
Artificial Intelligence
CS 165A

May 2, 2023

Instructor: Prof. Yu-Xiang Wang

® Informed Search and Heuristics

® Games and minimax search

1

Notes for Project 1

• Almost everyone has completed
– Don’t forget to submit the report and the leaderboard

• How to catch up if you missed the deadline?
– 4 late days --- no question asked

– 75% credits if submit before this Thursday (for the basic coding)
– 50% credits if submit after this Thursday

• 9 students were able to beat the TA baseline!
– Truly awesome! Keep it coming!

• Start Project 2 early!

2

Recap: Search agent and search algorithms

• Representing states, operators and costs
– State-space diagram: What are the vertices, edges, edge weights?

– Examples: Romania, Missionary and Cannibals, Pacman, 8-
puzzle (and the MU puzzle from the quiz)

• Search algorithms
– BFS, DFS, Depth-Limited, IDS, Bidirectional Search

• Four criteria to evaluate the search algorithms:
– Completeness, Optimality, Space complexity, time complexity 3

This lecture

• Uniform cost search

• Informed search, aka Heuristic Search

• Admissible and consistent heuristics

• Tree search vs Graph Search

• (if time permits) Intro to games and adversarial search

4

5

Uniform Cost Search

• Similar to breadth-first search, but always expands the
lowest-cost node, as measured by the path cost function,
g(n)
– g(n) is (actual) cost of getting to node n
– Breadth-first search is actually a special case of uniform cost

search, where g(n) = DEPTH(n)

– If the path cost is monotonically increasing, uniform cost search
will find the optimal solution

5

Uniform Cost Search

• Similar to breadth-first search, but always expands the
lowest-cost node, as measured by the path cost function,
g(n)
– g(n) is (actual) cost of getting to node n
– Breadth-first search is actually a special case of uniform cost

search, where g(n) = DEPTH(n)

– If the path cost is monotonically increasing, uniform cost search
will find the optimal solution

function UNIFORM-COST-SEARCH(problem) returns a solution or failure
return GENERAL-SEARCH(problem, ENQUEUE-IN-COST-ORDER)

5

Uniform Cost Search

• Similar to breadth-first search, but always expands the
lowest-cost node, as measured by the path cost function,
g(n)
– g(n) is (actual) cost of getting to node n
– Breadth-first search is actually a special case of uniform cost

search, where g(n) = DEPTH(n)

– If the path cost is monotonically increasing, uniform cost search
will find the optimal solution

function UNIFORM-COST-SEARCH(problem) returns a solution or failure
return GENERAL-SEARCH(problem, ENQUEUE-IN-COST-ORDER)

(Dijkstra’s algorithm of an potentially infinite graph)

6

Example (3 min work)

B

A

C

D

E

F

2 8 6

12 2

4
1

1

Try breadth-first and uniform cost

7

Example (3 min work): Breath-First Search

B

A

C

D

E

F

2 8 6

12 2

4
1

1

Node to expand: Frontier:

8

Example (3 min work): Uniform Cost Search

B

A

C

D

E

F

2 8 6

12 2

4
1

1

Node to expand: Frontier:

9

Uniform-Cost Search

• Complete?

• Optimal?

• Time complexity?

• Space complexity?

Yes, if ε > 0

Yes

C = optimal cost
ε = minimum step cost

9

Uniform-Cost Search

• Complete?

• Optimal?

• Time complexity?

• Space complexity?

Yes, if ε > 0

Yes

Exponential: O(b└C/ε┘)

C = optimal cost
ε = minimum step cost

9

Uniform-Cost Search

• Complete?

• Optimal?

• Time complexity?

• Space complexity?

Yes, if ε > 0

Yes

Exponential: O(b└C/ε┘)

Exponential: O(b└C/ε┘)

C = optimal cost
ε = minimum step cost

9

Uniform-Cost Search

• Complete?

• Optimal?

• Time complexity?

• Space complexity?

Yes, if ε > 0

Yes

Exponential: O(b└C/ε┘)

Exponential: O(b└C/ε┘)

Same as breadth-first if all edge costs are equal

C = optimal cost
ε = minimum step cost

Can we do better than Tree Search?

• Sometimes.

• When the number of states are small
– Dynamic programming (smart way of doing exhaustive search)

10

11

State Space vs. Search Tree (cont.)

B C CB F

D H G

A D GA D E

B C

A

Search tree (partially expanded)

12

Search Tree => Search Graph

B C CB F

D H G

A D GA D E

B C

A

Dynamic programming (with book keeping)

12

Search Tree => Search Graph

B C CB F

D H G

A D GA D E

B C

A

Dynamic programming (with book keeping)

12

Search Tree => Search Graph

B C CB F

D H G

A D GA D E

B C

A

Dynamic programming (with book keeping)

12

Search Tree => Search Graph

B C CB F

D H G

A D GA D E

B C

A

Dynamic programming (with book keeping)

12

Search Tree => Search Graph

B C CB F

D H G

A D GA D E

B C

A

Dynamic programming (with book keeping)

12

Search Tree => Search Graph

B C CB F

D H G

A D GA D E

B C

A

Dynamic programming (with book keeping)

12

Search Tree => Search Graph

B C CB F

D H G

A D GA D E

B C

A

Dynamic programming (with book keeping)

12

Search Tree => Search Graph

B C CB F

D H G

A D GA D E

B C

A

Dynamic programming (with book keeping)

12

Search Tree => Search Graph

B C CB F

D H G

A D GA D E

B C

A

Dynamic programming (with book keeping)

O(bd) => O(# of states)

Graph Search vs Tree Search

• Tree Search
– We might repeat some states
– But we do not need to remember states

• Graph Search
- We remember all the states that have been explored
- But we do not repeat some states

13

Summary table of uninformed search

14

(Section 3.4.6 in the AIMA book.)

15

Practical note about search algorithms

15

Practical note about search algorithms

• The computer can’t “see” the search graph like we can

– No “bird’s eye view” – make relevant information explicit!

15

Practical note about search algorithms

• The computer can’t “see” the search graph like we can

– No “bird’s eye view” – make relevant information explicit!

• What information should you keep for a node in the search tree?

15

Practical note about search algorithms

• The computer can’t “see” the search graph like we can

– No “bird’s eye view” – make relevant information explicit!

• What information should you keep for a node in the search tree?

– State

• (1 2 0)
– Parent node (or perhaps complete ancestry)

• Node #3 (or, nodes 0, 2, 5, 11, 14)

– Depth of the node

• d = 4

– Path cost up to (and including) the node
• g(node) = 12

– Operator that produced this node

• Operator #1

Remainder of the lecture

• Informed search

• Some questions / desiderata
1. Can we do better with some side information?
2. We do not wish to make strong assumptions on the side

information.

3. If the side information is good, we hope to do better.

4. If the side information is useless, we perform as well as an
uninformed search method.

16

17

Best-First Search (with an Eval-Fn)

function BEST-FIRST-SEARCH(problem, EVAL-FN) returns a solution or
failure

QUEUING-FN ¬ a function that orders nodes by EVAL-FN
return GENERAL-SEARCH(problem, QUEUING-FN)

• Uses a heuristic function, h(n), as the EVAL-FN
• h(n) estimates the cost of the best path from state n to a goal state

o h(goal) = 0

18

Greedy Best-First Search

• Greedy search – always expand the node that appears to be the closest
to the goal (i.e., with the smallest h)
– Instant gratification, hence “greedy”

18

Greedy Best-First Search

• Greedy search – always expand the node that appears to be the closest
to the goal (i.e., with the smallest h)
– Instant gratification, hence “greedy”

function GREEDY-SEARCH(problem, h) returns a solution or failure
return BEST-FIRST-SEARCH(problem, h)

18

Greedy Best-First Search

• Greedy search – always expand the node that appears to be the closest
to the goal (i.e., with the smallest h)
– Instant gratification, hence “greedy”

function GREEDY-SEARCH(problem, h) returns a solution or failure
return BEST-FIRST-SEARCH(problem, h)

• Greedy search often performs well, but:
– It doesn’t always find the best solution / or any solution
– It may get stuck
– It performance completely depends on the particular h function

19

A* Search (Pronounced “A-Star”)

• Uniform-cost search minimizes g(n) (“past” cost)

19

A* Search (Pronounced “A-Star”)

• Uniform-cost search minimizes g(n) (“past” cost)

• Greedy search minimizes h(n) (“expected” or “future” cost)

19

A* Search (Pronounced “A-Star”)

• Uniform-cost search minimizes g(n) (“past” cost)

• Greedy search minimizes h(n) (“expected” or “future” cost)

• “A* Search” combines the two:
– Minimize f(n) = g(n) + h(n)
– Accounts for the “past” and the “future”
– Estimates the cheapest solution (complete path) through node n

19

A* Search (Pronounced “A-Star”)

• Uniform-cost search minimizes g(n) (“past” cost)

• Greedy search minimizes h(n) (“expected” or “future” cost)

• “A* Search” combines the two:
– Minimize f(n) = g(n) + h(n)
– Accounts for the “past” and the “future”
– Estimates the cheapest solution (complete path) through node n

function A*-SEARCH(problem, h) returns a solution or failure
return BEST-FIRST-SEARCH(problem, f)

20

A* Example

f(n) = g(n) + h(n)

21

A* Example

21

f = 0 + 366 = 366 Arad

A* Example

21

Zerind Sibiu Timisoaraf = 75 + 374 = 449 140 + 253 = 393 118+329=447

f = 0 + 366 = 366 Arad

A* Example

21

Oradea Arad Fagaras Rimnicu Vilcea291+380=671 280+366=506 239+178=417 220+193=413

Zerind Sibiu Timisoaraf = 75 + 374 = 449 140 + 253 = 393 118+329=447

f = 0 + 366 = 366 Arad

A* Example

21

Oradea Arad Fagaras Rimnicu Vilcea291+380=671 280+366=506 239+178=417 220+193=413

Zerind Sibiu Timisoaraf = 75 + 374 = 449 140 + 253 = 393 118+329=447

f = 0 + 366 = 366 Arad

A* Example

When does A* search “work”?

• Focus on optimality (finding the optimal solution)

22

• “A* Search” is optimal if h is admissible

When does A* search “work”?

• Focus on optimality (finding the optimal solution)

22

• “A* Search” is optimal if h is admissible
– h is optimistic – it never overestimates the cost to the goal

• h(n) £ true cost to reach the goal
– So f (n) never overestimates the actual cost of the best solution

passing through node n

Visualizing A* search

• A* expands nodes in order of increasing f value

• Gradually adds "f-contours" of nodes

• Contour i has all nodes with f=fi, where fi < fi+1
•

24

Optimality of A*with an Admissible h

24

Optimality of A*with an Admissible h

• Let OPT be the optimal path cost.
– All non-goal nodes on this path have f ≤ OPT.

• Positive costs on edges

– The goal node on this path has f = OPT.

24

Optimality of A*with an Admissible h

• Let OPT be the optimal path cost.
– All non-goal nodes on this path have f ≤ OPT.

• Positive costs on edges

– The goal node on this path has f = OPT.

• A* search does not stop until an f-value of OPT is reached.
– All other goal nodes have an f cost higher than OPT.

24

Optimality of A*with an Admissible h

• Let OPT be the optimal path cost.
– All non-goal nodes on this path have f ≤ OPT.

• Positive costs on edges

– The goal node on this path has f = OPT.

• A* search does not stop until an f-value of OPT is reached.
– All other goal nodes have an f cost higher than OPT.

• All non-goal nodes on the optimal path are eventually
expanded.
– The optimal goal node is eventually placed on the priority queue,

and reaches the front of the queue.

25

Optimal Efficiency of A*

A* is optimally efficient for any particular h(n)
That is, no other optimal algorithm is guaranteed to expand
fewer nodes with the same h(n).

25

Optimal Efficiency of A*

A* is optimally efficient for any particular h(n)
That is, no other optimal algorithm is guaranteed to expand
fewer nodes with the same h(n).

- Need to find a good and efficiently evaluable h(n).

26

A* Search with an Admissible h

• Optimal?

• Complete?

• Time complexity?

• Space complexity?

26

A* Search with an Admissible h

• Optimal?

• Complete?

• Time complexity?

• Space complexity?

Yes

26

A* Search with an Admissible h

• Optimal?

• Complete?

• Time complexity?

• Space complexity?

Yes

Yes

26

A* Search with an Admissible h

• Optimal?

• Complete?

• Time complexity?

• Space complexity?

Yes

Yes

Exponential; better under some
conditions

26

A* Search with an Admissible h

• Optimal?

• Complete?

• Time complexity?

• Space complexity?

Yes

Yes

Exponential; better under some
conditions

Exponential; keeps all nodes in
memory

Recall: Graph Search vs Tree Search

• Tree Search
– We might repeat some states
– But we do not need to remember states

• Graph Search
- We remember all the states that have been explored
- But we do not repeat some states

27

28

Avoiding Repeated States using A* Search

• Is GRAPH-SEARCH optimal with A*?

44

1 1

h = 1

h = 5

h = 0h = 5

A

B

C D

E
7

h = 0

Try with TREE-SEARCH and
GRAPH-SEARCH

28

Avoiding Repeated States using A* Search

• Is GRAPH-SEARCH optimal with A*?

44

1 1

h = 1

h = 5

h = 0h = 5

A

B

C D

E
7

h = 0

Try with TREE-SEARCH and
GRAPH-SEARCH

Graph Search
Step 1: Among B, C, E, Choose C
Step 2: Among B, E, D, Choose B
Step 3: Among D, E, Choose E. (you are not going to
select C again)

29

Avoiding Repeated States using A* Search

• Is GRAPH-SEARCH optimal with A*?

44

1 1

h = 1

h = 5

h = 0h = 5

A

B

C D

E
7

h = 0

Try with TREE-SEARCH and
GRAPH-SEARCH

29

Avoiding Repeated States using A* Search

Solution 1: Remember all paths: Need extra bookkeeping

• Is GRAPH-SEARCH optimal with A*?

44

1 1

h = 1

h = 5

h = 0h = 5

A

B

C D

E
7

h = 0

Try with TREE-SEARCH and
GRAPH-SEARCH

29

Avoiding Repeated States using A* Search

Solution 1: Remember all paths: Need extra bookkeeping

• Is GRAPH-SEARCH optimal with A*?

44

1 1

h = 1

h = 5

h = 0h = 5

A

B

C D

E
7

h = 0

Try with TREE-SEARCH and
GRAPH-SEARCH

Solution 2: Ensure that the first path to a node is the best!

30

Consistency (Monotonicity) of heuristic h

• A heuristic is consistent (or monotonic) provided
– for any node n, for any successor n’ generated by action a with

cost c(n,a,n’)

• h(n) ≤ c(n,a,n’) + h(n’)
– akin to triangle inequality.
– guarantees admissibility (proof?).

– values of f(n) along any path are non-decreasing (proof?).

• Contours of constant f in the state space

• GRAPH-SEARCH using consistent f(n) is optimal.
• Note that h(n) = 0 is consistent and admissible.

n n’
c(n,a,n’)

h(n)
h(n’)

g

Remainder of the lecture

• Examples

• Choosing heuristics

• Games and Minimax Search

31

32

Heuristics

• What’s a heuristic for
– Driving distance (or time) from city A to city B ?

– 8-puzzle problem ?

– M&C ?
– PACMAN?

32

Heuristics

• What’s a heuristic for
– Driving distance (or time) from city A to city B ?

– 8-puzzle problem ?

– M&C ?
– PACMAN?

• Admissible heuristic
– Does not overestimate the cost to reach the goal

– “Optimistic”

32

Heuristics

• What’s a heuristic for
– Driving distance (or time) from city A to city B ?

– 8-puzzle problem ?

– M&C ?
– PACMAN?

• Admissible heuristic
– Does not overestimate the cost to reach the goal

– “Optimistic”

• Are the above heuristics admissible? Consistent?

33

Example: 8-Puzzle

34

Comparing and combining heuristics

• Heuristics generated by considering relaxed versions of a problem.

• Heuristic h1 for 8-puzzle
– Number of out-of-order tiles

• Heuristic h2 for 8-puzzle
– Sum of Manhattan distances of each tile

• h2 dominates h1 provided h2(n) ≥ h1(n).
– h2 will likely prune more than h1.

• max(h1,h2 , .. ,hn) is
– admissible if each hi is
– consistent if each hi is

• Cost of sub-problems and pattern databases
– Cost for 4 specific tiles
– Can these be added for disjoint sets of tiles?

35

Effective Branching Factor

35

Effective Branching Factor

• Though informed search methods may have poor worst-
case performance, they often do quite well if the heuristic
is good
– Even if there is a huge branching factor

35

Effective Branching Factor

• Though informed search methods may have poor worst-
case performance, they often do quite well if the heuristic
is good
– Even if there is a huge branching factor

• One way to quantify the effectiveness of the heuristic: the
effective branching factor, b*
– N: total number of nodes expanded

– d: solution depth

– N = 1 + b* + (b*)2 + … + (b*)d

35

Effective Branching Factor

• Though informed search methods may have poor worst-
case performance, they often do quite well if the heuristic
is good
– Even if there is a huge branching factor

• One way to quantify the effectiveness of the heuristic: the
effective branching factor, b*
– N: total number of nodes expanded

– d: solution depth

– N = 1 + b* + (b*)2 + … + (b*)d

• For a good heuristic, b* is close to 1

36

Example: 8-puzzle problem

Averaged over 100 trials each at different solution lengths

Solution length

Ave. # of nodes expanded

Summary of informed search

• How to use a heuristic function to improve search
– Greedy Best-first search + Uniform-cost search = A* Search

• When is A* search optimal?
– h is Admissible (optimistic) for Tree Search

– h is Consistent for Graph Search

• Choosing heuristic functions
– A good heuristic function can reduce time/space cost of search by

orders of magnitude.

– Good heuristic function may take longer to evaluate.

37

38

Memory Bounded Search

• Memory, not computation, is usually the limiting factor in
search problems
– Certainly true for A* search

• Why? What takes up memory in A* search?

• Solution: Memory-bounded A* search
– Iterative Deepening A* (IDA*)

– Simplified Memory-bounded A* (SMA*)

– (Read the textbook for more details.)

– Very popular choice: Beam Search (Application in Decoding for
Large Language Model!)

Summary of informed search

• How to use a heuristic function to improve search
– Greedy Best-first search + Uniform-cost search = A* Search

• When is A* search optimal?
– h is Admissible (optimistic) for Tree Search

– h is Consistent for Graph Search

• Choosing heuristic functions
– A good heuristic function can reduce time/space cost of search by

orders of magnitude.

– Good heuristic function may take longer to evaluate.

39

