Artificial Intelligence CS 165A May 2, 2023

Instructor: Prof. Yu-Xiang Wang

1

 \square \rightarrow Informed Search and Heuristics

20

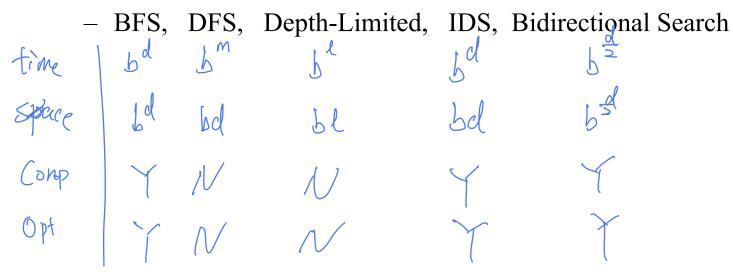
 \rightarrow Games and minimax search

Notes for Project 1

- Almost everyone has completed
 - Don't forget to submit the report and the leaderboard
- How to catch up if you missed the deadline?
 - 4 late days --- no question asked
 - 75% credits if submit before this Thursday (for the basic coding)
 - 50% credits if submit after this Thursday
- 9 students were able to beat the TA baseline!
 - Truly awesome! Keep it coming!
- Start Project 2 early!

Recap: Search agent and search algorithms

- Representing states, operators and costs
 - State-space diagram: What are the vertices, edges, edge weights?
 - Examples: Romania, Missionary and Cannibals, Pacman, 8puzzle (and the MU puzzle from the quiz)
- Search algorithms



- Four criteria to evaluate the search algorithms:
 - Completeness, Optimality, Space complexity, time complexity

3

This lecture

- Uniform cost search
- Informed search, aka Heuristic Search
- Admissible and consistent heuristics
- Tree search vs Graph Search
- (if time permits) Intro to games and adversarial search

- Similar to breadth-first search, but always expands the lowest-cost node, as measured by the path cost function, g(n)
 - -g(n) is (actual) cost of getting to node n
 - Breadth-first search is actually a special case of uniform cost search, where g(n) = DEPTH(n)
 - If the path cost is monotonically increasing, uniform cost search will find the optimal solution

- Similar to breadth-first search, but always expands the lowest-cost node, as measured by the path cost function, g(n)
 - -g(n) is (actual) cost of getting to node n
 - Breadth-first search is actually a special case of uniform cost search, where g(n) = DEPTH(n)
 - If the path cost is monotonically increasing, uniform cost search will find the optimal solution

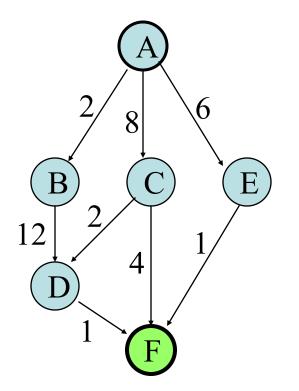
function UNIFORM-COST-SEARCH(*problem*) **returns** a solution or failure **return GENERAL-SEARCH**(*problem*, ENQUEUE-IN-COST-ORDER)

- Similar to breadth-first search, but always expands the lowest-cost node, as measured by the path cost function, g(n)
 - -g(n) is (actual) cost of getting to node n
 - Breadth-first search is actually a special case of uniform cost search, where g(n) = DEPTH(n)
 - If the path cost is monotonically increasing, uniform cost search will find the optimal solution

function UNIFORM-COST-SEARCH(*problem*) **returns** a solution or failure **return GENERAL-SEARCH**(*problem*, ENQUEUE-IN-COST-ORDER)

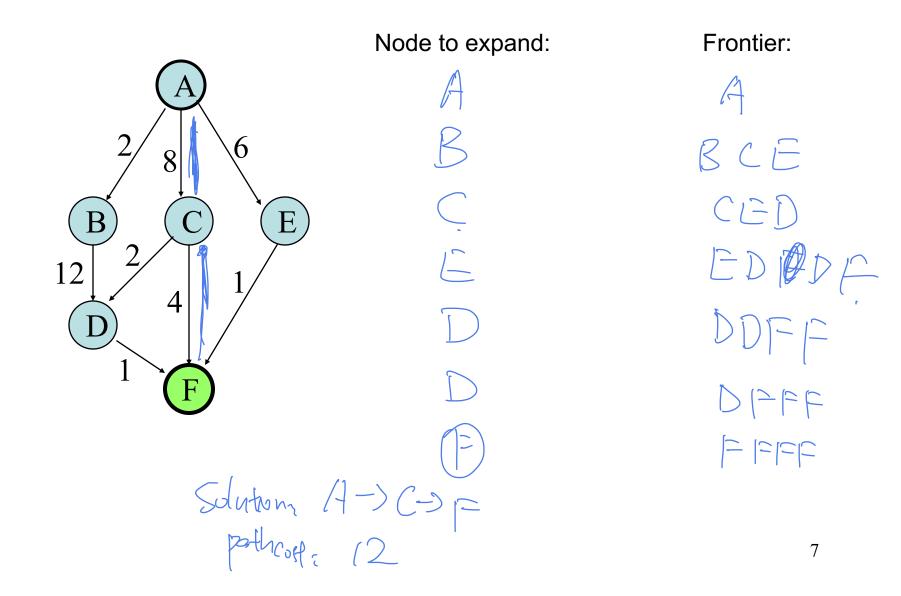
(Dijkstra's algorithm of an potentially infinite graph)

Example (3 min work)

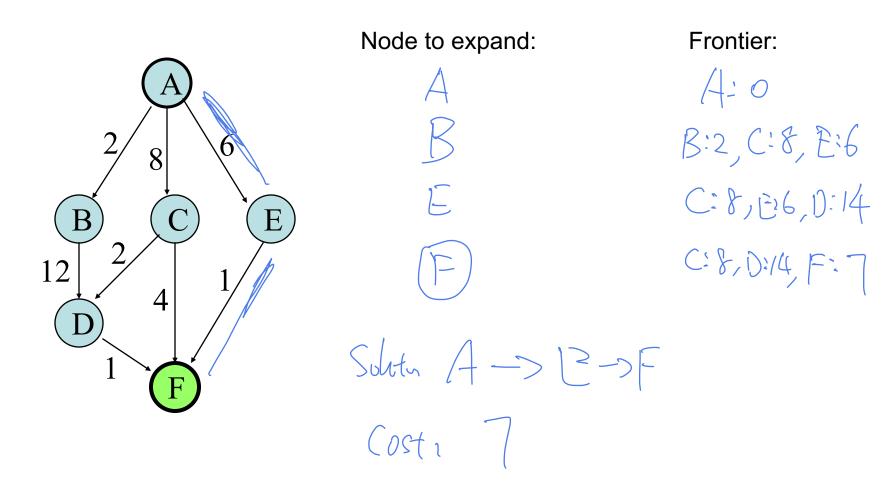


Try breadth-first and uniform cost

Example (3 min work): Breath-First Search



Example (3 min work): Uniform Cost Search



C = optimal cost ϵ = minimum step cost

- Complete? Yes, if $\varepsilon > 0$
- Optimal? Yes
- Time complexity?
- Space complexity?

C = optimal cost ϵ = minimum step cost

- Complete? Yes, if $\varepsilon > 0$
- Optimal? Yes
- Time complexity? Exponential: $O(b^{\lfloor C/\epsilon \rfloor})$
- Space complexity?

C = optimal cost ϵ = minimum step cost

- Complete? Yes, if $\varepsilon > 0$
- Optimal? Yes
- Time complexity? Exponential: $O(b^{\lfloor C/\epsilon \rfloor})$
- Space complexity? Exponential: $O(b^{\lfloor C/\epsilon \rfloor})$

C = optimal cost ϵ = minimum step cost

- Complete? Yes, if $\varepsilon > 0$
- Optimal? Yes
- Time complexity? Exponential: $O(b^{\lfloor C/\epsilon \rfloor})$
- Space complexity? Exponential: $O(b^{LC/\epsilon})$

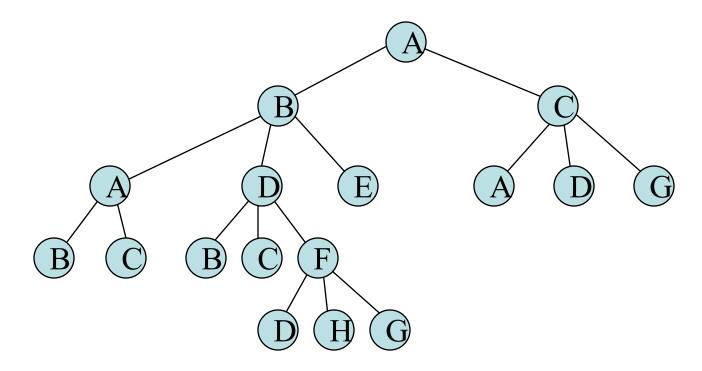
Same as breadth-first if all edge costs are equal

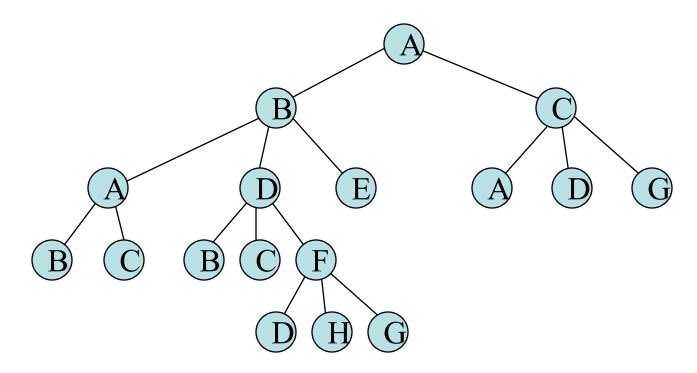
Can we do better than Tree Search?

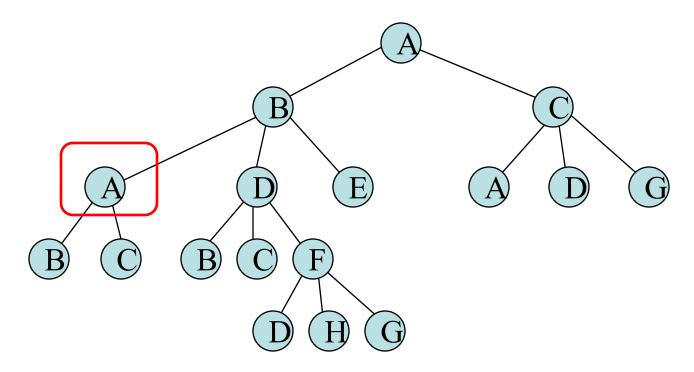
- Sometimes.
- When the number of states are small
 - Dynamic programming (smart way of doing exhaustive search)

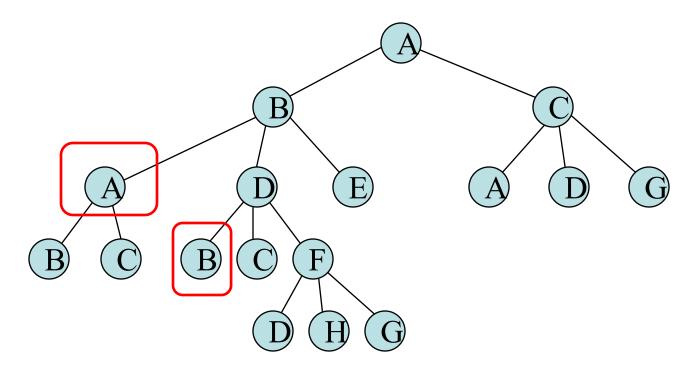
State Space vs. Search Tree (cont.)

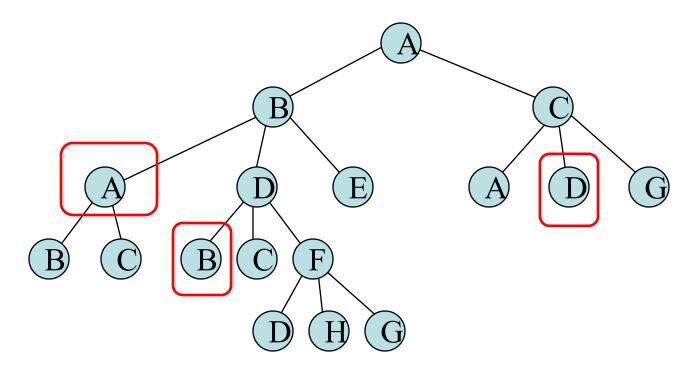
Search tree (partially expanded)

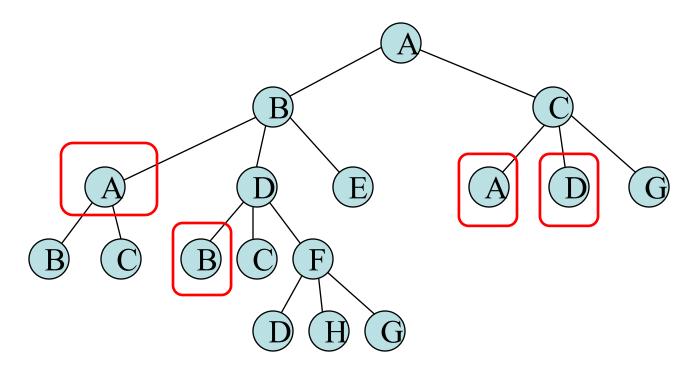


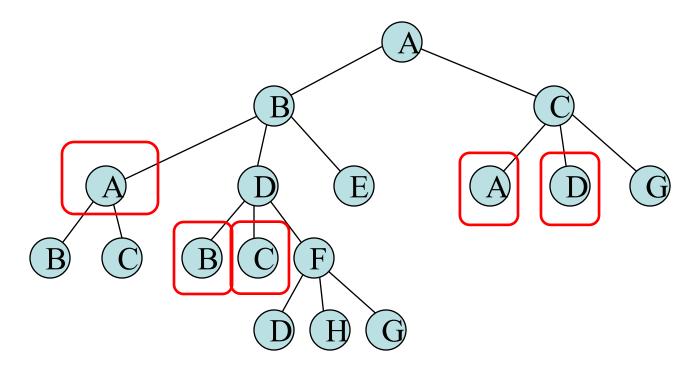


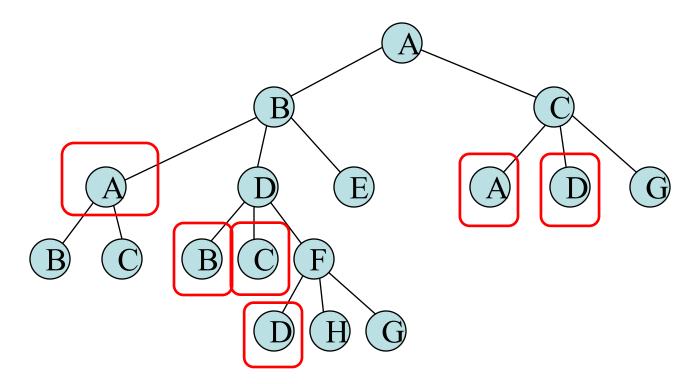


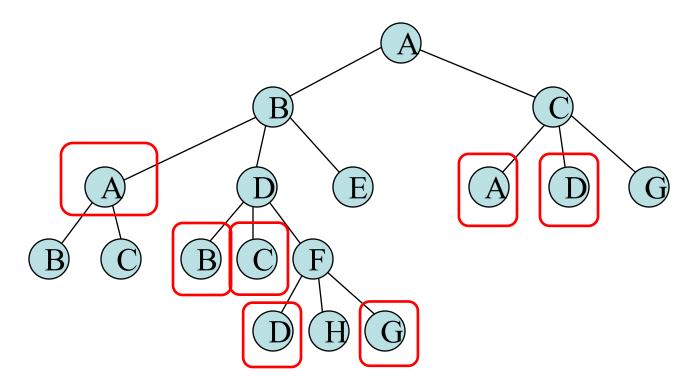


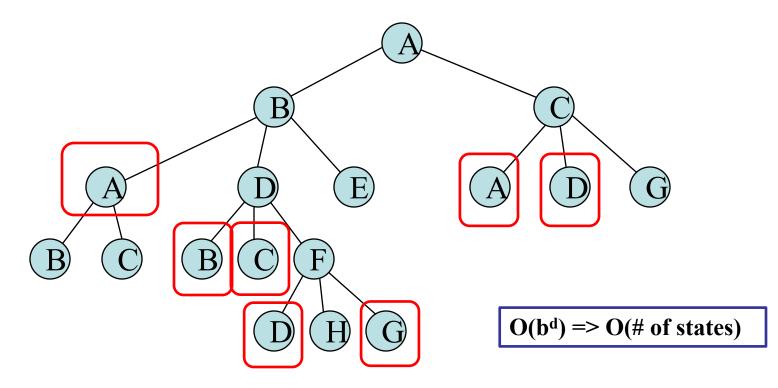












Graph Search vs Tree Search

- Tree Search
 - We might repeat some states
 - But we do not need to remember states
- Graph Search
 - We remember all the states that have been explored
 - But we do not repeat some states

Summary table of uninformed search

Criteria	BFS	Uniform-cost	DFS	Depth-limited	IDS	Bidirectional
Complete?	Yes#	Yes ^{#&}	No	No	Yes#	Yes ^{#+}
Time	O(b ^d)	O(b ^{1+[C*/e]})	O (<i>b^m</i>)	O(b')	O(<i>b</i> ^{<i>d</i>})	O(<i>b</i> ^{<i>d</i>/2})
Space	O(b ^d)	O(b ^{1+[C*/e]})	O(bm)	O(bl)	O(bd)	O(<i>b</i> ^{<i>d</i>/2})
Optimal?	Yes ^s	Yes	No	No	Yes ^{\$}	Yes ^{\$+}

- b: Branching factor
- d: Depth of the shallowest goal
- I: Depth limit
- m: Maximum depth of search tree
- e: The lower bound of the step cost
- #: Complete if b is finite
- [&]: Complete if step cost >= e
- \$: Optimal if all step costs are identical
- +: If both direction use BFS

(Section 3.4.6 in the AIMA book.)

- The computer can't "see" the search graph like we can
 - No "bird's eye view" make relevant information explicit!

- The computer can't "see" the search graph like we can
 - No "bird's eye view" make relevant information explicit!
- What information should you keep for a node in the search tree?

- The computer can't "see" the search graph like we can
 - No "bird's eye view" make relevant information explicit!
- What information should you keep for a node in the search tree?
 - State
 - (1 2 0)
 - Parent node (or perhaps complete ancestry)
 - Node #3 (or, nodes 0, 2, 5, 11, 14)
 - Depth of the node
 - d = 4
 - Path cost up to (and including) the node
 - g(node) = 12
 - Operator that produced this node
 - Operator #1

Remainder of the lecture

- Informed search
- Some questions / desiderata
 - 1. Can we do better with some side information?
 - 2. We do not wish to make strong assumptions on the side information.
 - 3. If the side information is good, we hope to do better.
 - 4. If the side information is useless, we perform as well as an uninformed search method.

Best-First Search (with an Eval-Fn)

function BEST-FIRST-SEARCH(problem, EVAL-FN) returns a solution or failure QUEUING-FN ← a function that orders nodes by EVAL-FN return GENERAL-SEARCH(problem, QUEUING-FN)

- Uses a heuristic function, *h(n)*, as the EVAL-FN
- *h(n)* estimates the cost of the best path from state *n* to a goal state
 - $\circ \quad h(goal) = 0$

Greedy Best-First Search

- Greedy search always expand the node that appears to be the closest to the goal (i.e., with the smallest *h*)
 - Instant gratification, hence "greedy"

Greedy Best-First Search

- Greedy search always expand the node that appears to be the closest to the goal (i.e., with the smallest *h*)
 - Instant gratification, hence "greedy"

function GREEDY-SEARCH(problem, h) returns a solution or failure
return BEST-FIRST-SEARCH(problem, h)

Greedy Best-First Search

- Greedy search always expand the node that appears to be the closest to the goal (i.e., with the smallest *h*)
 - Instant gratification, hence "greedy"

function GREEDY-SEARCH(problem, h) returns a solution or failure
return BEST-FIRST-SEARCH(problem, h)

- Greedy search often performs well, but:
 - It doesn't always find the best solution / or any solution
 - It may get stuck
 - It performance completely depends on the particular h function

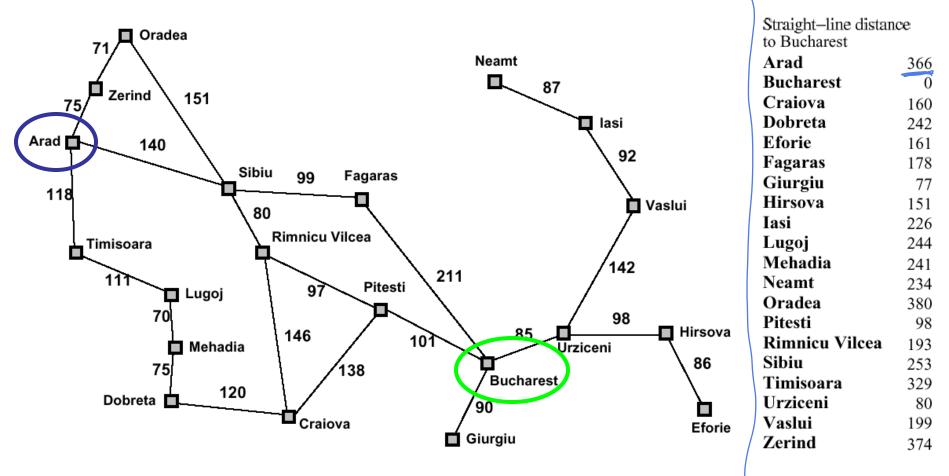
• Uniform-cost search minimizes *g(n)* ("past" cost)

- Uniform-cost search minimizes *g(n)* ("past" cost)
- Greedy search minimizes *h(n)* ("expected" or "future" cost)

- Uniform-cost search minimizes *g(n)* ("past" cost)
- Greedy search minimizes *h(n)* ("expected" or "future" cost)
- "A* Search" combines the two:
 - Minimize f(n) = g(n) + h(n)
 - Accounts for the "past" and the "future"
 - Estimates the cheapest solution (complete path) through node *n*

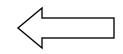
- Uniform-cost search minimizes *g(n)* ("past" cost)
- Greedy search minimizes *h(n)* ("expected" or "future" cost)
- "A* Search" combines the two:
 - Minimize f(n) = g(n) + h(n)
 - Accounts for the "past" and the "future"
 - Estimates the cheapest solution (complete path) through node *n*

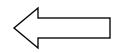
function A*-SEARCH(problem, h) returns a solution or failure
return BEST-FIRST-SEARCH(problem, f)

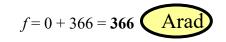


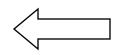
f(n) = g(n) + h(n)

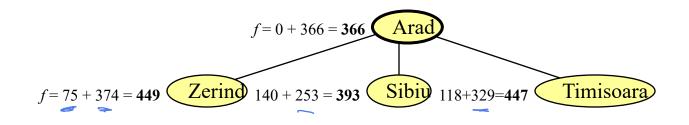
20

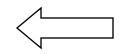


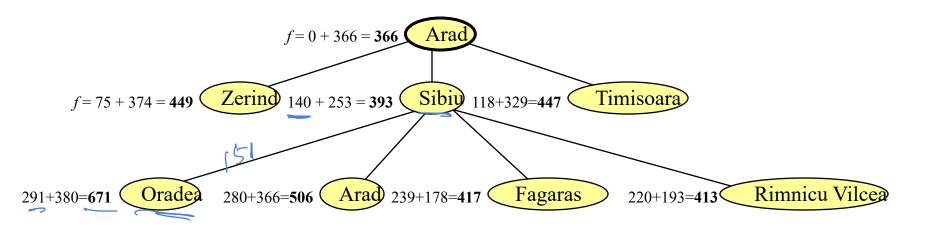


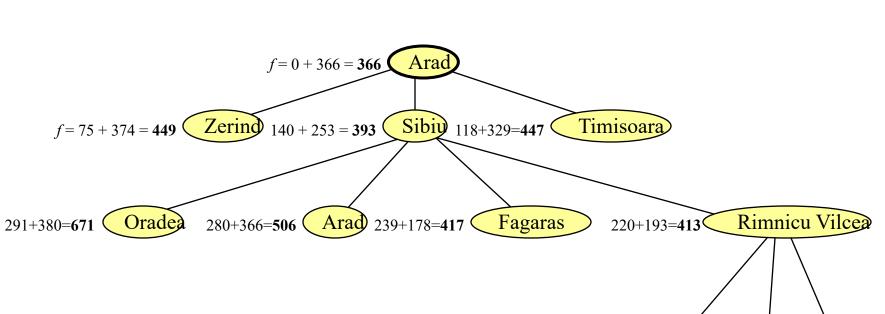












When does A^{*} search "work"?

• Focus on optimality (finding the optimal solution)

• "A* Search" is optimal if h is admissible

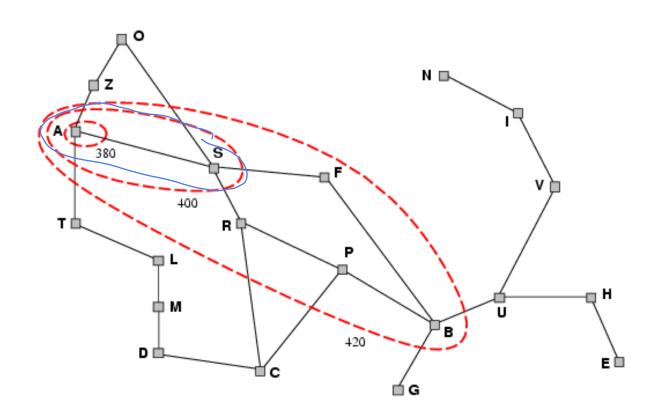
When does A^{*} search "work"?

• Focus on optimality (finding the optimal solution)

- "A* Search" is optimal if h is admissible
 - -h is optimistic it never overestimates the cost to the goal
 - $h(n) \leq$ true cost to reach the goal
 - So f(n) never overestimates the actual cost of <u>the best solution</u> passing through node n

Visualizing A^{*} search

- A^* expands nodes in order of increasing f value
- Gradually adds "*f*-contours" of nodes
- Contour *i* has all nodes with $f=f_i$, where $f_i < f_{i+1}$



- Let OPT be the optimal path cost.
 - All non-goal nodes on this path have $f \le OPT$.
 - Positive costs on edges
 - The goal node on this path has f = OPT.

- Let OPT be the optimal path cost.
 - All non-goal nodes on this path have $f \le OPT$.
 - Positive costs on edges
 - The goal node on this path has f = OPT.
- A* search does not stop until an f-value of OPT is reached.
 - All other goal nodes have an f cost higher than OPT.

- Let OPT be the optimal path cost.
 - All non-goal nodes on this path have $f \le OPT$.
 - Positive costs on edges
 - The goal node on this path has f = OPT.
- A* search does not stop until an f-value of OPT is reached.
 All other goal nodes have an f cost higher than OPT.
- All non-goal nodes on the optimal path are eventually expanded.
 - The optimal goal node is eventually placed on the priority queue, and reaches the front of the queue.

Optimal Efficiency of A*

A* is <u>optimally efficient</u> for any particular h(n)That is, no other optimal algorithm is guaranteed to expand fewer nodes with the same h(n).

Optimal Efficiency of A*

A* is <u>optimally efficient</u> for any particular h(n)That is, no other optimal algorithm is guaranteed to expand fewer nodes with the same h(n).

- Need to find a good and efficiently evaluable h(n).

- Optimal?
- Complete?
- Time complexity?
- Space complexity?

- Optimal? Yes
- Complete?
- Time complexity?
- Space complexity?

- Optimal? Yes
- Complete? Yes
- Time complexity?
- Space complexity?

- Optimal? Yes
- Complete? Yes
- Time complexity?

Exponential; better under some conditions

• Space complexity?

- Optimal? Yes
- Complete? Yes
- Time complexity? Expone
- Space complexity?

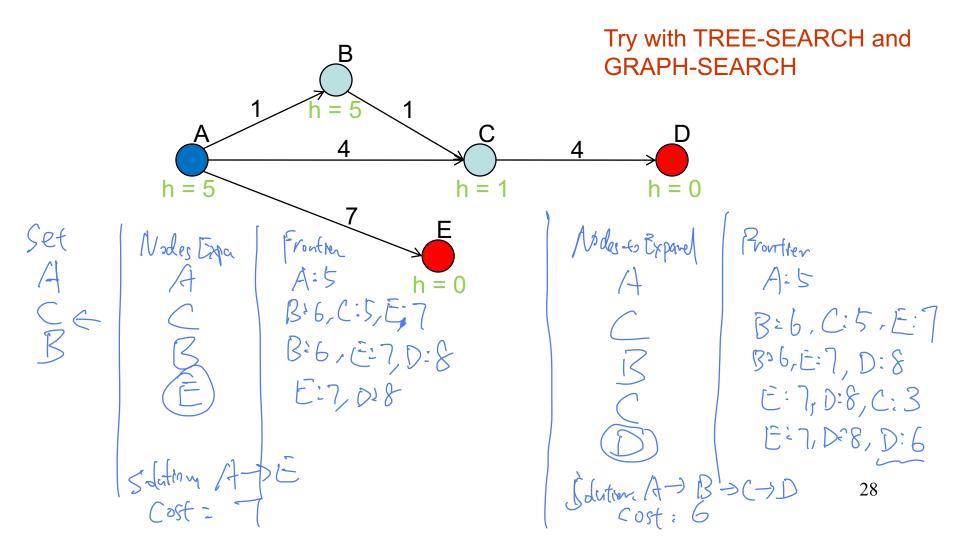
Exponential; better under some conditions Exponential; keeps all nodes in memory

Recall: Graph Search vs Tree Search

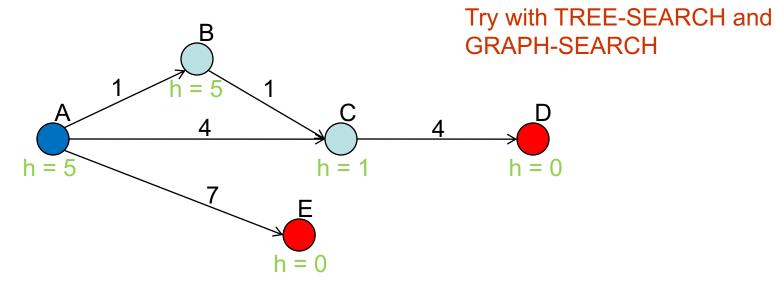
- Tree Search
 - We might repeat some states
 - But we do not need to remember states
- Graph Search
 - We remember all the states that have been explored
 - But we do not repeat some states

Avoiding Repeated States using A* Search

• Is GRAPH-SEARCH optimal with A*?



• Is GRAPH-SEARCH optimal with A*?

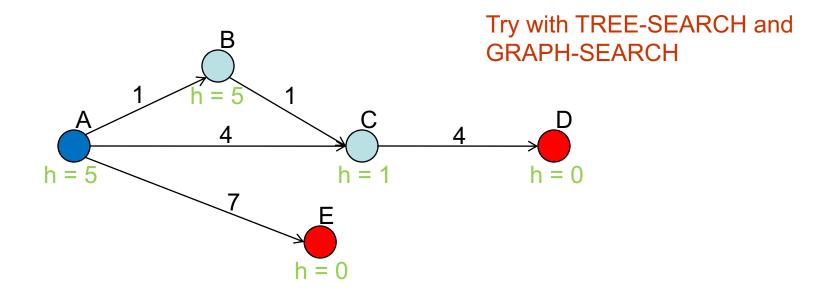


Graph Search Step 1: Among B, C, E, Choose C Step 2: Among B, E, D, Choose B Step 3: Among D, E, Choose E. (you are not going to select C again)

• Is GRAPH-SEARCH optimal with A*?

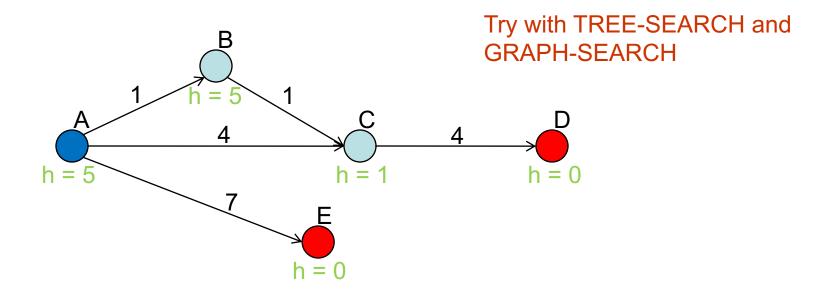


• Is GRAPH-SEARCH optimal with A*?



Solution 1: Remember all paths: Need extra bookkeeping

• Is GRAPH-SEARCH optimal with A*?



Solution 1: Remember all paths: Need extra bookkeeping

Solution 2: Ensure that the first path to a node is the best!

Consistency (Monotonicity) of heuristic h

- A heuristic is consistent (or monotonic) provided
 - for any node n, for any successor n' generated by action a with cost c(n,a,n')
 - $h(n) \le c(n, a, n') + h(n')$
 - akin to triangle inequality.
- Exercise
- guarantees admissibility (proof?).
- values of f(n) along any path are non-decreasing (proof?).
 - Contours of constant f in the state space
- GRAPH-SEARCH using consistent f(n) is optimal.
- Note that h(n) = 0 is consistent and admissible.

h(n')

g

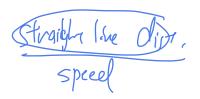
Remainder of the lecture

- Examples
- Choosing heuristics
- Games and Minimax Search

Heuristics

- What's a heuristic for ullet
 - Driving distance (or time) from city A to city B?

 - 8-puzzle problem? Z clist (t, g) M&C? # of Monther Left mil
 - PACMAN?

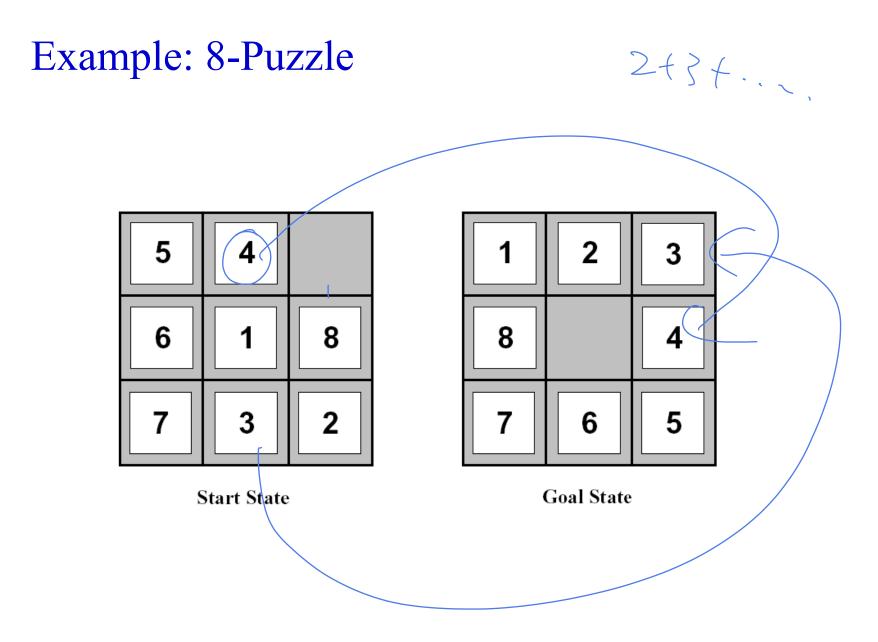


Heuristics

- What's a heuristic for
 - Driving distance (or time) from city A to city B?
 - 8-puzzle problem ?
 - M&C ?
 - PACMAN?
- Admissible heuristic
 - Does not overestimate the cost to reach the goal
 - "Optimistic"

Heuristics

- What's a heuristic for
 - Driving distance (or time) from city A to city B?
 - 8-puzzle problem ?
 - M&C ?
 - PACMAN?
- Admissible heuristic
 - Does not overestimate the cost to reach the goal
 - "Optimistic"
- Are the above heuristics admissible? Consistent?



Comparing and combining heuristics

- Heuristics generated by considering relaxed versions of a problem.
- Heuristic h₁ for 8-puzzle
 - Number of out-of-order tiles
- Heuristic h₂ for 8-puzzle
 - Sum of Manhattan distances of each tile
- h_2 dominates h_1 provided $h_2(n) \ge h_1(n)$.
 - h₂ will likely prune more than h₁.
- $\max(h_1, h_2, \dots, h_n)$ is
 - $\ \ admissible \ \ if each \ h_i \ is$
 - consistent if each h_i is
- Cost of sub-problems and pattern databases
 - Cost for 4 specific tiles
 - Can these be added for disjoint sets of tiles?

- Though <u>informed</u> search methods may have poor *worst-case* performance, they often do quite well if the heuristic is good
 - Even if there is a huge branching factor

- Though <u>informed</u> search methods may have poor *worst-case* performance, they often do quite well if the heuristic is good
 - Even if there is a huge branching factor
- One way to quantify the effectiveness of the heuristic: the effective branching factor, *b**
 - N: total number of nodes expanded
 - d: solution depth
 - $N = 1 + b^* + (b^*)^2 + \ldots + (b^*)^d$

 $b^{\neq} \sim O(\eta^{\frac{1}{\alpha}})$

- Though <u>informed</u> search methods may have poor *worst-case* performance, they often do quite well if the heuristic is good
 - Even if there is a huge branching factor
- One way to quantify the effectiveness of the heuristic: the effective branching factor, *b**
 - N: total number of nodes expanded
 - d: solution depth
 - $N = 1 + b^* + (b^*)^2 + \ldots + (b^*)^d$
- For a good heuristic, b* is close to 1

Example: 8-puzzle problem

Averaged over 100 trials each at different solution lengths

	Search Cost			Effective Branching Factor		
d	IDS	$A^*(h_1)$	$A^*(h_2)$	IDS	$A^*(h_1)$	$A^*(h_2)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	364404	227	73	2.78	1.42	1.24
14	3473941	539	113	2.83	1.44	1.23
16	_	1301	211	ll – ,	1.45	1.25
18	-	3056	363	_)	1.46	1.26
20	-	7276	676	-	1.47	1.27
22	_	18094	1219	-	1.48	1.28
24	_	39135	1 <u>641</u>	_)	1.48	1.26
•					1	
	Ave	. # of nodes expand	ded		#of-displace	total Maherron
lutior	n length				· · · · ·	

Solution length

Summary of informed search

- How to use a heuristic function to improve search
 - Greedy Best-first search + Uniform-cost search = A^* Search
- When is A* search optimal?
 - h is Admissible (optimistic) for Tree Search
 - h is Consistent for Graph Search
- Choosing heuristic functions
 - A good heuristic function can reduce time/space cost of search by orders of magnitude.
 - Good heuristic function may take longer to evaluate.

Memory Bounded Search

- Memory, not computation, is <u>usually</u> the limiting factor in search problems
 - Certainly true for A* search
- Why? What takes up memory in A* search?
- Solution: Memory-bounded A* search
 - Iterative Deepening A* (IDA*)
 - Simplified Memory-bounded A* (SMA*)
 - (Read the textbook for more details.)
 - Very popular choice: Beam Search (Application in Decoding for Large Language Model!)

Summary of informed search

- How to use a heuristic function to improve search
 - Greedy Best-first search + Uniform-cost search = A^* Search
- When is A* search optimal?
 - h is Admissible (optimistic) for Tree Search
 - h is Consistent for Graph Search
- Choosing heuristic functions
 - A good heuristic function can reduce time/space cost of search by orders of magnitude.
 - Good heuristic function may take longer to evaluate.