
Homework 2 of CS 165A (Spring 2023)

University of California, Santa Barbara

To be discussed on Apr 26 and May 3, 2023 (Wednesdays)

Notes:

• The homework is optional. You do not need to submit your solutions anywhere and
you will not be evaluated by these.

• To maximize your learning, you should try understanding the problems and try solving
them as much as you can before the discussion class.

• Feel free to discuss with your peers / form small groups to solve these problems.

• Feel free to discuss any questions with the instructor and the TA in office hours or on
Piazza.

1 Why should I do this homework?

This homework is given for you to practice what you learned in BayesNet (Problem 1 - 3)
and in Search (Problem 4-5). In Problem 1, you will practice modeling with BayesNet.. In
Problem 2, you will practice reading conditional independences from the graph. Problem 3
teaches you something about the notorious Hidden Markov Models (HMM). While Problem
3 is a challenge question, part (a) - (c) are short and highly doable.

Problem 4 asks you to write down what we have brainstormed in the lecture on the
Missionary and Cannibal example. Problem 5 is a good chance to understand and practice
different search algorithms by hands (something that you should perhaps expect one question
in the midterm).

2 Homework problems

Problem 1 A patient has a probability to recover from a disease that depends on whether
s/he receives the drug, how old s/he is and which gender the patient has. A doctor gives a



patient a drug dependent on their age and gender. Additionally it is known that age and
gender are independent.

(a) Draw the Bayesian network which describes this situation.

Let R represent the patient recovering, D represent the drug being administered, A
represent the patient’s age, and G represent the patient’s gender. Lastly X → Y means
that there’s an arrow from X to Y in the Bayesian network.

Doctor gives a patient a drug dependent on their age and gender

There should be edges from A→ D, and G→ D

A patient has a probability to recover from a disease that depends on
whether s/he receives the drug, how old s/he is and which gender the
patient has

There should be edges from A→ R, G→ R, D → R

All together, this gives:

A G

DR

Other solutions are valid too. For example, if the doctor does not decide on the drug
based on either age or gender, but something else independent to these features, then
you have a different Bayesian network.

(b) Factorize the joint probability distributions into CPTs.

By traversing the graph from the parents to the children, we can write

P (R,D,A,G) = P (A)P (G)P (D|A,G)P (R|D,A,G)

One can also do it algebraically and apply the conditional independences

P (R,D,A,G) = P (R|D,A,G)P (D,A,G)

= P (R|D,A,G)P (D|A,G)P (A,G)

= P (R|D,A,G)P (D|A,G)P (A)P (G)

The last step applies A ⊥ G.



(c) Write down the formula to compute the probability that a patient recovers given that
you know if s/he gets the drug. Write down the formula using only probabilities which
are part of the factorized probability distribution (i.e., the CPTs).

We apply marginalization to get the CPTs

P (R|D) =
P (R,D)

P (D)

=

∑
A

∑
G P (A)P (G)P (D|A,G)P (R|D,A,G)∑

R

∑
A

∑
G P (A)P (G)P (D|A,G)P (R|D,A,G)

=

∑
A

∑
G P (A)P (G)P (D|A,G)P (R|D,A,G)∑

A

∑
G P (A)P (G)P (D|A,G)

The second step simplifies the expression a bit by eliminating variable R. The solution
is correct with or without the last step.

Problem 2 Consider the Bayes Net below:

(a) Is it true that P (X|Y,W ) = P (X|W )? Explain.

This question asks about whether X and Y are conditional independent given W

So the answer is No, X Y might not be conditionally independent given W by the
common descendant rule of d-separation.

(b) Write down the expression for computing P (X|Y ) using the above Bayes Net.

Since X and Y are marginally independent. P (X|Y ) = P (X)



(c) Are variables X,W conditionally independent of variables V,Z, given Y? Explain.

Path W → U ← V to node V, this path is blocked by U. This is because U is not
observed, according to the Collider rule, the ball can not pass through U.

Path W ← Y → V to node V, this path is blocked by Y. This is because Y is not
observed, according to the Fork rule, the ball can not pass through Y.

Since every possible path is blocked, we can say X,W are conditionally independent of
variables V, Z, given Y

(d) Are variables X,W conditionally independent of variables V,Z, given U? Explain.

Not necessarily. There is an active path W → U ← V , where U is observed.

As long as there is an active path, we can not say X,W are conditionally independent
of variables V, Z, given U

(e) Are variables W and Z independent? Explain.

Not necessarily. Because there is an active path W ← Y → V → Z.

(f) Write down the Markov Blanket of variable W and variable Y .

The Markov blanket of W is {X, Y, U, V }. The Markov blanket of Y is {W,X, V }

(g) Assume all the variables are binary, either take value 0 or 1. Write down the expression
to compute P (U = 1, V = 1,W = 1, X = 0, Y = 0, Z = 1) using notation like
P (X = 1|W = 0).

P (U = 1|W = 1, V = 1)P (Z = 1|V = 1)P (W = 1|X = 0, Y = 0)P (V = 1|Y =
0)P (X = 0)P (Y = 0)



Problem 3 Hidden Markov Models (Challenge Problem) Let all variables be dis-
crete. In particular, let Oi be a discrete random variable that could take d possible values,
and Hi be a discrete random variable that could take k possible values.

The parameters of the HMM model are simply the CPTs of the graphical model, i.e.,

P (H1) = θ ∈ Rk,

P (Hi+1|Hi) = A ∈ Rk×k for all i = 1, 2, 3, ..., T − 1,

P (Oi|Hi) = B ∈ Rd×k for all i = 1, 2, 3, ..., T.

Canonically, parameter θ, A,B are called the “initial state distribution”, “transition proba-
bilities” and “emission probabilities” in standard HMM jargon.

Convince yourself the dimensionality of these CPTs are correct.

Note that the transition and emission probabilities are the same for all i = 1, ..., T .

(a) Write down the joint probability of P (H1, ..., HT , O1, ..., OT ) in factorized form as func-
tion of the CPTs θ, A,B.

P (H1, ...., HT , O1, ..., OT ; θ, A,B) = P (H1)
T∏
t=1

P (Ot|Ht)
T∏
t=2

P (Ht|Ht−1)

= θ[H1]
T∏
t=1

B[Ot, Ht]
T∏
t=2

A[Ht|Ht−1)

(b) Write down the probability distribution of the observed variables P (O1, ..., OT ) as a
function of the CPTs θ, A,B.

(hint: This is identical to expressing P (O1, ..., OT ) using CPTs, but the parameters
are shared. The final expression (if you use a matrix form, will be quite clean))

Remark: The above probability distribution P (O1, ..., OT ) is jointly parametrized by
values of O1, ..., OT , and the values of θ, A,B. When we view it as a function of θ, A,B,



while keeping O1, ..., OT fixed, Then this function is known as the likelihood function:
L(O1, ..., OT ; θ, A,B). This measures the likelihood of observing O1, ..., OT when the
data generating distribution is specified by θ, A,B.

Given a sequence of observation [O1, ..., OT ] = [o1, ..., oT ], the parameters A,B, θ that
maximizes the likelihood, i.e.

[θ̂, Â, B̂] = argmax
A,B,θ

L(O1 = o1, ..., OT = ot; θ, A,B)

is called the maximum likelihood estimator.

Solving the optimization for this MLE is not easy. It is not a convex optimization
problem and we will have to use the EM algorithm to find a local optimal solution. The
E-step alone requires using dynamic programming — a Forward-Backward algorithm
(closely related to the more famous Viterbi algorithm). The EM solution itself is known
as the Baum-Welch algorithm. Rest assured. You are not going to derive that in this
homework.

We will take an alternative route using only things that we have learned from the class.

P (O1, ..., OT ; θ, A,B) =
∑

H1,...,HT

P (H1)
T∏
t=1

P (Ot|Ht)
T∏
t=2

P (Ht|Ht−1)

=
∑

H1,...,HT

θ[H1]
T∏
t=1

B[Ot, Ht]
T∏
t=2

A[Ht, Ht−1]

=
∑
HT

B[OT , HT ]
∑
HT−1

B[OT , HT ]A[HT |HT−1] . . .
∑
H2

B[O2, H2]A[H2, H1]∑
H1

B[O1, H1]A[H2, H1]θ[H1].

(c) Show (using the rules of d-separation or otherwise) that for 2 ≤ i ≤ T−1, Oi−1, Oi, Oi+1

are conditionally independent given Hi.

By d-separation (Chain), (Oi−1, Hi−1) ⊥ Oi|Hi, and (Oi−1, Hi−1) ⊥ (Hi+1, Oi+1)|Hi.

(d) Use the conditional independence in (c) to show that:

P (O1, O2, O3) =
k∑

i=1

P (H2 = i)P (O1|H2 = i)P (O2|H2 = i)P (O3|H2 = i). (1)

Given the conditional independence that O1, O2, and O3 are conditionally independent
given H2, we can express the joint probability P (O1, O2, O3|H2) as the product of the



conditional probabilities:

P (O1, O2, O3|H2) = P (O1|H2)P (O2|H2)P (O3|H2)

Now, to find P (O1, O2, O3), we marginalize out the hidden state H2:

P (O1, O2, O3) =
k∑

i=1

P (H2 = I)P (O1, O2, O3|H2)

=
k∑

i=1

P (H2 = i)P (O1|H2 = i)P (O2|H2 = i)P (O3|H2 = i)

(e) Let O1, O2, O3 be discrete random variables with d possible values and H2 be a discrete
random variable with k possible values.

• What is the total number of independent numbers to describe P (H2), P (O2|H2),
P (O1|H2), P (O3|H2) in terms of k and d?

To describe P (H2), we need (k − 1) independent numbers since the probabilities
of all hidden states must sum to 1.

To describe P (O2|H2), we need k ∗ (d − 1) independent numbers, as for each of
the k hidden states, we have (d − 1) independent probabilities for the observed
states (the last one is determined by the fact that probabilities must sum to 1).

Similarly, for P (O1|H2) and P (O3|H2), we also need k ∗ (d−1) independent num-
bers for each.

So the total number of independent numbers needed to describe P (H2), P (O2|H2),
P (O1|H2), and P (O3|H2) is: k − 1 + 3k(d− 1)

• Let us enumerate all combinations of O1, O2, O3 in (1), how many equations do
we get in total?

Solution: kd3

• Note that the LHS of (1) can be estimated from the data directly and the RHS are
all unknown parameters. By solving the system of (nonlinear) equations, we can
potentially identify the unknowns: P (H2), P (O2|H2), P (O1|H2), P (O3|H2). What
is a condition on k, d such that we have enough equations to identify all unknowns
variables? (Assume that we need one equation for one unknown.)



(Hint: the number of unknown variables are the same as the number of indepen-
dent parameters)

Solution:

For the system of equations to have enough equations to identify all unknown
variables, we need the total number of equations to be greater than or equal to
the total number of independent parameters.

kd3 ≥ k − 1 + 3k(d− 1)

(f) If we can solve the nonlinear equations about, we can then identify

P (H2), P (O2|H2), P (O1|H2), P (O3|H2).

But these are not the CPTs. If the CPTs are ultimately what we want to learn, then
we need an set of equations to convert these quantities back to CPTs.

Write P (O2|H2), P (O3|H2) and P (O1|H2) in terms of the model parameters (the
CPTs): θ, A,B.

The first expression is trivially:

P (O2|H2) = B[O2, H2]

By the sum rule:

P (O3|H2) =
∑
H3

B[O3, H3]A[H3, H2]

Finally, by the Bayes rule:

P (O1|H2) =
∑
H1

P (H1|H2)P (O1|H1) =
∑
H1

P (H2|H1)P (H1)

P (H2)
P (O1|H1)

=
∑
H1

A[H2, H1]θ(H1)

P (H2)
B[O1, H1]

Note that P (H2) = A[H2, :]θ. Everything above has a matrix representation too.

In matrix form:

P (H2) = Aθ

P (O2|H2) = B

P (O3|H2) = BA,

P (O1, H2) = (Bdiag(θ)AT )

and P (O1|H2) is constructed by element-wise dividing every column of (Bdiag(θ)AT )
by Aθ.

These equations tell us how we can make use of what we can solve for using the
nonlinear system of equations — P (O2|H2), P (O3|H2) and P (O1|H2) — to recover the
parameters of the HMM model.



Problem 4 The missionaries and cannibals problem is usually stated as follows. Three
missionaries and three cannibals are on one side of a river, along with a boat that can hold
one or two people. Find a way to get everyone to the other side without ever leaving a group
of missionaries in one place outnumbered by the cannibals in that place.

(a) Define a state representation.

There are many possibilities, one way is to use numbers (as we did in the lecture), that
use 3, 3, 1 to denote 3 missionaries and 3 cannibals on the left-hand side and the boat
is on the left-hand side.

Another example is to represent the missionaries by M and the cannibals by C. Let
the boat be B.

Each state can be represented by the items on each side, e.g., Side1 {M,M,C,C},
Side2 {M,C,B}

(b) Give the initial and goal states in this representation.

Initial state: Side1 {M,M,M,C,C,C,B}, Side2 {}
Goal state: Side1 {}, Side2 {M,M,M,C,C,C,B}

(c) Define the successor function (output available states that are safe) in this representa-
tion.

A set of missionaries and/or cannibals (call them Move) can be moved from Sidea to
Sideb if:

• The boat is on Sidea.

• The set Move consists of 1 or 2 people that are on Sidea.

• The number of missionaries in the set formed by subtracting Move from Sidea is 0
or it is greater than or equal to the number of cannibals.

• The number of missionaries in the set formed by adding Move to Sideb is 0 or it is
greater than or equal to the number of cannibals.

(d) What is the cost function in your successor function?

Each move has unit cost.

(e) What is the total number of safe states? Give an example of a state that is safe but
unreachable?

The total number of safe states is 16:



Side1{M,M,M,C,C,C,B}, Side2{}
Side1{}, Side2{M,M,M,C,C,C,B}
Side1{M,M,M,C,C,B}, Side2{C}
Side1{M,M,M,C,C}, Side2{C,B}
Side1{M,M,M,C,B}, Side2{C,C}
Side1{M,M,M,C}, Side2{C,C,B}
Side1{M,M,C,C,B}, Side2{M,C}
Side1{M,M,C,C}, Side2{M,C,B}
Side1{M,C,B}, Side2{M,M,C,C}
Side1{M,C}, Side2{M,M,C,C,B}
Side1{C,C,C,B}, Side2{M,M,M}
Side1{C}, Side2{M,M,M,C,C,B}
Side1{C,C,B}, Side2{M,M,M,C}
Side1{C,C,B}, Side2{M,M,M,C}
Side1{M,M,M}, Side2{C,C,C,B}
Side1{C,B}, Side2{M,M,M,C,C}
The last one is only reachable through the goal state

These two are not reachable because the preceding state must have had more cannibals
than missionaries on one side of the river:

Side1{C,C,C}, Side2{M,M,M,B}
Side1{M,M,M,B}, Side2{C,C,C}



Problem 5

Consider the state space diagram shown above. Assume state 12 is the start state and
state 30 is the goal state.

1. Assuming a uniform cost of 1 on each edge, simulate the execution of BFS, DFS, IDS
(assuming that the depth increases by 1 beginning from 3 to 5) and show the order of
states visited. Assume that lower number children are visited first.

BFS:

12-10-13-9-11-7-5-8-4-6-14-2-15-16-1-3-17-18-21-19-23-20-24-25-22-26-27-28-29-30

DFS:

12-10-9-7-5-4-6-2-1-3-21-19-20-22-24-23-25-26-28-30

IDS:

IDS calls DFS for different depths starting from an initial value. In every call, DFS is
restricted from going beyond given depth. So basically we do DFS in a BFS fashion.



depth=3: 12-10-9-7-11-13

depth=4: 12-10-9-7-5-8-11-13

depth=5: 12-10-9-7-5-4-8-6-14-11-13

2. Now, simulate the execution of bidirectional search (assuming uniform cost of 1 on
each edge and BFS as the basic search from each end). At which state do the two
searches meet? (3’)

start:12-10-13-9-11-7-5-8-4-6-14-2-15-16-1-3

end :30-28-29-26-27-25-23-24-19-20-21-22-3-1-2

They will intersect when both expand to state 1.

3. Now, we consider non-uniform weights on edges. Assume that edges between even-even
and odd-odd numbered edges have a cost of 1 and those between even-odd numbered
edges have a cost of 2. Repeat the goal search using uniform-cost search.

uniform-cost search:

12-10-13-9-11-7-5-8-4-6-14-2-16-15-1-3-18-21-17-19-23-20-24-25-26-27-22-29-28-30

4. Now, we add a heuristic h to the search. Denote states 1-3 as cluster A, 4-8 as cluster
B, 9-13 as cluster C, 14-18 as cluster D, 19-24 as cluster E, and 25-30 as cluster F.
Heuristic h estimates costs to the goal state 30 as follows:

(a) h(30) = 0

(b) h(all nodes in cluster F except 30) = 1

(c) h(all nodes in cluster E)=2

(d) h(all nodes in cluster A)=3

(e) h(all nodes in cluster B) = 4

(f) h(all nodes in cluster C)=5

(g) h(all nodes in cluster D) = 5

(a) Is this heuristic admissible? Prove or disprove.

To prove if a heuristic is admissible, we must show that it never overestimates
the cost to reach the goal from the current state. In other words, for each node
n, h(n) must be less than or equal to the true cost to reach the goal. But, to
disprove this statement, you only need to find a counter-example

In our case, the h(n) is always less or equal to the true cost from all the states,
so this heuristic is admissible.



(b) Is it consistent? Prove or disprove.

A heuristic is consistent if it satisfies the triangle inequality, meaning h(n) ≤
c(n← n′) + h(n′), where c(n, n′) is the cost of transitioning from node n to node
n′.

For any two adjacent states, their h(n) difference is either 0 or 1. The path cost
between only two choices, 1 or 2. So h(n) ≤ h(n′) + c((n← n′).

(c) If the heuristic is consistent, repeat the search for the goal state using A* (GRAPH-
SEARCH).

Order of expansion: 12-10-13-9-7-11-5-9-8-4-6-2-1-3-21-19-23-25-27-26-29-30
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