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Administrative information

• Instructor: Yu-Xiang Wang
• Office hour: No official office hour.  I will stay on a bit after the class 

or by appointment.

• Syllabus: [link]
• Please read carefully

• Course website: 
https://www.cs.ucsb.edu/~yuxiangw/classes/CS292F-
2020Spring/

• Questions and Discussion:  Piazza

• Homework submission:  Gradescope
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Lectures over Zoom

• It will be the same meeting ID throughout the 
quarter.
• Join Zoom Meeting: https://ucsb.zoom.us/j/199032871
• Meeting ID: 199 032 871
• Password: Check your email. Please do not share.

• It will be recorded (by the instructor).
• To make the instruction available to people who are 

having connectivity issues, or in a different time-zone.
• Turning on your mic and video  = agreeing on being 

recorded.
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Access to the Homeworks

• You are provided with a link in Piazza.

• You need to log in to your UCSB G Suite to access 
the “homework” folder.

• The first homework is already released!
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Course evaluation

• 80% Homeworks (a total of 4 homeworks)

• 15% Reading Notes 
• Compulsory readings of the textbook chapters / notes / 

papers.
• Write a summary  (>1 pages).
• Due at the beginning of each lecture. Starting on 

Thursday! 

• 5% Participation
• Ask questions in the class
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Forms of the lectures

• Slides +  Whiteboard

• We hope to produce a nicely typeset scribed notes 
that everyone can keep.

• Bonus 5% for signing up to scribe lectures! 
• Limited slots, sign up early from the course website.
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Convex Optimization
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Online Convex 
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Duality
Second-order methods

Advanced topics



What will you learn? 
• Formulate problems as convex optimization problems and choose appropriate 

algorithms to solve these problems.

• Understand properties such as convexity, Lipschitzness, smoothness and the 
computational guarantees that come with these conditions.

• Learn optimality conditions and duality and use them in your research.

• Understand the connection of first order optimization and online learning.  

• Know how to prove convergence bounds and analyze no-regret online learning 
algorithms.

• (New to 2020 Spring) Learn a little bit about second order algorithms and their 
pros and cons w.r.t. the first order.
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Why focusing on First Order 
Methods?

• A quarter is short. The professor is lazy.

• They are arguably most useful for machine learning
• Scalable, one pass (few passes) algorithms.
• Information-theoretically near optimal for ML.

• Closer to the cutting edge research world
• SGD, SDCA, SAG, SAGA, SVRG, Katyucsha, Natasha
• Strong guarantee in machine learning with no distributional 

assumptions.

• Basically the only way to train deep learning models.
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Cautionary notes

• The course is a PhD level course and it requires 
hard work!
• Time, effort
• A lot of math
• Substantial homework with both math and coding

• Be ready to be out of your comfort zone

• It will be totally worth it.  
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Things that I expect you to know 
already
• Basic real analysis
• Basic multivariate calculus
• Basic linear algebra
• Basic machine learning
• Basic probability theory + tail bounds
• Familiarity with at least one of the following: 

Matlab, Numpy, Julia

• I will post some review materials in Piazza.
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Acknowledgment

• A big part of the lectures will be based on Ryan 
Tibshirani’s 10-725 in Carnegie Mellon University.

• For the online learning part of it, we will mostly 
follow Elad Hazan’s book: Introduction to Online 
Convex Optimization
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Optimization in Machine Learning and Statistics

Optimization problems underlie nearly everything we do in Machine
Learning and Statistics. In many courses, you learn how to:

translate into P : min
x2D

f(x)

Conceptual idea Optimization problem

Examples of this? Examples of the contrary?

This course: how to solve P , and why this is a good skill to have
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Presumably, other people have already figured out how to solve

P : min
x2D

f(x)

So why bother? Many reasons. Here’s three:

1. Di↵erent algorithms can perform better or worse for di↵erent
problems P (sometimes drastically so)

2. Studying P through an optimization lens can actually give you
a deeper understanding of the statistical procedure

3. Knowledge of optimization can actually help you create a new
P that is even more interesting/useful

Optimization moves quickly as a field. But there is still much room
for progress, especially its intersection with ML and Stats
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Example: algorithms for the 2d fused lasso

The 2d fused lasso or 2d total variation denoising problem:

min
✓

1

2

nX

i=1

(yi � ✓i)
2 + �

X

(i,j)2E

|✓i � ✓j |

This fits a piecewise constant function over an image, given data
yi, i = 1, . . . , n at pixels. Here � � 0 is a tuning parameter

3
4

5
6

7

True image Data Solution
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Our problem: min
✓

1

2

nX

i=1

(yi � ✓i)
2 + �

X

(i,j)2E

|✓i � ✓j |

Specialized ADMM, 20 it-
erations

Proximal gradient descent,
1000 iterations

Coordinate descent, 10K
cycles

(Last two from the dual)
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What’s the message here?

So what’s the right conclusion here?

Is the alternating direction method of multipliers (ADMM) method
simply a better method than proximal gradient descent, coordinate
descent? ... No

In fact, di↵erent algorithms will perform better or worse in di↵erent
situations. We’ll learn details throughout the course

In the 2d fused lasso problem:

• Special ADMM: fast (structured subproblems)

• Proximal gradient: slow (poor conditioning)

• Coordinate descent: slow (large active set)
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Example: sparse linear modeling

Given y 2 Rn and a matrix X 2 Rn⇥p, with p � n. Suppose that
we know that

y ⇡ X�⇤

for some unknown coe�cient vector �⇤ 2 Rp. Can we generically
solve for �⇤? ... No!

But if �⇤ is known to be sparse (i.e., have many zero entries), then
it’s a whole di↵erent story

⇡
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There are many di↵erent approaches for estimating �⇤. A popular
approach is to solve the lasso problem:

min
�2Rp

1

2
ky � X�k22 + �k�k1

Here � � 0 is a tuning parameter, and k�k1 =
Pp

i=1 |�i| denotes
the `1 norm of �

There are numerous algorithms for computing a lasso solution (in
fact, it can be cast as a quadratic program)

Furthermore, some key statistical insights can be derived from the
Karush-Kuhn-Tucker (KKT) optimality conditions for the lasso
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Lasso support recovery

The KKT conditions for the lasso problem are

XT (y � X�) = �s

sj 2

8
><

>:

{+1} �j > 0

{�1} �j < 0

[�1, 1] �j = 0

, for j = 1, . . . , p

We call s a subgradient of the `1 norm at �, denoted s 2 @k�k1

Under favorable conditions (low correlations in X, large nonzeros
in �⇤), can show that lasso solution has same support as �⇤

Proof idea: plug in (shrunken version of) �⇤ into KKT conditions,
and show that they are satisfied with high probability (primal-dual
witness method of Wainwright 2009)
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Widsom from Friedman (1985)

From Jerry Friedman’s discussion of Peter Huber’s 1985 projection
pursuit paper, in Annals of Statistics:

Arguably, less true today due to the advent of disciplined convex
programming? Maybe, but it still rings true in large part ...
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Central concept: convexity

Historically, linear programs were the focus in optimization

Initially, it was thought that the important distinction was between
linear and nonlinear optimization problems. But some nonlinear
problems turned out to be much harder than others ...

Now it is widely recognized that the right distinction is between
convex and nonconvex problems

Your supplementary textbooks for the course:

Boyd and Vandenberghe
(2004)

,
Rockafellar
(1970)

22



Convex sets and functions

Convex set: C ✓ Rn such that

x, y 2 C =) tx + (1 � t)y 2 C for all 0  t  124 2 Convex sets

Figure 2.2 Some simple convex and nonconvex sets. Left. The hexagon,
which includes its boundary (shown darker), is convex. Middle. The kidney
shaped set is not convex, since the line segment between the two points in
the set shown as dots is not contained in the set. Right. The square contains
some boundary points but not others, and is not convex.

Figure 2.3 The convex hulls of two sets in R2. Left. The convex hull of a
set of fifteen points (shown as dots) is the pentagon (shown shaded). Right.
The convex hull of the kidney shaped set in figure 2.2 is the shaded set.

Roughly speaking, a set is convex if every point in the set can be seen by every other
point, along an unobstructed straight path between them, where unobstructed
means lying in the set. Every a�ne set is also convex, since it contains the entire
line between any two distinct points in it, and therefore also the line segment
between the points. Figure 2.2 illustrates some simple convex and nonconvex sets
in R2.

We call a point of the form ✓1x1 + · · · + ✓kxk, where ✓1 + · · · + ✓k = 1 and
✓i � 0, i = 1, . . . , k, a convex combination of the points x1, . . . , xk. As with a�ne
sets, it can be shown that a set is convex if and only if it contains every convex
combination of its points. A convex combination of points can be thought of as a
mixture or weighted average of the points, with ✓i the fraction of xi in the mixture.

The convex hull of a set C, denoted conv C, is the set of all convex combinations
of points in C:

conv C = {✓1x1 + · · · + ✓kxk | xi 2 C, ✓i � 0, i = 1, . . . , k, ✓1 + · · · + ✓k = 1}.

As the name suggests, the convex hull conv C is always convex. It is the smallest
convex set that contains C: If B is any convex set that contains C, then conv C ✓
B. Figure 2.3 illustrates the definition of convex hull.

The idea of a convex combination can be generalized to include infinite sums, in-
tegrals, and, in the most general form, probability distributions. Suppose ✓1, ✓2, . . .

Convex function: f : Rn ! R such that dom(f) ✓ Rn convex, and

f(tx + (1 � t)y)  tf(x) + (1 � t)f(y) for all 0  t  1

and all x, y 2 dom(f)

Chapter 3

Convex functions

3.1 Basic properties and examples

3.1.1 Definition

A function f : Rn ! R is convex if dom f is a convex set and if for all x,
y 2 dom f , and ✓ with 0  ✓  1, we have

f(✓x + (1 � ✓)y)  ✓f(x) + (1 � ✓)f(y). (3.1)

Geometrically, this inequality means that the line segment between (x, f(x)) and
(y, f(y)), which is the chord from x to y, lies above the graph of f (figure 3.1).
A function f is strictly convex if strict inequality holds in (3.1) whenever x 6= y
and 0 < ✓ < 1. We say f is concave if �f is convex, and strictly concave if �f is
strictly convex.

For an a�ne function we always have equality in (3.1), so all a�ne (and therefore
also linear) functions are both convex and concave. Conversely, any function that
is convex and concave is a�ne.

A function is convex if and only if it is convex when restricted to any line that
intersects its domain. In other words f is convex if and only if for all x 2 dom f and

(x, f(x))

(y, f(y))

Figure 3.1 Graph of a convex function. The chord (i.e., line segment) be-
tween any two points on the graph lies above the graph. 23



Convex optimization problems

Optimization problem:

min
x2D

f(x)

subject to gi(x)  0, i = 1, . . . m

hj(x) = 0, j = 1, . . . r

Here D = dom(f) \
Tm

i=1 dom(gi) \
Tp

j=1 dom(hj), common
domain of all the functions

This is a convex optimization problem provided the functions f
and gi, i = 1, . . . m are convex, and hj , j = 1, . . . p are a�ne:

hj(x) = aTj x + bj , j = 1, . . . p

24



Local minima are global minima

For convex optimization problems, local minima are global minima

Formally, if x is feasible—x 2 D, and satisfies all constraints—and
minimizes f in a local neighborhood,

f(x)  f(y) for all feasible y, kx � yk2  ⇢,

then
f(x)  f(y) for all feasible y

This is a very useful
fact and will save us
a lot of trouble!

●

●

●

●

●

●

●

●

●

●

Convex Nonconvex
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In summary: why convexity?

Why convexity? Simply put: because we can broadly understand
and solve convex optimization problems

Nonconvex problems are mostly treated on a case by case basis

Reminder: a convex optimization problem is of
the form

min
x2D

f(x)

subject to gi(x)  0, i = 1, . . . m

hj(x) = 0, j = 1, . . . r

where f and gi, i = 1, . . . m are all convex, and
hj , j = 1, . . . r are a�ne. Special property: any
local minimizer is a global minimizer

●

●

●

●

●

●

●

●

●

●
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Remainder of today’s lecture

• Convex sets

• Examples

• Key properties

• Operations preserving convexity

• Same, for convex functions
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Convex sets

Convex set: C ✓ Rn such that

x, y 2 C =) tx + (1 � t)y 2 C for all 0  t  1

In words, line segment joining any two elements lies entirely in set24 2 Convex sets

Figure 2.2 Some simple convex and nonconvex sets. Left. The hexagon,
which includes its boundary (shown darker), is convex. Middle. The kidney
shaped set is not convex, since the line segment between the two points in
the set shown as dots is not contained in the set. Right. The square contains
some boundary points but not others, and is not convex.

Figure 2.3 The convex hulls of two sets in R2. Left. The convex hull of a
set of fifteen points (shown as dots) is the pentagon (shown shaded). Right.
The convex hull of the kidney shaped set in figure 2.2 is the shaded set.

Roughly speaking, a set is convex if every point in the set can be seen by every other
point, along an unobstructed straight path between them, where unobstructed
means lying in the set. Every a�ne set is also convex, since it contains the entire
line between any two distinct points in it, and therefore also the line segment
between the points. Figure 2.2 illustrates some simple convex and nonconvex sets
in R2.

We call a point of the form ✓1x1 + · · · + ✓kxk, where ✓1 + · · · + ✓k = 1 and
✓i � 0, i = 1, . . . , k, a convex combination of the points x1, . . . , xk. As with a�ne
sets, it can be shown that a set is convex if and only if it contains every convex
combination of its points. A convex combination of points can be thought of as a
mixture or weighted average of the points, with ✓i the fraction of xi in the mixture.

The convex hull of a set C, denoted conv C, is the set of all convex combinations
of points in C:

conv C = {✓1x1 + · · · + ✓kxk | xi 2 C, ✓i � 0, i = 1, . . . , k, ✓1 + · · · + ✓k = 1}.

As the name suggests, the convex hull conv C is always convex. It is the smallest
convex set that contains C: If B is any convex set that contains C, then conv C ✓
B. Figure 2.3 illustrates the definition of convex hull.

The idea of a convex combination can be generalized to include infinite sums, in-
tegrals, and, in the most general form, probability distributions. Suppose ✓1, ✓2, . . .

Convex combination of x1, . . . xk 2 Rn: any linear combination

✓1x1 + . . . + ✓kxk

with ✓i � 0, i = 1, . . . k, and
Pk

i=1 ✓i = 1. Convex hull of a set C,
conv(C), is all convex combinations of elements. Always convex
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Examples of convex sets

• Trivial ones: empty set, point, line

• Norm ball: {x : kxk  r}, for given norm k · k, radius r

• Hyperplane: {x : aTx = b}, for given a, b

• Halfspace: {x : aTx  b}

• A�ne space: {x : Ax = b}, for given A, b
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• Polyhedron: {x : Ax  b}, where inequality  is interpreted
componentwise. Note: the set {x : Ax  b, Cx = d} is also a
polyhedron (why?)32 2 Convex sets

a1 a2

a3

a4

a5

P

Figure 2.11 The polyhedron P (shown shaded) is the intersection of five
halfspaces, with outward normal vectors a1, . . . . , a5.

when it is bounded). Figure 2.11 shows an example of a polyhedron defined as the
intersection of five halfspaces.

It will be convenient to use the compact notation

P = {x | Ax � b, Cx = d} (2.6)

for (2.5), where

A =

�

��
aT
1
...

aT
m

�

�� , C =

�

��
cT
1
...

cT
p

�

�� ,

and the symbol � denotes vector inequality or componentwise inequality in Rm:
u � v means ui  vi for i = 1, . . . , m.

Example 2.4 The nonnegative orthant is the set of points with nonnegative compo-
nents, i.e.,

Rn
+ = {x � Rn | xi � 0, i = 1, . . . , n} = {x � Rn | x � 0}.

(Here R+ denotes the set of nonnegative numbers: R+ = {x � R | x � 0}.) The
nonnegative orthant is a polyhedron and a cone (and therefore called a polyhedral
cone).

Simplexes

Simplexes are another important family of polyhedra. Suppose the k + 1 points
v0, . . . , vk 2 Rn are a�nely independent, which means v1 � v0, . . . , vk � v0 are
linearly independent. The simplex determined by them is given by

C = conv{v0, . . . , vk} = {✓0v0 + · · · + ✓kvk | ✓ ⌫ 0, 1T ✓ = 1}, (2.7)

• Simplex: special case of polyhedra, given by conv{x0, . . . xk},
where these points are a�nely independent. The canonical
example is the probability simplex,

conv{e1, . . . en} = {w : w � 0, 1Tw = 1}
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Cones

Cone: C ✓ Rn such that

x 2 C =) tx 2 C for all t � 0

Convex cone: cone that is also convex, i.e.,

x1, x2 2 C =) t1x1 + t2x2 2 C for all t1, t2 � 0

26 2 Convex sets

0

x1

x2

Figure 2.4 The pie slice shows all points of the form �1x1 + �2x2, where
�1, �2 � 0. The apex of the slice (which corresponds to �1 = �2 = 0) is at
0; its edges (which correspond to �1 = 0 or �2 = 0) pass through the points
x1 and x2.

00

Figure 2.5 The conic hulls (shown shaded) of the two sets of figure 2.3.

Conic combination of x1, . . . xk 2 Rn: any linear combination

✓1x1 + . . . + ✓kxk

with ✓i � 0, i = 1, . . . k. Conic hull collects all conic combinations
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Examples of convex cones

• Norm cone: {(x, t) : kxk  t}, for a norm k · k. Under the `2
norm k · k2, called second-order cone

• Normal cone: given any set C and point x 2 C, we can define

NC(x) = {g : gTx � gT y, for all y 2 C}

●

●

●

●

This is always a convex cone,
regardless of C

• Positive semidefinite cone: §n+ = {X 2 §n : X ⌫ 0}, where
X ⌫ 0 means that X is positive semidefinite (and §n is the
set of n ⇥ n symmetric matrices)
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Key properties of convex sets

• Separating hyperplane theorem: two disjoint convex sets have
a separating between hyperplane them

2.5 Separating and supporting hyperplanes 47

E1

E2

E3

Figure 2.18 Three ellipsoids in R2, centered at the origin (shown as the
lower dot), that contain the points shown as the upper dots. The ellipsoid
E1 is not minimal, since there exist ellipsoids that contain the points, and
are smaller (e.g., E3). E3 is not minimal for the same reason. The ellipsoid
E2 is minimal, since no other ellipsoid (centered at the origin) contains the
points and is contained in E2.

D

C

a

aT x � b aT x  b

Figure 2.19 The hyperplane {x | aT x = b} separates the disjoint convex sets
C and D. The a�ne function aT x � b is nonpositive on C and nonnegative
on D.

Formally: if C, D are nonempty convex sets with C \ D = ;,
then there exists a, b such that

C ✓ {x : aTx  b}
D ✓ {x : aTx � b}
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• Supporting hyperplane theorem: a boundary point of a convex
set has a supporting hyperplane passing through it

●

Formally: if C is a nonempty convex set, and x0 2 bd(C),
then there exists a such that

C ✓ {x : aTx  aTx0}

Both of the above theorems (separating and supporting hyperplane
theorems) have partial converses; see Section 2.5 of BV
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Operations preserving convexity

• Intersection: the intersection of convex sets is convex

• Scaling and translation: if C is convex, then

aC + b = {ax + b : x 2 C}

is convex for any a, b

• A�ne images and preimages: if f(x) = Ax + b and C is
convex then

f(C) = {f(x) : x 2 C}

is convex, and if D is convex then

f�1(D) = {x : f(x) 2 D}

is convex
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Example: linear matrix inequality solution set

Given A1, . . . Ak, B 2 §n, a linear matrix inequality is of the form

x1A1 + x2A2 + . . . + xkAk � B

for a variable x 2 Rk. Let’s prove the set C of points x that satisfy
the above inequality is convex

Approach 1: directly verify that x, y 2 C ) tx + (1 � t)y 2 C.
This follows by checking that, for any v,

vT
⇣
B �

kX

i=1

(txi + (1 � t)yi)Ai

⌘
v � 0

Approach 2: let f : Rk ! §n, f(x) = B �
Pk

i=1 xiAi. Note that
C = f�1(§n+), a�ne preimage of convex set
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More operations preserving convexity

• Perspective images and preimages: the perspective function is
P : Rn ⇥ R++ ! Rn (where R++ denotes positive reals),

P (x, z) = x/z

for z > 0. If C ✓ dom(P ) is convex then so is P (C), and if
D is convex then so is P�1(D)

• Linear-fractional images and preimages: the perspective map
composed with an a�ne function,

f(x) =
Ax + b

cTx + d

is called a linear-fractional function, defined on cTx + d > 0.
If C ✓ dom(f) is convex then so if f(C), and if D is convex
then so is f�1(D)
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Example: conditional probability set

Let U, V be random variables over {1, . . . n} and {1, . . . m}. Let
C ✓ Rnm be a set of joint distributions for U, V , i.e., each p 2 C
defines joint probabilities

pij = P(U = i, V = j)

Let D ✓ Rnm contain corresponding conditional distributions, i.e.,
each q 2 D defines

qij = P(U = i|V = j)

Assume C is convex. Let’s prove that D is convex. Write

D =
n

q 2 Rnm : qij =
pijPn

k=1 pkj
, for some p 2 C

o
= f(C)

where f is a linear-fractional function, hence D is convex
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Convex functions

Convex function: f : Rn ! R such that dom(f) ✓ Rn convex, and

f(tx + (1 � t)y)  tf(x) + (1 � t)f(y) for 0  t  1

and all x, y 2 dom(f)

Chapter 3

Convex functions

3.1 Basic properties and examples

3.1.1 Definition

A function f : Rn ! R is convex if dom f is a convex set and if for all x,
y 2 dom f , and ✓ with 0  ✓  1, we have

f(✓x + (1 � ✓)y)  ✓f(x) + (1 � ✓)f(y). (3.1)

Geometrically, this inequality means that the line segment between (x, f(x)) and
(y, f(y)), which is the chord from x to y, lies above the graph of f (figure 3.1).
A function f is strictly convex if strict inequality holds in (3.1) whenever x 6= y
and 0 < ✓ < 1. We say f is concave if �f is convex, and strictly concave if �f is
strictly convex.

For an a�ne function we always have equality in (3.1), so all a�ne (and therefore
also linear) functions are both convex and concave. Conversely, any function that
is convex and concave is a�ne.

A function is convex if and only if it is convex when restricted to any line that
intersects its domain. In other words f is convex if and only if for all x 2 dom f and

(x, f(x))

(y, f(y))

Figure 3.1 Graph of a convex function. The chord (i.e., line segment) be-
tween any two points on the graph lies above the graph.

In words, function lies below the line segment joining f(x), f(y)

Concave function: opposite inequality above, so that

f concave () �f convex
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Important modifiers:

• Strictly convex: f
�
tx + (1 � t)y

�
< tf(x) + (1 � t)f(y) for

x 6= y and 0 < t < 1. In words, f is convex and has greater
curvature than a linear function

• Strongly convex with parameter m > 0: f � m
2 kxk22 is convex.

In words, f is at least as convex as a quadratic function

Note: strongly convex ) strictly convex ) convex

(Analogously for concave functions)
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Examples of convex functions

• Univariate functions:
I Exponential function: eax is convex for any a over R
I Power function: xa is convex for a � 1 or a  0 over R+

(nonnegative reals)
I Power function: xa is concave for 0  a  1 over R+
I Logarithmic function: log x is concave over R++

• A�ne function: aTx + b is both convex and concave

• Quadratic function: 1
2x

TQx + bTx + c is convex provided that
Q ⌫ 0 (positive semidefinite)

• Least squares loss: ky � Axk22 is always convex (since ATA is
always positive semidefinite)
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• Norm: kxk is convex for any norm; e.g., `p norms,

kxkp =

 
nX

i=1

xp
i

!1/p

for p � 1, kxk1 = max
i=1,...n

|xi|

and also operator (spectral) and trace (nuclear) norms,

kXkop = �1(X), kXktr =
rX

i=1

�r(X)

where �1(X) � . . . � �r(X) � 0 are the singular values of
the matrix X
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• Indicator function: if C is convex, then its indicator function

IC(x) =

(
0 x 2 C

1 x /2 C

is convex

• Support function: for any set C (convex or not), its support
function

I⇤C(x) = max
y2C

xT y

is convex

• Max function: f(x) = max{x1, . . . xn} is convex
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Key properties of convex functions

• A function is convex if and only if its restriction to any line is
convex

• Epigraph characterization: a function f is convex if and only
if its epigraph

epi(f) = {(x, t) 2 dom(f) ⇥ R : f(x)  t}

is a convex set

• Convex sublevel sets: if f is convex, then its sublevel sets

{x 2 dom(f) : f(x)  t}

are convex, for all t 2 R. The converse is not true
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• First-order characterization: if f is di↵erentiable, then f is
convex if and only if dom(f) is convex, and

f(y) � f(x) + rf(x)T (y � x)

for all x, y 2 dom(f). Therefore for a di↵erentiable convex
function rf(x) = 0 () x minimizes f

• Second-order characterization: if f is twice di↵erentiable, then
f is convex if and only if dom(f) is convex, and r2f(x) ⌫ 0
for all x 2 dom(f)

• Jensen’s inequality: if f is convex, and X is a random variable
supported on dom(f), then f(E[X])  E[f(X)]
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Operations preserving convexity

• Nonnegative linear combination: f1, . . . fm convex implies
a1f1 + . . . + amfm convex for any a1, . . . am � 0

• Pointwise maximization: if fs is convex for any s 2 S, then
f(x) = maxs2S fs(x) is convex. Note that the set S here
(number of functions fs) can be infinite

• Partial minimization: if g(x, y) is convex in x, y, and C is
convex, then f(x) = miny2C g(x, y) is convex
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Example: distances to a set

Let C be an arbitrary set, and consider the maximum distance to
C under an arbitrary norm k · k:

f(x) = max
y2C

kx � yk

Let’s check convexity: fy(x) = kx � yk is convex in x for any fixed
y, so by pointwise maximization rule, f is convex

Now let C be convex, and consider the minimum distance to C:

f(x) = min
y2C

kx � yk

Let’s check convexity: g(x, y) = kx � yk is convex in x, y jointly,
and C is assumed convex, so apply partial minimization rule
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More operations preserving convexity

• A�ne composition: if f is convex, then g(x) = f(Ax + b) is
convex

• General composition: suppose f = h � g, where g : Rn ! R,
h : R ! R, f : Rn ! R. Then:
I f is convex if h is convex and nondecreasing, g is convex
I f is convex if h is convex and nonincreasing, g is concave
I f is concave if h is concave and nondecreasing, g concave
I f is concave if h is concave and nonincreasing, g convex

How to remember these? Think of the chain rule when n = 1:

f 00(x) = h00(g(x))g0(x)2 + h0(g(x))g00(x)
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• Vector composition: suppose that

f(x) = h
�
g(x)

�
= h

�
g1(x), . . . gk(x)

�

where g : Rn ! Rk, h : Rk ! R, f : Rn ! R. Then:
I f is convex if h is convex and nondecreasing in each

argument, g is convex
I f is convex if h is convex and nonincreasing in each

argument, g is concave
I f is concave if h is concave and nondecreasing in each

argument, g is concave
I f is concave if h is concave and nonincreasing in each

argument, g is convex
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Example: log-sum-exp function

Log-sum-exp function: g(x) = log(
Pk

i=1 ea
T
i x+bi), for fixed ai, bi,

i = 1, . . . k. Often called “soft max”, as it smoothly approximates
maxi=1,...k (aTi x + bi)

How to show convexity? First, note it su�ces to prove convexity of
f(x) = log(

Pn
i=1 exi) (a�ne composition rule)

Now use second-order characterization. Calculate

rif(x) =
exi

Pn
`=1 ex`

r2
ijf(x) =

exi

Pn
`=1 ex`

1{i = j} � exiexj

(
Pn

`=1 ex`)2

Write r2f(x) = diag(z) � zzT , where zi = exi/(
Pn

`=1 ex`). This
matrix is diagonally dominant, hence positive semidefinite
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