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3.1 Introduction

Optimization is a huge class of problems. There is a hierarchy of convex optimization problems. We’ll
talk about linear programming, quadratic programming, second-order cone programming, and semidefinite
programming problems. These 4 canonical problems described in these notes relate to each other according
to the high level picture shown below:

3.2 Linear Program

A linear program or LP is a convex optimization problem with affine objective and constraint functions.

Basic form

min
x

c>x

subject to Gx � h
Ax = b

Standard form

min
x

c>x

subject to Ax = b
x � 0

The transition from the general form to the standard form is obtained by adding slack variables s so that the
constraints Dx ≤ d become Dx + s = d, s ≥ 0.

The feasible set of LPs always forms a polyhedron P shown in the figure below. The objective function can
be visualized as isolines with constant cost, visualized by the dotted lines. The optimal solution is at the
boundary point that touches the isoline of least cost.
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LP is the simplest type of convex optimization problem first introduced by Kantorovich in the late 1930s and
Dantzig in the 1940s.

The interest in Linear Programming began during World War II in order to deal with problems of transporta-
tion, scheduling, and allocation of resources subject to certain restrictions such as costs and availability.

The first LP solver was developed in the late 1940s (Dantzig’s “simplex algorithm”), and now LP solvers are
considered a mature technology.

3.2.1 Examples

Example 3.1. Diet : Find cheapest combination of foods that satisfies some nutritional requirements.

min
x

c>x

subject to Ax � b
x � 0

• cj : per-unit cost of food j

• bi: minimum required intake of nutrient i

• Aij : content of nutrient i per unit of food j

• xj : units of food j in the diet

Example 3.2. Transportation problem : Ship commodities from given sources to destinations at min
cost.

min
x

m∑
i=1

n∑
j=1

cijxij

subject to
n∑
j=1

xij ≤ si, i=1,. . . ,m

m∑
i=1

xij ≤ dj , j=1,. . . ,n

x � 0

• si : supply at source i

• dj: demand at destination j

• cij : per-unit shipping cost from i to j

• xij : units shipped from i to j

Example 3.3. Basis Pursuit :
Given y ∈ Rn and X ∈ Rn×p, where p > n. Suppose we want to find a solution to the linear system Xβ = y.
Because p > n, this system is undetermined so there are many solutions. One option is to seek the sparsest
possible solution

min
β

‖β‖0
subject to Xβ = y
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This is a non-convex problem. We will instead consider the convex relaxation of this problem known as Basis
Pursuit.

min
β

‖β‖1
subject to Xβ = y

It can be shown that this is a linear program by reformulation.

min
β,z

1T z

subject to z ≥ β
z ≥ −β
Xβ = y

3.3 Quadratic Program

A convex optimization problem is called a quadratic program (QP) if the objective function is (convex)
quadratic, and the constraint functions are affine.

Basic form

min
x

1
2x
>Q>x+ c>x

subject to Gx � h
Ax = b

Standard form

min
x

1
2x
>Q>x+ c>x

subject to Ax = b
x � 0

The problem is convex iff the matrix Q is positive semidefinite. i.e Q � 0.

In a quadratic program, we minimize a convex quadratic function over a polyhedron.

Quadratic programs include linear programs as a special case, by taking Q = 0.

3.3.1 Examples

Example 3.4. Portfolio optimization : Construct financial portfolio with optimal performance/risk
tradeoff.

max
x

µTx− γ
2x

TQx

subject to 1Tx = 1
x � 0

• µ : expected assets’ returns

• Q: covariance matrix of assets’ returns

• γ : risk aversion

• x : portfolio holdings (percentages)

Example 3.5. Support Vector Machines : Given y ∈ {−1, 1}n, X ∈ Rn×p having rows x1, . . . , xn, the
SVM problem:

min
β,β0,ξ

1
2‖β‖

2
2 + C

n∑
i=1

ξi

subject to yi(x
T
i β + β0) ≥ 1− ξi, i = 1,. . . ,n

ξi ≥ 0, i = 1,. . . ,n
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Example 3.6. Lasso : Given y ∈ {R}n, X ∈ Rn×p, we can write the constrained form of the Lasso as
follows:

min
β

‖y −Xβ‖22
subject to ‖β‖1 ≤ s

We can also write this in the called Langrangian or penalized form with λ ≥ 0 as the tuning parameter:

min
β

‖y −Xβ‖22 + λ‖β‖1

3.3.2 Quadratically constrained quadratic program (QCQP)

If the objective as well as the inequality constraint functions are (convex) quadratic then the problem is
called quadratically constrained quadratic program.

min
x

1
2x
>Q>x+ c>x

subject to 1
2x
>P>i x+ q>i x+ ri ≤ 0 i=1,. . . ,m

Ax = b

In a QCQP, we minimize a convex quadratic function over a feasible region that is the intersection of ellipsoids
(when Pi ≺ 0).

Quadratically constrained quadratic programs include quadratic programs (and therefore also linear programs)
as a special case, by taking Pi = 0.

3.4 Semidefinite Program

Semi-definite programs are a much bigger subset of convex optimization problems than convex quadratic
programs. We can extend from linear programs to semi-definite programs by changing the order (≤) involved
in the inequality constraint Gx ≤ h to a different kind of order in some vector space. We work with the
vector-space Sn.

3.4.1 Notes about Symmetric Matrices

• Sn is space of n×n symmetric matrices

• Sn+ is the space of positive semidefinite matrices, i.e., Sn+ = {X ∈ Sn: uTXu ≥ 0 for all u ∈ Rn}

• Sn++ is the space of positive definite matrices, i.e., Sn++ = {X ∈ Sn: uTXu > 0 for all u ∈ Rn}

• The canonical inner product in Sn: for X,Y ∈ Sn, X • Y = tr(XY ) =
n∑
i=1

n∑
j=1

XijYij .

• Trace satisfies the property that if the product ABC is well-defined and the result is a square matrix,
then tr(ABC) = tr(BCA).

• Loewner ordering: Given X,Y ∈ Sn, X � Y ⇐⇒ X − Y ∈ Sn+

• For x, y ∈ Rn, diag(x) � diag(y) ⇐⇒ x ≥ y (elementwise)
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3.4.2 Optimization Problem

Semidefinite programming can be regarded as an extension of linear programming where the componentwise
inequalities between vectors are replaced by matrix inequalities. It is of the form:

min
x

cTx

subject to x1F1 + . . .+ xnFn � F0

Ax = b

where c ∈ Rn, F0, F1, . . . , Fn ∈ Sd, A ∈ Rm×n, b ∈ Rm
The inequality constraint is called Linear Matrix Inequality (LMI).

SDPs can also be written in standard form, which is derived from LPs with our analogous inner product and
partial ordering.

min
x

C •X
subject to Ai •X = bi i = 1,. . . ,m

X � 0

where C, A1, . . . , Am ∈ Sn

To convert any SDP to standard form, we make use of slack variables. In particular, we can first split x into
positive and negative parts, i.e., x = x+ − x−, such that x+, x− ≥ 0. Next, the inequality can be cast into
equality by introducing a slack variable Y � 0. Then the problem now becomes

min
x+,x−,Y

cTx+ − cTx−

subject to (x+1 − x
−
1 )F1 + . . .+ (x+n − x−n )Fn + Y = F0

Ax+ −Ax− = b
x+ ≥ 0, x− ≥ 0, Y � 0

Now, the standard form can be realized by constructing block matrices out of x+, x−, and Y and rearranging
coefficient matrices.

Every linear program with optimization variable x is also a semidefinite program. To see this, consider the
standard from SDP where X = diag(x).

3.4.3 Examples

Example 3.7. Lovasz Theta Function
Let G = (N, E), N is the node and E is the edge.
ω(G) is the clique number of G i.e the largest set of nodes that are completely connected.
χ(G) is the chromatic number of G i.e the minimum number of colors that suffice to color the nodes of graph.
The Lovasz theta function V(G) =

max
X

11T •X
subject to I •X = 1

Xij = 0, (i, j) /∈ E
X � 0

Lovasz sandwich theorem: ω(G) ≤ V(Ḡ) ≤ χ(G), where Ḡ is the complement graph of G.
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Example 3.8. Trace Norm Minimization
Let A : Rm×n → Rp be a linear map,

A(X) =

A1 •X
. . .

Ap •X


Trace norm ‖X‖tr = ‖σ(X)‖1, the sum of the singular values of X.
The dual of the nuclear norm is operator norm: ‖X‖op = ‖σ(X)‖∞ = max ‖Xu‖2 : ‖u‖2 ≤ 1

min
X

11T •X
subject to I •X = 1

Xij = 0, (i, j) /∈ E
X � 0

Consider finding the minimum-rank solution of the underdetermined linear system:

min
X

rank(X)

subject to A(X) = b

This problem is non-convex and hard to solve. Therefore, a popular approximation is to instead minimize the
trace of the matrix:

min
X

‖X‖tr
subject to A(X) = b

The intuition behind this relaxation is that rank(X) =
∑
i

1{σi(x) 6= 0}, i.e. the L0-norm of the singular

values, so as we saw with the basis pursuit problem, we use an L1-norm relaxation (where ‖X‖tr =
∑
i

σi(x)).

3.5 Conic Program

A conic program is an optimization problem of the form:

min
x

cTx

subject to Ax = b
D(x) + d ∈ K

where c, x ∈ Rn, A ∈ Rm×n, b ∈ Rm; D : Rn → Y is a linear map and d ∈ Y for a Euclidean space Y; and
K ⊆ Y is a closed convex cone.

Conic inequality: a constraint x ∈ K where K is a convex cone in Rm.
x ≥K y ⇐⇒ x− y ∈ K
x >K y ⇐⇒ x− y ∈ int K (interior of K)

Conic program is again very similar to LP, the only distinction is the set of linear inequalities are replaced
with conic inequalities, i.e. D(x) + d ≤K 0.
If K = Rn+ the nonnegative orthant then the inequality has the form D(x) + d ≤ 0, we recover the LP.
Similarly if K = Sn+, we recover SDP.
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3.6 Second Order Cone Program

A second order cone program (SOCP) is defined as the following special case of a cone program:

min
x

cTx

subject to ‖Dix+ di‖2 ≤ eTi x+ fi, i = 1,. . . ,p
Ax = b

The inequalities are called second order cone constraints. Indeed, they form a special class of convex sets
called second order cones.

We can see that every LP is a second order cone program.

Theorem 3.9. SOCP’s are Conic Programs

Proof. Recall the second order cone:

Q = {(x, t) : ‖x‖2 ≤ t}

Consider the constraint

‖Dix+ di‖2 ≤ eTi x+ fi =⇒ (‖Dix+ di‖2, eTi x+ fi) ∈ Qi ∀ i = 1,. . . ,p

Now, taking the cone as the cartesian product of all the previous cones gives us the conic program, i.e K =
Q1 × . . .×Qp

Theorem 3.10. Every QP is an SOCP

Proof. We can rewrite the canonical QP program in the following form by introducing a variable t:

min
x,t

cTx+ t

subject to 1
2x

TQx ≤ t
Dx ≤ d
Ax = b

Consider the constraint 1
2x

TQx ≤ t. We can show that

1

2
xTQx ≤ t ⇐⇒ ‖( 1√

2
Q

1
2x,

1

2
(1− t))‖2 ≤

1

2
(1 + t)

‖( 1√
2
Q

1
2x, 12 (1− t))‖2 ≤ 1

2 (1 + t)

‖( 1√
2
Q

1
2x, 12 (1− t))‖22 ≤ 1

4 (1 + t)2

1
2x

TQx+ 1
4 (1− t)2 ≤ 1

4 (1 + t)2
1
2x

TQx ≤ t

Theorem 3.11. Every SOCP is a Semidefinite Program(SDP)
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Proof. Schur Complement theorem: If A,C are symmetric and C � 0[
A B
BT C

]
� 0 =⇒ A−BC−1BT � 0

Apply this theorem to the following matrix[
tI x
xT t

]
=⇒ tI − xxT

t
� 0 =⇒ ‖x‖2 ≤ t

Therefore, every SOCP can be transformed into an SDP.

Thus we arrive at the convex programming hierarchy

LP ⊂ QP ⊂ SOCP ⊂ SDP ⊂ CP

3.7 Approximation Algorithm for Max Cut

Max Cut: Given an undirected graph G=(V, E), find a partition of V into two subsets S, S̄ so as to
maximize the number of edges having one endpoint in S and the other in S̄.

Weighted Max Cut: Given an undirected graph G=(V, E) and a positive weight we for each edge, find a
partition of V into two subsets S, S̄ so as to maximize the combined weight of the edges having one endpoint
in S and the other in S̄.

Max Cut:

• is NP-hard

• is the same as finding maximum bipartite subgraph of G

• can be thought of a variant of the 2-coloring problem in which we try to maximize the number of edges
consisting of two different colors.

Let xj = 1 if j ∈ S and xj = −1 if j ∈ S̄

max
x

1
4

n∑
i=1

n∑
j=1

wij(1− xixj)

such that xj ∈ {−1, 1}, j=1,. . . ,n

Reformulation

max
Y ∈Rn×n,x∈Rn

1
4

n∑
i=1

n∑
j=1

wij(1− Yi,j)

such that Yj,j = 1, j=1,. . . ,n
Y = xxT

Convex relaxation

max
Y ∈Rn×n

1
4

n∑
i=1

n∑
j=1

wij(1− Yi,j)

such that Yj,j = 1, j=1,. . . ,n
Y � 0
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Goemans and Williamson algorithm :
1. Convex relaxation: solve an SDP instead
2. Randomized rounding: Sample v uniformly from the unit sphere in Rn, decompose Y = UUT , output
sign(Uv).
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