

o h(goal) = 0
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Greedy Best-First Search

• Greedy search – always expand the node that appears to be the closest 
to the goal (i.e., with the smallest h)
– Instant gratification, hence “greedy”

function GREEDY-SEARCH(problem, h) returns a solution or failure
return BEST-FIRST-SEARCH(problem, h)

• Greedy search often performs well, but:
– It doesn’t always find the best solution / or any solution
– It may get stuck
– It performance completely depends on the particular h function
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A* Search (Pronounced “A-Star”)

• Uniform-cost search minimizes g(n) (“past” cost)

• Greedy search minimizes h(n) (“expected” or “future” cost)

• “A* Search” combines the two:
– Minimize  f(n) = g(n) + h(n)
– Accounts for the “past” and the “future”
– Estimates the cheapest solution (complete path) through node n

function A*-SEARCH(problem, h) returns a solution or failure
return BEST-FIRST-SEARCH(problem, f )
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A* Example

f(n) = g(n) + h(n)
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Oradea Arad Fagaras Rimnicu Vilcea291+380=671 280+366=506 239+178=417 220+193=413

Zerind Sibiu Timisoaraf = 75 + 374 = 449 140 + 253 = 393 118+329=447

f = 0 + 366 = 366 Arad

A* Example



When does A* search “work”?

• Focus on optimality (finding the optimal solution)

22

• “A* Search” is optimal if h is admissible
– h is optimistic – it never overestimates the cost to the goal

• h(n) £ true cost to reach the goal
– So f (n) never overestimates the actual cost of the best solution 

passing through node n



Visualizing A* search

• A* expands nodes in order of increasing f value
• Gradually adds "f-contours" of nodes 
• Contour i has all nodes with f=fi, where fi < fi+1

•
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Optimality of A*with an Admissible h

• Let OPT be the optimal path cost.
– All non-goal nodes on this path have f ≤ OPT.

• Positive costs on edges
– The goal node on this path has f = OPT.

• A* search does not stop until an f-value of OPT is reached.
– All other goal nodes have an f cost higher than OPT.

• All non-goal nodes on the optimal path are eventually 
expanded.
– The optimal goal node is eventually placed on the priority queue, 

and reaches the front of the queue.
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Optimal Efficiency of A* 

A* is optimally efficient for any particular h(n)
That is, no other optimal algorithm is guaranteed to expand 
fewer nodes with the same h(n).  

- Need to find a good and efficiently evaluable h(n).
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A* Search with an Admissible h

• Optimal?

• Complete?

• Time complexity?

• Space complexity?

Yes

Yes

Exponential; better under some 
conditions

Exponential; keeps all nodes in 
memory



Recall: Graph Search vs Tree Search

• Tree Search 
– We might repeat some states
– But we do not need to remember states

• Graph Search
- We remember all the states that have been explored
- But we do not repeat some states
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Avoiding Repeated States using A* Search

• Is GRAPH-SEARCH optimal with A*?

44
1 1

h = 1

h = 5

h = 0h = 5

A

B

C D

E7

h = 0

Try with TREE-SEARCH and 
GRAPH-SEARCH

Graph Search  
Step 1: Among B, C, E, Choose C
Step 2: Among B, E, D, Choose B
Step 3: Among D, E, Choose E.   (you are not going to 
select C again)
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Avoiding Repeated States using A* Search

Solution 1: Remember all paths: Need extra bookkeeping

• Is GRAPH-SEARCH optimal with A*?

44
1 1

h = 1

h = 5

h = 0h = 5

A

B

C D

E7

h = 0

Try with TREE-SEARCH and 
GRAPH-SEARCH

Solution 2: Ensure that the first path to a node is the best!



30

Consistency (Monotonicity) of heuristic h

• A heuristic is consistent (or monotonic) provided 
– for any node n, for any successor n’ generated by action a with 

cost c(n,a,n’)
• h(n) ≤ c(n,a,n’) + h(n’)

– akin to triangle inequality.
– guarantees admissibility (proof?).
– values of f(n) along any path are non-decreasing (proof?).

• Contours of constant f in the state space

• GRAPH-SEARCH using consistent f(n) is optimal.
• Note that h(n) = 0 is consistent and admissible.

n n’
c(n,a,n’)

h(n)
h(n’)

g



Remainder of the lecture

• Examples

• Choosing heuristics

• Games and Minimax Search
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Heuristics

• What’s a heuristic for
– Driving distance (or time) from city A to city B ?
– 8-puzzle problem ?
– M&C ?
– PACMAN?

• Admissible heuristic
– Does not overestimate the cost to reach the goal
– “Optimistic”

• Are the above heuristics admissible? Consistent?
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Example: 8-Puzzle
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Comparing and combining heuristics 

• Heuristics generated by considering relaxed versions of a problem.
• Heuristic h1 for 8-puzzle

– Number of out-of-order tiles
• Heuristic h2 for 8-puzzle

– Sum of Manhattan distances of each tile
• h2 dominates h1 provided h2(n) ≥ h1(n).

– h2 will likely prune more than h1.
• max(h1,h2 , .. ,hn) is

– admissible if each hi is
– consistent if each hi is

• Cost of sub-problems and pattern databases
– Cost for 4 specific tiles
– Can these be added for disjoint sets of tiles?
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Effective Branching Factor

• Though informed search methods may have poor worst-
case performance, they often do quite well if the heuristic 
is good
– Even if there is a huge branching factor

• One way to quantify the effectiveness of the heuristic: the 
effective branching factor, b*

– N: total number of nodes expanded
– d: solution depth
– N = 1 + b* + (b*)2 + … + (b*)d

• For a good heuristic, b* is close to 1
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Example: 8-puzzle problem

Averaged over 100 trials each at different solution lengths

Solution length

Ave. # of nodes expanded



Summary of informed search

• How to use a heuristic function to improve search
– Greedy Best-first search + Uniform-cost search = A* Search

• When is A* search optimal?
– h is Admissible (optimistic) for Tree Search
– h is Consistent for Graph Search

• Choosing heuristic functions
– A good heuristic function can reduce time/space cost of search by

orders of magnitude.
– Good heuristic function may take longer to evaluate.
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Memory Bounded Search

• Memory, not computation, is usually the limiting factor in 
search problems
– Certainly true for A* search

• Why? What takes up memory in A* search?

• Solution: Memory-bounded A* search
– Iterative Deepening A*  (IDA*)
– Simplified Memory-bounded A* (SMA*)
– (Read the textbook for more details.)

– Very popular choice: Beam Search (Application in Decoding for
Large Language Model! )



Summary of informed search

• How to use a heuristic function to improve search
– Greedy Best-first search + Uniform-cost search = A* Search

• When is A* search optimal?
– h is Admissible (optimistic) for Tree Search
– h is Consistent for Graph Search

• Choosing heuristic functions
– A good heuristic function can reduce time/space cost of search by

orders of magnitude.
– Good heuristic function may take longer to evaluate.

39



Games and Adversarial Search
• Games: problem setup

• Minimax search

• Alpha-beta pruning

40



Illustrative example of a simple game (1 min 
discussion)

41

(Example taken from Liang and Sadigh)



Game as a search problem

• S0 The initial state

• PLAYER(s): Returns which player has the move

• ACTIONS(s): Returns the legal moves.

• RESULT(s, a): Output the state we transition to.

• TERMINAL-TEST(s): Returns True if the game is over.

• UTILITY(s,p): The payoff of player p at terminal state s.
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Two-player, Turn-based, Perfect information,
Deterministic, Zero-Sum Game
• Two-player: Tic-Tac-Toe, Chess, Go!

• Turn-based: The players take turns in round-robin fashion.

• Perfect information: The State is known to everyone

• Deterministic: Nothing is random

• Zero-sum: The total payoff for all players is a constant.

43

• The 8-puzzle is a one-player, perfect info,
deterministic, zero-sum game.

• How about Rock-Paper-Scissors?
• How about Monopoly?
• How about Starcraft?



Tic-Tac-Toe

• The first player is X and the 
second is O

• Object of game: get three of 
your symbol in a horizontal, 
vertical or diagonal row on a
3x3 game board

• X always goes first
• Players alternate placing Xs and Os on the game board 
• Game ends when a player has three in a row (a wins) or all 

nine squares are filled (a draw)

44

What’s the state, action, transition, payoff for Tic-Tac-Toe?



Partial game tree for Tic-Tac-Toe

X’s turn

O’s turn

X’s turn

O’s turn

X’s turn

O’s turn

X’s wins

start

45



Game trees

• A game tree is like a search tree in many ways …
– nodes are search states, with full details about a position

• characterize the arrangement of game pieces on the 
game board

– edges between nodes correspond to moves
– leaf nodes correspond to a set of goals

• { win, lose, draw }
• usually determined by a score for or against player

– at each node it is one or other player’s turn to move
• A game tree is not like a search tree because you have 

an opponent!
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Two players: MIN and MAX

• In a zero-sum game:
– payoff to Player 1 = - payoff to Player 2

• The goal of Player 1 is to maximizing her payoff.

• The goal of Player 2 is to maximizing her payoff as well
– Equivalent to minimizing Player 1’s payoff.
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Minimax search

• Assume that both players play perfectly
– do not assume player will miss good moves or make 

mistakes

• Score(s): The score that MAX will get towards
the end if both player play perfectly from s
onwards.

• Consider MIN’s strategy
– MIN’s best strategy:

• choose the move that minimizes the score that will 
result when MAX chooses the maximizing move

– MAX does the opposite
48



Minimaxing

• Your opponent will 
choose smaller numbers

• If you move left, your 
opponent will choose 3

• If you move right, your 
opponent will choose -8

• Thus your choices are 
only 3 or -8

• You should move left

Opponent’s
move

7 3 -8 50

Your move

3 -8

3

MIN

MAX

49

Each move is called a “ply”.  One round is K-plies for a K-player game.



Minimax example

The minimax decision is move A1

Which move to choose?
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Another example 

• In the game, it’s your move. Which move will the 
minimax algorithm choose – A, B, C, or D? What is the 
minimax value of the root node and nodes A, B, C, and 
D?

1 7 2 5 2 8 9 4 6 3 3 5

A B C D

MAX

MIN1 2 4 3

4
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Minimax search

• The minimax decision maximizes the utility under the 
assumption that the opponent seeks to minimize it (if it 
uses the same evaluation function)

• Generate the tree of minimax values
– Then choose best (maximum) move
– Don’t need to keep all values around

• Good memory property

• Depth-first search is used to implement minimax
– Expand all the way down to leaf nodes
– Recursive implementation
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Minimax properties

• Optimal?

• Complete?

• Time complexity?

• Space complexity?

Yes, against an optimal opponent, if
the tree is finite

Yes, if the tree is finite

Exponential: O( bm )

Polynomial: O( bm )
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But this could take forever…

• Exact search is intractable
– Tic-Tac-Toe is 9! = 362,880
– For chess, b » 35 and m » 100 for “reasonable” games
– Go is 361! »10750

• Idea 1: Pruning

• Idea 2: Cut off early and use a heuristic function

54
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Pruning

• What’s really needed is “smarter,” more efficient search
– Don’t expand “dead-end” nodes!

• Pruning – eliminating a branch of the search tree from 
consideration

• Alpha-beta pruning, applied to a minimax tree, returns 
the same “best” move, while pruning away unnecessary 
branches
– Many fewer nodes might be expanded
– Hence, smaller effective branching factor
– …and deeper search
– …and better performance

• Remember, minimax is depth-first search
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Alpha pruning

56

A

B C D

10 25 15 5

≥ 10

10

MAX

MIN

MAX
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Beta pruning

57

C D

10 25 15 50

≤25

25

MIN

MAXB

MINA



Improvements via alpha/beta pruning

• Depends on the ordering of expansion

• Perfect ordering

• Random ordering

• For specific games like Chess, you can get to almost
perfect ordering.
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Heuristic (Evaluation function)

• It is usually impossible to solve games completely

• Rather, cut the search off early and apply a heuristic 
evaluation function to the leaves
– h(s) estimates the expected utility of the game from a given 

position (node/state) s
– like depth bounded depth first, lose completeness
– Explore game tree using combination of evaluation function and 

search

• The performance of a game-playing program depends on 
the quality (and speed!) of its evaluation function
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Heuristics (Evaluation function)

• Typical evaluation function for game: weighted linear 
function
– h(s) = w1 f1(s) + w2 f2(s) + … + wd fd(s)
– weights · features [dot product]

• For example, in chess
– W = { 1, 3, 3, 5, 8 }
– F = { # pawns advantage, # bishops advantage, # knights 

advantage, # rooks advantage, # queens advantage }
– Is this what Deep Blue used?
– What are some problems with this?

• More complex evaluation functions may involve learning
– Adjusting weights based on outcomes
– Perhaps non-linear functions
– How to choose the features?
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Tic-Tac-Toe revisited

a partial game tree
for Tic-Tac-Toe
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Evaluation function for Tic-Tac-Toe

• A simple evaluation function for Tic-Tac-Toe
– count the number of rows where X can win
– subtract the number of rows where O can win

• Value of evaluation function at start of game is zero
– on an empty game board there are 8 possible winning rows for 

both X and O

8-8 = 0
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Evaluating Tic-Tac-Toe

evalX = (number of rows where X can win)  –
(number of rows where O can win)

• After X moves in center, score for X is +4
• After O moves, score for X is +2
• After X’s next move, score for X is +4

8-8 = 0 6-4 = 28-4 = 4 6-2 = 4
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Evaluating Tic-Tac-Toe

evalO = (number of rows where O can win)  –
(number of rows where X can win)

• After X moves in center, score for O is -4
• After O moves, score for O is +2
• After X’s next move, score for O is -4

8-8 = 0 4-6 = -24-8 = -4 2-6 = -4
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Search depth cutoff

Tic-Tac-Toe with
search depth 2

Evaluations shown for X

-2
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Expectimax: Playing against a benign 
opponent
• Sometimes your opponents are not clever.

– They behave randomly. 
– You can take advantage of that by modeling your opponent.

• Example of game of chance:
– Slot machines
– Tetris
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Expectimax example

• Your opponent behave 
randomly with a given 
probability distribution, 

• If you move left, your 
opponent will select 
actions with probability 
[0.5,0.5]

• If you move right, your 
opponent will select 
actions with [0.6,0.4]

Opponent’s
random 

move
7 3 -8 50

Your move

5 15.2

15.2

AVERAGE

MAX
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Note:  pruning becomes tricky in expectimax… think about why.



Summary of game playing

• Minimax search

• Game tree

• Alpha-beta pruning

• Early stop with an evaluation function

• Expectimax
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More reading / resources about game playing

• Required reading: AIMA 5.1-5.3

• Stochastic game / Expectiminimax:  AIMA 5.5
– Backgammon.  TD-Gammon
– Blackjack, Poker

• Famous game AI:  Read the “Historical notes” of the  
AIMA Chapter 5
– Deep blue
– TD Gammon

• AlphaGo: https://www.nature.com/articles/nature16961
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https://www.nature.com/articles/nature16961

