Artificial Intelligence CS 165A May 2, 2023

Instructor: Prof. Yu-Xiang Wang

1

 $\square \rightarrow$ Informed Search and Heuristics

20

 \rightarrow Games and minimax search

Notes for Project 1

- Almost everyone has completed
 - Don't forget to submit the report and the leaderboard
- How to catch up if you missed the deadline?
 - 4 late days --- no question asked
 - 75% credits if submit before this Thursday (for the basic coding)
 - 50% credits if submit after this Thursday
- 9 students were able to beat the TA baseline!
 - Truly awesome! Keep it coming!
- Start Project 2 early!

Recap: Search agent and search algorithms

- Representing states, operators and costs
 - State-space diagram: What are the vertices, edges, edge weights?
 - Examples: Romania, Missionary and Cannibals, Pacman, 8puzzle (and the MU puzzle from the quiz)
- Search algorithms
 - BFS, DFS, Depth-Limited, IDS, Bidirectional Search

- Four criteria to evaluate the search algorithms:
 - Completeness, Optimality, Space complexity, time complexity ₃

This lecture

- Uniform cost search
- Informed search, aka Heuristic Search
- Admissible and consistent heuristics
- Tree search vs Graph Search
- (if time permits) Intro to games and adversarial search

Uniform Cost Search

- Similar to breadth-first search, but always expands the lowest-cost node, as measured by the path cost function, g(n)
 - -g(n) is (actual) cost of getting to node n
 - Breadth-first search is actually a special case of uniform cost search, where g(n) = DEPTH(n)
 - If the path cost is monotonically increasing, uniform cost search will find the optimal solution

function UNIFORM-COST-SEARCH(*problem*) **returns** a solution or failure **return GENERAL-SEARCH**(*problem*, ENQUEUE-IN-COST-ORDER)

(Dijkstra's algorithm of an potentially infinite graph)

Example (3 min work)

Try breadth-first and uniform cost

Example (3 min work): Breath-First Search

Node to expand:

Frontier:

Example (3 min work): Uniform Cost Search

Node to expand:

Frontier:

Uniform-Cost Search

C = optimal cost ϵ = minimum step cost

- Complete? Yes, if $\varepsilon > 0$
- Optimal? Yes
- Time complexity? Exponential: $O(b^{\lfloor C/\epsilon \rfloor})$
- Space complexity? Exponential: $O(b^{LC/\epsilon})$

Same as breadth-first if all edge costs are equal

Can we do better than Tree Search?

- Sometimes.
- When the number of states are small
 - Dynamic programming (smart way of doing exhaustive search)

State Space vs. Search Tree (cont.)

Search tree (partially expanded)

Search Tree => Search Graph

Dynamic programming (with book keeping)

Graph Search vs Tree Search

- Tree Search
 - We might repeat some states
 - But we do not need to remember states
- Graph Search
 - We remember all the states that have been explored
 - But we do not repeat some states

Summary table of uninformed search

Criteria	BFS	Uniform-cost	DFS	Depth-limited	IDS	Bidirectional
Complete?	Yes#	Yes ^{#&}	No	No	Yes#	Yes#+
Time	O(b ^d)	O(<i>b</i> ^{1+[C*/e]})	O(<i>b</i> ^{<i>m</i>})	O(<i>b'</i>)	O(b ^d)	O(<i>b</i> ^{<i>d</i>/2})
Space	O(b ^d)	O(b ^{1+[C*/e]})	O(bm)	O(bl)	O(bd)	O(<i>b</i> ^{<i>d</i>/2})
Optimal?	Yes ^{\$}	Yes	No	No	Yes ^{\$}	Yes ^{\$} ⁺

- b: Branching factor
- d: Depth of the shallowest goal
- I: Depth limit
- m: Maximum depth of search tree
- e: The lower bound of the step cost
- #: Complete if b is finite
- [&]: Complete if step cost >= e
- \$: Optimal if all step costs are identical
- +: If both direction use BFS

(Section 3.4.6 in the AIMA book.)

Practical note about search algorithms

- The computer can't "see" the search graph like we can
 - No "bird's eye view" make relevant information explicit!
- What information should you keep for a node in the search tree?
 - State
 - (1 2 0)
 - Parent node (or perhaps complete ancestry)
 - Node #3 (or, nodes 0, 2, 5, 11, 14)
 - Depth of the node
 - d = 4
 - Path cost up to (and including) the node
 - g(node) = 12
 - Operator that produced this node
 - Operator #1

Remainder of the lecture

- Informed search
- Some questions / desiderata
 - 1. Can we do better with some side information?
 - 2. We do not wish to make strong assumptions on the side information.
 - 3. If the side information is good, we hope to do better.
 - 4. If the side information is useless, we perform as well as an uninformed search method.

Best-First Search (with an Eval-Fn)

function BEST-FIRST-SEARCH(problem, EVAL-FN) returns a solution or failure QUEUING-FN ← a function that orders nodes by EVAL-FN return GENERAL-SEARCH(problem, QUEUING-FN)

- Uses a heuristic function, *h(n)*, as the EVAL-FN
- h(n) estimates the cost of the best path from state n to a goal state
 - $\circ \quad h(goal) = 0$

Greedy Best-First Search

- Greedy search always expand the node that appears to be the closest to the goal (i.e., with the smallest *h*)
 - Instant gratification, hence "greedy"

function GREEDY-SEARCH(problem, h) returns a solution or failure
return BEST-FIRST-SEARCH(problem, h)

- Greedy search often performs well, but:
 - It doesn't always find the best solution / or any solution
 - It may get stuck
 - It performance completely depends on the particular h function

A* Search (Pronounced "A-Star")

- Uniform-cost search minimizes *g(n)* ("past" cost)
- Greedy search minimizes *h(n)* ("expected" or "future" cost)
- "A* Search" combines the two:
 - Minimize f(n) = g(n) + h(n)
 - Accounts for the "past" and the "future"
 - Estimates the cheapest solution (complete path) through node *n*

function A*-SEARCH(problem, h) returns a solution or failure
return BEST-FIRST-SEARCH(problem, f)

A* Example

f(n) = g(n) + h(n)

A* Example

When does A^{*} search "work"?

• Focus on optimality (finding the optimal solution)

- "A* Search" is optimal if h is admissible
 - -h is optimistic it never overestimates the cost to the goal
 - $h(n) \leq$ true cost to reach the goal
 - So f(n) never overestimates the actual cost of the best solution passing through node n

Visualizing A^{*} search

- A^* expands nodes in order of increasing f value
- Gradually adds "*f*-contours" of nodes
- Contour *i* has all nodes with $f=f_i$, where $f_i < f_{i+1}$

Optimality of A^* with an Admissible h

- Let OPT be the optimal path cost.
 - All non-goal nodes on this path have $f \le OPT$.
 - Positive costs on edges
 - The goal node on this path has f = OPT.
- A* search does not stop until an f-value of OPT is reached.
 All other goal nodes have an f cost higher than OPT.
- All non-goal nodes on the optimal path are eventually expanded.
 - The optimal goal node is eventually placed on the priority queue, and reaches the front of the queue.

Optimal Efficiency of A*

A* is <u>optimally efficient</u> for any particular h(n)That is, no other optimal algorithm is guaranteed to expand fewer nodes with the same h(n).

- Need to find a good and efficiently evaluable h(n).

A* Search with an Admissible h

- Optimal? Yes
- Complete? Yes
- Time complexity? Expone
- Space complexity?

Exponential; better under some conditions Exponential; keeps all nodes in memory

Recall: Graph Search vs Tree Search

- Tree Search
 - We might repeat some states
 - But we do not need to remember states
- Graph Search
 - We remember all the states that have been explored
 - But we do not repeat some states

Avoiding Repeated States using A* Search

• Is GRAPH-SEARCH optimal with A*?

Graph Search Step 1: Among B, C, E, Choose C Step 2: Among B, E, D, Choose B Step 3: Among D, E, Choose E. (you are not going to select C again) Avoiding Repeated States using A* Search

• Is GRAPH-SEARCH optimal with A*?

Solution 1: Remember all paths: Need extra bookkeeping

Solution 2: Ensure that the first path to a node is the best!

Consistency (Monotonicity) of heuristic h

- A heuristic is consistent (or monotonic) provided
 - for any node n, for any successor n' generated by action a with cost c(n,a,n')
 - $h(n) \le c(n, a, n') + h(n')$
 - akin to triangle inequality.
 - guarantees admissibility (proof?).
 - values of f(n) along any path are non-decreasing (proof?).
 - Contours of constant f in the state space
- GRAPH-SEARCH using consistent f(n) is optimal.
- Note that h(n) = 0 is consistent and admissible.

h(n')

g

h(n

Remainder of the lecture

- Examples
- Choosing heuristics
- Games and Minimax Search

Heuristics

- What's a heuristic for
 - Driving distance (or time) from city A to city B?
 - 8-puzzle problem ?
 - M&C ?
 - PACMAN?
- Admissible heuristic
 - Does not overestimate the cost to reach the goal
 - "Optimistic"
- Are the above heuristics admissible? Consistent?

Example: 8-Puzzle

5	4	
6	1	8
7	3	2

Start State

 1
 2
 3

 8
 4

 7
 6
 5

Goal State

Comparing and combining heuristics

- Heuristics generated by considering relaxed versions of a problem.
- Heuristic h₁ for 8-puzzle
 - Number of out-of-order tiles
- Heuristic h₂ for 8-puzzle
 - Sum of Manhattan distances of each tile
- h_2 dominates h_1 provided $h_2(n) \ge h_1(n)$.
 - h_2 will likely prune more than h_1 .
- $\max(h_1, h_2, ..., h_n)$ is
 - admissible if each h_i is
 - consistent if each h_i is
- Cost of sub-problems and pattern databases
 - Cost for 4 specific tiles
 - Can these be added for disjoint sets of tiles?

Effective Branching Factor

- Though <u>informed</u> search methods may have poor *worst-case* performance, they often do quite well if the heuristic is good
 - Even if there is a huge branching factor
- One way to quantify the effectiveness of the heuristic: the effective branching factor, *b**
 - N: total number of nodes expanded
 - d: solution depth
 - $N = 1 + b^* + (b^*)^2 + \ldots + (b^*)^d$
- For a good heuristic, b* is close to 1

Example: 8-puzzle problem

Averaged over 100 trials each at different solution lengths

		Search Cost		Effective Branching Factor					
d	IDS	$A^*(h_1)$	$A^*(h_2)$	IDS	$A^*(h_1)$	$A^*(h_2)$			
2	10	6	6	2.45	1.79	1.79			
4	112	13	12	2.87	1.48	1.45			
6	680	20	18	2.73	1.34	1.30			
8	6384	39	25	2.80	1.33	1.24			
10	47127	93	39	2.79	1.38	1.22			
12	364404	227	73	2.78	1.42	1.24			
14	3473941	539	113	2.83	1.44	1.23			
16	_	1301	211	_	1.45	1.25			
18	-	3056	363	_	1.46	1.26			
20	-	7276	676	_	1.47	1.27			
22	-	18094	1219	_	1.48	1.28			
24	-	39135	1641	—	1.48	1.26			
Ave. # of nodes expanded									

Solution length

Summary of informed search

- How to use a heuristic function to improve search
 - Greedy Best-first search + Uniform-cost search = A^* Search
- When is A* search optimal?
 - h is Admissible (optimistic) for Tree Search
 - h is Consistent for Graph Search
- Choosing heuristic functions
 - A good heuristic function can reduce time/space cost of search by orders of magnitude.
 - Good heuristic function may take longer to evaluate.

Memory Bounded Search

- Memory, not computation, is <u>usually</u> the limiting factor in search problems
 - Certainly true for A* search
- Why? What takes up memory in A* search?
- Solution: Memory-bounded A* search
 - Iterative Deepening A* (IDA*)
 - Simplified Memory-bounded A* (SMA*)
 - (Read the textbook for more details.)
 - Very popular choice: Beam Search (Application in Decoding for Large Language Model!)

Summary of informed search

- How to use a heuristic function to improve search
 - Greedy Best-first search + Uniform-cost search = A^* Search
- When is A* search optimal?
 - h is Admissible (optimistic) for Tree Search
 - h is Consistent for Graph Search
- Choosing heuristic functions
 - A good heuristic function can reduce time/space cost of search by orders of magnitude.
 - Good heuristic function may take longer to evaluate.

Games and Adversarial Search

- Games: problem setup
- Minimax search
- Alpha-beta pruning

Illustrative example of a simple game (1 min discussion)

• Sour goal is to maximize the chosen number.

(Example taken from Liang and Sadigh)

Game as a search problem

- S₀ The initial state
- PLAYER(s): Returns which player has the move
- ACTIONS(s): Returns the legal moves.
- RESULT(s, a): Output the state we transition to.
- TERMINAL-TEST(s): Returns True if the game is over.
- UTILITY(s,p): The payoff of player p at terminal state s.

Two-player, Turn-based, Perfect information, Deterministic, Zero-Sum Game

- Two-player: Tic-Tac-Toe, Chess, Go!
- Turn-based: The players take turns in round-robin fashion.
- Perfect information: The State is known to everyone
- Deterministic: Nothing is random
- Zero-sum: The total payoff for all players is a constant.
 - The 8-puzzle is a one-player, perfect info, deterministic, zero-sum game.
 - How about Rock-Paper-Scissors?
 - How about Monopoly?
 - How about Starcraft?

Tic-Tac-Toe

- The first player is X and the second is O
- Object of game: get three of your symbol in a horizontal, vertical or diagonal row on a 3x3 game board
- X always goes first

- Players alternate placing Xs and Os on the game board
- Game ends when a player has three in a row (a wins) or all nine squares are filled (a draw)

What's the state, action, transition, payoff for Tic-Tac-Toe?

Partial game tree for Tic-Tac-Toe

Game trees

- A game tree is like a search tree in many ways ...
 - nodes are search states, with full details about a position
 - characterize the arrangement of game pieces on the game board
 - edges between nodes correspond to moves
 - leaf nodes correspond to a set of goals
 - { win, lose, draw }
 - usually determined by a score for or against player
 - at each node it is one or other player's turn to move
- A game tree is not like a search tree because you have an opponent!

Two players: MIN and MAX

- In a zero-sum game:
 - payoff to Player 1 = payoff to Player 2
- The goal of Player 1 is to maximizing her payoff.
- The goal of Player 2 is to maximizing her payoff as well
 - Equivalent to minimizing Player 1's payoff.

Minimax search

- Assume that both players play perfectly
 - do not assume player will miss good moves or make mistakes
- Score(s): The score that MAX will get towards the end if both player play perfectly from s onwards.
- Consider MIN's strategy
 - MIN's best strategy:
 - choose the move that minimizes the score that will result when MAX chooses the maximizing move
 - MAX does the opposite

Minimaxing

- Your opponent will choose smaller numbers
- If you move left, your opponent will choose 3
- If you move right, your opponent will choose -8
- Thus your choices are only 3 or -8
- You should move left

Each move is called a "ply". One round is K-plies for a K-player game.

Minimax example

Which move to choose?

The minimax decision is move A₁

Another example

• In the game, it's your move. Which move will the minimax algorithm choose – A, B, C, or D? What is the minimax value of the root node and nodes A, B, C, and D?

Minimax search

- The *minimax decision* maximizes the utility under the assumption that the opponent seeks to minimize it (if it uses the same evaluation function)
- Generate the tree of minimax values
 - Then choose best (maximum) move
 - Don't need to keep all values around
 - Good memory property
- Depth-first search is used to implement minimax
 - Expand all the way down to leaf nodes
 - Recursive implementation

Minimax properties

- Optimal?
- Complete?

Yes, against an optimal opponent, **if** the tree is finite

Yes, if the tree is finite

• Time complexity?

Exponential: O(b^m)

• Space complexity?

Polynomial: O(bm)

But this could take forever...

- Exact search is intractable
 - Tic-Tac-Toe is 9! = 362,880
 - For chess, $b \approx 35$ and $m \approx 100$ for "reasonable" games
 - Go is $361! \approx 10^{750}$
- Idea 1: Pruning
- Idea 2: Cut off early and use a heuristic function

Pruning

- What's really needed is "smarter," more efficient search
 Don't expand "dead-end" nodes!
- **Pruning** eliminating a branch of the search tree from consideration
- Alpha-beta pruning, applied to a minimax tree, returns the same "best" move, while pruning away unnecessary branches
 - Many fewer nodes might be expanded
 - Hence, smaller effective branching factor
 - ...and deeper search
 - ...and better performance
 - Remember, minimax is *depth-first* search

Alpha pruning

Beta pruning

Improvements via alpha/beta pruning

- Depends on the ordering of expansion
- Perfect ordering $O(b^{m/2})$

• Random ordering $O(b^{3m/4})$

• For specific games like Chess, you can get to almost perfect ordering.

Heuristic (Evaluation function)

- It is usually impossible to solve games completely
- Rather, <u>cut the search off early</u> and apply a heuristic evaluation function to the leaves
 - *h(s)* estimates the expected utility of the game from a given position (node/state) *s*
 - like depth bounded depth first, lose completeness
 - Explore game tree using combination of evaluation function and search
- The performance of a game-playing program depends on the quality (and speed!) of its evaluation function

Heuristics (Evaluation function)

- Typical evaluation function for game: weighted linear function
 - $h(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_d f_d(s)$
 - weights features [dot product]
- For example, in chess
 - $W = \{ 1, 3, 3, 5, 8 \}$
 - F = { # pawns advantage, # bishops advantage, # knights advantage, # rooks advantage, # queens advantage }
 - Is this what Deep Blue used?
 - What are some problems with this?
- More complex evaluation functions may involve <u>learning</u>
 - Adjusting weights based on outcomes
 - Perhaps non-linear functions
 - How to choose the *features*?

Tic-Tac-Toe revisited

Evaluation function for Tic-Tac-Toe

- A simple evaluation function for Tic-Tac-Toe
 - count the number of rows where **X** can win
 - subtract the number of rows where O can win
- Value of evaluation function at start of game is zero
 - on an empty game board there are 8 possible winning rows for both X and O

8-8 = 0

Evaluating Tic-Tac-Toe

evalX = (number of rows where X can win) (number of rows where O can win)

- After **X** moves in center, score for **X** is +4
- After **O** moves, score for **X** is +2
- After **X**'s next move, score for **X** is +4

Evaluating Tic-Tac-Toe

eval0 = (number of rows where O can win) (number of rows where X can win)

- After **X** moves in center, score for **O** is -4
- After **O** moves, score for **O** is +2
- After X's next move, score for O is -4

Search depth cutoff

Evaluations shown for X

Expectimax: Playing against a benign opponent

- Sometimes your opponents are not clever.
 - They behave randomly.
 - You can take advantage of that by modeling your opponent.
- Example of game of chance:
 - Slot machines
 - Tetris

Expectimax example

- Your opponent behave randomly with a given probability distribution,
- If you move left, your opponent will select actions with probability [0.5,0.5]
- If you move right, your opponent will select actions with [0.6,0.4]

Note: pruning becomes tricky in expectimax... think about why.

Summary of game playing

- Minimax search
- Game tree
- Alpha-beta pruning
- Early stop with an evaluation function
- Expectimax

More reading / resources about game playing

- Required reading: AIMA 5.1-5.3
- Stochastic game / Expectiminimax: AIMA 5.5
 - Backgammon. TD-Gammon
 - Blackjack, Poker

- Famous game AI: Read the "Historical notes" of the AIMA Chapter 5
 - Deep blue
 - TD Gammon
- AlphaGo: <u>https://www.nature.com/articles/nature16961</u>