
Homework 3 of CS 165A (Spring 2023)

University of California, Santa Barbara

To be discussed on May 17, 2023 (Wednesday)

Notes:

• Please contact Vihaan Akshaay(vihaanakshaay@ucsb.edu) if you have any doubts
regarding this homework.

Problem 1 Minimax Search, Pruning, and Expectimax

The following is a game-tree, whether the two players take turn to choose actions. You are
the MAX player and you go first.

(a) Follow the Minimax algorithm and put a number in each circle in the following game
tree in Figure ??.

(b) Assume that the order of expanding nodes is from left to right. Rerun the minimax
algorithm with alpha-beta pruning in Figure ??

Indicate which nodes (subtrees) are pruned and the type of pruning (alpha or beta).
Indicate the values of alpha and beta at each pruning step 1.

1The values of alpha and beta are the bounds based on the evidence that we have already collected

vihaanakshaay@ucsb.edu


(c) Suppose that the adversary adopt an ϵ-greedy algorithm:

With probability ϵ, the adversary choose a random action; and with prob-
ability 1− ϵ, the adversary chooses the minimum.

Now you are asked to do an Expectimax search and mark the values of every node in
Figure ??, in which you need to maximize the expectation of reward over all next posi-
tions the adversary may choose (instead of the minimal reward as is in Minimax settings).

The parameter 0 ≤ ϵ ≤ 1. Write down the ranges of ϵ, for which the optimal first action
of Player MAX will be LEFT, MIDDLE and RIGHT respectively.
Hint: you can make it in a similar way as Minimax search, by writing an expectation on
each adversarial circle, and a maximum on each player’s circle in Figure ??.

Part(a): This tree contains three levels. The first and the third level are MAX agents
and the second level is a MIN agent. For the MAX agent, the value is the maximum of all
leaf nodes. For the MIN agent, the value is the minimum of its leaf nodes. Figure 1 has the
MIN-MAX values for all nodes in the first figure.

Part(b): Video Solution. We repeatedly perform alpha-beta pruning by following the
MAX VALUE and MIN VALUE functions given in figure 2.

Part(c): The adversary chooses an ϵ-Greedy algorithm. (ie. chooses a random action
with probability ϵ and chooses the minimum value with probability 1-ϵ).

If we look at the first sub-tree, the MIN node chooses 14 with a probability (1-ϵ) as
part of the exploitation phase. As part of the exploration phase, the agent chooses each of
the three nodes with probability (ϵ/3). Therefore, we can say that the net value would be
(1 − ϵ) × 14 + (ϵ/3) × (14 + 19 + 16) = 14 + 7/3ϵ. Following the same method, we obtain
values for all the MIN nodes. We can see that since ϵ always takes a value between 0 and 1,
the first MIN node (first from left) will always have a higher value than the other two MIN
nodes. Therefore, the main MAX node at the summit picks this value.

https://youtu.be/UHipleVdDC8


Figure 1: Problem 1 solution.



Figure 2: MAX VALUE and MIN VALUE functions for Alpha-Beta Pruning

Problem 2 Tic-Tac-Toe with Evaluation functions

This problem exercises the basic concepts of game playing, using tic-tac-toe (noughts and
crosses) as an example. We define Xn as the number of rows, columns, or diagonals with
exactly n X’s and no O’s. Similarly, On is the number of rows, columns, or diagonals with
just n O’s. The utility functions assigns +1 to any state with X3 = 1 and −1 to any state
with O3 = 1. All other terminal states have utility 0. For non-terminal states, we use a
linear evaluation function defined as Eval(s) = 3X2(s) +X1(s)− (3O2(s) +O1(s)).

(a) What is the total number of states for the game of tic-tac-toe?

Solution: (a) (b) 39 is a crude answer to receive partial credits. Slightly better, you can
have 1+ 9+ 9 ∗ 8+ 9 ∗ 8 ∗ 7+ ...+9 ∗ 8 ∗ 7 ∗ ... ∗ 1, which takes in to account the rules of
the game where people take turns. Even better, you can remove those states from each
time there one of the players have already won. Here is a report about total number of
possible states for curious readers.

(b) (Challenge question) How many possible game trees are there for tic-tac-toe? Include
your workings towards an answer. If you write code to calculate the answer, please
attach your code.

(b) The number if upper bounded by 9! = 362880, i.e., each player take turns to fill out
the 9 positions. A subset of these game trees will end early. People who answer 9! will
get partial credits.

A more precise answer is the following: Calculate the number of ways the game in 1 ply,
2 plies, 3 plies, ..., 9 plies. Then just add them up, and you will get the exact answer.
This report has information on total number of game trees as well.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2021-2022/Makalah2021/Makalah-Matdis-2021%20(148).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2021-2022/Makalah2021/Makalah-Matdis-2021%20(148).pdf


(c) Show the whole game tree starting from an empty board down to depth 2 (i.e., one X
and one O on the board). One way to simplify your game-tree is to take symmetry into
account (namely, at the beginning there are essentially only three moves that player X
can take; other moves will be equivalent to these three moves due to symmetry.).

(d) Mark on your tree the evaluations of all the states at depth 2.

(e) Using the minimax algorithm, mark on your tree the backed-up values for the states at
depth 1 and 0, and use those values to choose the best starting move.

(f) Circle the nodes at depth 2 that would not be evaluated if alpha-beta pruning were
applied, assuming the nodes are generated in the optimal order for alpha-beta pruning.

Figure 3: HW2 solution. Without losing generality, we let X go first. For (e), the middle(red)
step is the optimal step for the former player. For (f), those circled in red are cases being
pruned, and the prunings are all α- prunings.



Figure 4: (a) A simple 4 × 3 environment that presents the agent with a sequential. (b)
Illustration of the transition model of the environment: the “intended” outcome occurs with
probability 0.8, but with probability 0.2 the agent moves towards one of the two directions
perpendicular to the intended direction (0.1 for each such direction). A collision with a wall
results in no movement (the agent stays where she is). When the agent transitions into the
two terminal states a reward of +1 and –1 is received and the game ends. In addition, each
unit time the agent spends in the environment costs 0.04 (a reward of −0.04 for every action
taken).

Problem 3: MDP, Policy, V-function and Q-function in

the 4× 3 Grid World

In this problem, we will work with the the 4 × 3 grid world shown in Figure 4. This is the
example we covered in the lecture. This question makes sure that you understand MDP.

The problem is best solved by writing python codes. You are feel free to structure
your code in anyway you want. A good strategy would be to modularize your code by
caching intermediate variables and writing functions. Representing the parameters of the
MDP that you come up with in Part (a) as matrices and vectors is absolutely critical for a
clean representation. So make sure you are representing the MDP parameters correctly (do
dimension checks!) and can run the MDP as a simulator of the task environment.

(a) Recall that an MDP is determined by a tuple (S,A, r, P, d1, T ), where S is the state-
space, A is the action space, r : S ×A×S → R is the reward function, P (s′|s, a) is the
state-transition probability denoted by a conditional probability distribution2, d1 is the
distribution of the initial state and T is the horizon of the MDP.

Read the description of the grid world environment in Figure 4 carefully and translate
that description into an MDP. In particular, specify the all items in this tuple.

2This is a conditional probability table (CPT) when S and A are both discrete, for this homework we
are only considering finite state spaces and action spaces, so we denote S := |S| and A := |A|. Note that S
and A are sets, so | · | with an input being a set outputs the cardinality of a set, or simply the number of
items in a set.



(Hint 1: In the infinite horizon case T = ∞. You can think about hitting the terminal
states the same as transitioning into a dummy sinking state ⊥ with 0 rewards and it
only transitions into itself. This is the case in this question.
Hint 2: In this example, r is a function of the state you transition into only, and you
collect the reward / loss after the state-transition.
Hint 3: Do the dimension check for all elements in this tuple that describes an MDP.
Use an extra piece of paper to carefully write down the matrices and vectors and fill in
the numbers. This will help you understand MDP and help you with Q4 too. )

(b) Consider a fixed pre-defined sequence of actions [Up, Up, Right, Right, Right ] ( you take
this sequence of actions without considering which state you are in.) Calculate which
squares can be reached when you start from (1, 1) and with what probabilities.

(Hint: the easiest way of calculating these probabilities will be to write a piece of code
that manipulates your specified matrices and vectors from Part (a). )

(c) A policy is a “look-up table”, or a “book of decision rules”. Policy π determines at a
given state s, which action a ∈ A to take. We use the notation a = π(s) for deterministic
policies. When π is stochastic, this book records the probability to taking each action
given s, so a convenient notation to denote this policy is by the conditional distribution
π(a|s). A policy is called stationary if it does not depend on time t; otherwise it is called
non-stationary, in which case we use πt to denote the policy and it needs to be specified
for all t = 1, 2, ..., T .

In this example, a deterministic policy can be described a figure with arrows as in those
in Figure 5.

i. Can the above sequence of actions in Part (b) be generated by a stationary policy? If
so, write π down. If not, write down a non-stationary policy π (consists of π1, ..., π5)
that produces this sequence of actions.

ii. Let T = 5, calculate the value of this non-stationary policy π using your results
in Part (b). Recall that the value of a policy in a finite horizon case (without
discounting) is given by

vπ = Eπ

[
T∑
t=1

Rt

]
=
∑
t

∑
s

dπt (s)r
π
t (s)

where dπt (s) denotes the probability of St = s under policy π and

rπt (s) = Eπ[Rt|St = s] =
∑
a

πt(a|s)
∑
s′

P (s′|s, a)r(s, a, s′).

iii. Let T = 5, calculate the V π
t function and the Qπ

t function for t = 1, 2, 3, 4, 5.

(Hint 1: Use the Bellman equations

V π
t (s) =

∑
a

πt(a|s)
∑
s′

P (s′|s, a)(r(s, a, s′) + V π
t+1(s

′))



Figure 5: An optimal policy for the stochastic environment with r(s, a, s′) = −0.04, γ = 1,
T =∞ when s′ is a non-terminal states.

and

Qπ
t (s, a) =

∑
s′

P (s′|s, a)

(
r(s, a, s′) +

∑
a′

πt+1(a
′|s′)Qπ

t+1(s
′, a′)

)
.

Hint 2: Write a backup function that calculates Vt given Vt+1. Recursively call this
function from t = 5 and go backwards. Define V π

6 (·) ≡ 0, Q6(·, ·) ≡ 0. )

iv. Now let us use the alternative way of calculating the value of the policy π. vπ =∑
s d1(s)V

π
1 (s). Include your code and the output of the code. Verify that you

calculations are correct by comparing this with Part (ii).

v. Now let us do a one step policy iteration. Define π′ to be π′
t(s) = argmaxaQ

π
t (s, a).

Repeat your steps in Part iii and calculate V π′
t for t = 1, 2, 3, 4, 5. Is π′ a better

policy than π?

(d) Now let’s move on to infinite horizon, discounted MDP. Take T =∞. The main differ-
ence is that whenever the agent is at a state s, the future will be identical no matter
what t it is that the agent is at. Therefore, the optimal policy will be stationary in this
case.

i. The policy in Figure 5 is the optimal policy for this problem when γ = 1. Let us
call it π∗. Now calculate the 5-step expected cumulative reward by Monte Carlo
— obtaining many samples by repeatedly running this policy π∗ starting from (1, 1)
for 5 steps. Then calculate the sample average of the cumulative rewards. Submit
your code that implements it.

Yet another way of calculating this expression is to invoke your function from Part
ii with s = (1, 1), π = π∗ and T = 5. A good idea of testing that your solution is
correct is to check whether you get the approximately the same numbers using these
two approaches.)

ii. Write the python function that takes an initial state s, a policy π and the MDP as



an input, then calculate the T -step cumulative reward using

V̂ π(s) := Eπ

[
T∑
t=1

Rt

∣∣∣∣∣S1 = s

]
= rπ(s) +

T∑
t=2

∑
s′

dπt (s
′|S1 = s)rπ(s′).

where rπ(s) :=
∑

a π(a|s)
∑

s′ P (s′|s, a)r(s, a, s′), which measures the expected re-
ward under s.

Take T = 100 will give a good approximation of T =∞. Call the function with all
s, print a table of the results.

(Hint: dπt (s
′|S1 = s) denotes the probability of St = s′ when S1 = s when all actions

are taken by policy π. Think about a t − 1-step random walk starting at state s,
what is the transition matrix under π?)

iii. Write a function to calculate the scalar version of Bellman error. The function takes
a vector V̂ ∈ RS, γ and the MDP as an input and outputs a scalar√√√√∑

s

(
V̂ (s)−max

a

∑
s′

P (s′|s, a)(r(s, a, s′) + γV̂ (s′))

)2

.

If the Bellman error is 0, then we know that V̂ = V ∗.

Substitute V̂ π∗
that you obtained in Part ii into this function with γ chosen to be 1

and calculate the Bellman error. Is this close to 0?

Submit your output, the python function and the script that runs this function.

iv. So far, we are only validating that the policy in Figure 5 is optimal. Write a python
function that takes value iterations:

Vi+1(s)← max
a

{∑
s′

P (s′|s, a)(r(s, a, s′) + γVi(s
′))

}
.

The function takes an arbitrary vector V0 ∈ RS, integer k, and the MDP as inputs,
then it runs value iterations for k iterations, then output Vk ∈ RS. Take γ = 0.9,
plot the Bellman error as a function of k.

v. Write down the formula to obtain the optimal policy π∗ using V ∗ associated with a
discounting factor of γ. Use this formula to derive a policy πk by plugging Vk (from
Part iv) in place of V ∗ the policy that comes from the previous question.

• Take γ = 0.9, k = 100 and print out the policy πk. Is the policy same as the
one in Figure 5?

• How about when γ = 0.5, k = 100?

Solution:

(a) S = {(1, 1), (1, 2), . . . , (4, 1), (4, 2), (4, 3)} ≜ [s1, s2, . . . , s11]
T



In the code that is shared, we also use another notation that assigns a number to these
states from 0-11.

A: {”up”, ”down”, ”left”, ”right”}

r(s, a, s′) = r(s′)


0.96 elifs′ == (4, 3)

−1.04 elifs′ == (4, 2)

−0.04 else

P (s′|s, a) can be written as 4 11×11 matrices: Pup = P (·|·, ”up”), Pright = P (·|·, ”right”), Pleft =
P (·|·, ”left”), Pdown = P (·|·, ”down”).

d1 = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]T (Since the start state is the 8th element in the above
formulation)

T is the time horizon, and it could be infinite (but not necessarily).

(b) d6 = (Pright)
3(Pup)

2d1

(c) (i) This is not a stationary policy. Now let’s write a non-stationary policy representing
this: π1(s) = π2(s) = “up”,∀s π3(s) = π4(s) = π5(s) = “right”,∀s

(ii) Here

rπt (s) =
∑
a

πt(a|s) ·
∑
s′

P (s′|s, a)r(s, a, s′)

=


∑
s′

Pups′,s · r(s, s
′) , when t = 1, 2∑

s′

Prights′,s · r(s, s
′) , when t = 3, 4, 5

and then :
vπ =

∑
t

(dπt )
T (rπt )

where dπt is the vector comes from the derivation of part (b).

(iii) For value function, we have:

V π
5 =

∑
s′

(Pright)s′,s · r(s, s′)

V π
4 =

∑
s′

(Pright)s′,s · r(s, s′) + (Vπ
5Pright)(s)

V π
3 =

∑
s′

(Pright)s′,s · r(s, s′) + (Vπ
4Pright)(s)

V π
2 =

∑
s′

(Pup)s′,s · r(s, s′) + (Vπ
3Pup)(s)



V π
1 =

∑
s′

(Pup)s′,s · r(s, s′) + (Vπ
2Pup)

. For Q-function, we have:

Q5(s, a) =
∑
s′

(P”a”)s′,s · rs,s′

Q4(s, a) =
∑
s′

(P”a”)s′,s · (rs,s′ +Q5(s
′, ”right”))

Q3(s, a) =
∑
s′

(P”a”)s′,s · (rs,s′ +Q4(s
′, ”right”))

Q2(s, a) =
∑
s′

(P”a”)s′,s · (rs,s′ +Q3(s
′, ”right”))

Q1(s, a) =
∑
s′

(P”a”)s′,s · (rs,s′ +Q2(s
′, ”up”))

(iv) vπ = (d1)
TV π

1 = V π
1 (1)

(v) Demo:

Step 1: compute π
′
t(s) for t = 1, 2, 3, 4, 5. Do it element-wise.

Step 2: compute V π
t (s) for t = 5, 4, 3, 2, 1.

(d) (i)For Monte-Carlo simulations, we repeatedly start the agent from the start state
and run the environment for several episodes. As this is run, we calculate the cumulative
reward for each of these episodes and return the average.

(ii),(iii),(iv) Please check the codes that was shared.

(v)

π∗(s) = argmax
a

{∑
s

P (s′|s, a) [r + γV ∗(s′)]

}



Problem 4: MDPs and Value Iterations (Challenge prob-

lem, try this if you’s like a bit more math)

Let Vi ∈ RS be the value function estimate for all the states at ith iteration. A Bellman
update used in the Value Iteration is the following3:

Vi+1(s)← max
a

{
r(s, a) + γ

∑
s′

P (s′|s, a)Vi(s
′)

}
.

where 0 < γ < 1.

If we note this update as an operator B, then we have:

Vi+1 ← B Vi.

Notice that the operation B V is not a matrix-to-vector product. Now we are going to prove
that the Bellman operator B is a contraction.

(a) Show that, for any functions f and g,

|max
a

f(a)−max
a

g(a)| ≤ max
a
|f(a)− g(a)|

(Hint: Discuss the two cases of the absolute value on the LHS. Also, it might be helpful
to define ã := argmaxaf(a) and ã′ := argmaxag(a). Similar to Q5 in HW1, a good way
of thinking about maxa f(a) is that it is larger than f(a′) for any a′. )

(b) Substitute the definition of the Bellman operator into |B Vi(s)−B V
′
i (s)|, such that you

can apply your result in Part (a).

(c) A max norm is defined as follows:

∥V ∥max := max
s∈{1,2,3,...,S}

|V (s)|.

Prove that for any two value function estimates V, V ′ ∈ RS, we have:

∥B V − B V ′∥max ≤ γ ∥V − V ′∥max .

(Hint: Apply the result in Part (a) to what you get in Part (b). Explicitly state how
you are instantiating the result in Part (a) — what is f and what is g here. )

(d) Use the result in Part (c) to prove that the value iteration works, namely, as i → ∞,
Vi → V ∗.

3When the reward function depends on s, a, s′ as in the lecture, then r(s, a) =
∑

s′ P (s′|s, a)r(s, a, s′).
Check that this is the same as the value iteration updates we define in Slide 11 of Lecture 13



Solution: (a) Proof: Suppose:
argmax

a
f(a) = a1

argmax
a

g(a) = a2

argmax
a
|f(a)− g(a)| = a3

Then, LHS = |f(a1)− g(a2)|. Without losing generality, suppose:

max f(a) ≥ max g(a)

, then
LHS = f(a1)− g(a2)

. Since g(a2) ≥ g(a),∀a ∈ D, we have:

LHS = f(a1)− g(a2)

≤ f(a1)− g(a1)

≤ |f(a1)− g(a1)|

≤ max |f(a)− g(a)|

■

(b)
|B Vi(s)−B V

′

i (s)|

= |max
a

r(s, a) + γ
∑
s′

P (s′|a, s)Vi(s
′)−max

a
r(s, a) + γ

∑
s′

P (s′|a, s)V ′

i (s
′)|

(c)

LHS = max
s
|max

a
r(s, a) + γ

∑
s′

P (s′|a, s)Vi(s
′)−max

a
r(s, a) + γ

∑
s′

P (s′|a, s)V ′

i (s)|

According to the conclusion in part(a), we have:

≤ max
s

max
a
|r(s, a) + γ

∑
s′

P (s′|a, s)Vi(s
′)− (r(s, a) + γ

∑
s′

P (s′|a, s)V ′

i (s))|

= max
s

max
a
|γ
∑
s′

P (s′|a, s)(Vi(s
′)− V

′

i (s
′))|

Since P (s′|s, a) ≥ 0 , we have the followings by applying ”Inequality of absolute values”:

LHS ≤ max
s

max
a

(γ
∑
s′

P (s′|s, a)|Vi(s
′)− V

′

i (s
′)|)

≤ max
s

max
a

γ
∑
s′

P (s′|s, a) ·max
s′′
|V ′

i (s
′′)− Vi(s

′′)|



= max
s

max
a

γ
∑
s′

P (s′|s, a)||V ′ − V || = γ · ||V ′ − V ||

(d) Let the initial values be V 0 and the consequent values after performing value iteration
for i steps be V i (ie Bi V 0 = V i). Using the inequality above, we have the following:

||B V i −B V i−1||max ≤ γ||V i − V i−1||max

Substituting, the bellman operator applied values with the next iteration values:

||V i+1 − V i||max ≤ γ||V i − V i−1||max

As we extend this until we reach the initial estimate, we obtain the following:

||V i+1 − V i||max ≤ γi||V 1 − V 0||max

We know B V ∗ = V ∗ and γ ∈ (0, 1). From the inequality above, as i→∞, the RHS of the
equation tends to zero.

||B V i − V i||max → 0 =⇒ V i → V ∗


