
Alternating Direction Method of Multipliers

Yu-Xiang Wang
CS292F

Last time: modern stochastic gradient methods

• SGD has slow convergence, we can solve the finite sum
problem faster.

• SAG, SAGA, variance reduction

• SVRG and its convergence analysis — more explicit variance
reduction and how it helps the algorithm to converge faster

• Adaptive gradient methods: Adagrad, Adam and SignSGD

2

Reminder: conjugate functions

Recall that given f : Rn → R, the function

f∗(y) = max
x

yTx− f(x)

is called its conjugate

• Conjugates appear frequently in dual programs, since

−f∗(y) = min
x

f(x)− yTx

• If f is closed and convex, then f∗∗ = f . Also,

x ∈ ∂f∗(y) ⇐⇒ y ∈ ∂f(x) ⇐⇒ x ∈ argmin
z

f(z)− yT z

• If f is strictly convex, then ∇f∗(y) = argmin
z

f(z)− yT z

3

Dual ascent

Even if we can’t derive dual (conjugate) in closed form, we can still
use dual-based gradient or subgradient methods

Consider the problem

min
x

f(x) subject to Ax = b

Its dual problem is

max
u
−f∗(−ATu)− bTu

where f∗ is conjugate of f . Defining g(u) = −f∗(−ATu)− bTu,
note that

∂g(u) = A∂f∗(−ATu)− b

4

Therefore, using what we know about conjugates

∂g(u) = Ax− b where x ∈ argmin
z

f(z) + uTAz

The dual subgradient method (for maximizing the dual objective)
starts with an initial dual guess u(0), and repeats for k = 1, 2, 3, . . .

x(k) ∈ argmin
x

f(x) + (u(k−1))TAx

u(k) = u(k−1) + tk(Ax
(k) − b)

Step sizes tk, k = 1, 2, 3, . . . , are chosen in standard ways

5

Recall that if f is strictly convex, then f∗ is differentiable, and so
this becomes dual gradient ascent, which repeats for k = 1, 2, 3, . . .

x(k) = argmin
x

f(x) + (u(k−1))TAx

u(k) = u(k−1) + tk(Ax
(k) − b)

(Difference is that each x(k) is unique, here.) Again, step sizes tk,
k = 1, 2, 3, . . . are chosen in standard ways

Lastly, proximal gradients and acceleration can be applied as they
would usually

6

Duality between Strong Convexity and Strong Smoothness

Assume that f is a closed and convex function. Then f is strongly
convex with parameter m ⇐⇒ ∇f∗ Lipschitz with parameter 1/m

Proof of “=⇒”: Recall, if g strongly convex with minimizer x, then

g(y) ≥ g(x) +
m

2
‖y − x‖2, for all y

Hence defining xu = ∇f∗(u), xv = ∇f∗(v),

f(xv)− uTxv ≥ f(xu)− uTxu +
m

2
‖xu − xv‖22

f(xu)− vTxu ≥ f(xv)− vTxv +
m

2
‖xu − xv‖22

Adding these together, using Cauchy-Schwartz, rearranging shows
that ‖xu − xv‖2 ≤ ‖u− v‖2/m

Proof of “⇐=”: Exercise!

7

Convergence guarantees

The following results hold from combining the last fact with what
we already know about gradient descent:

• If f is strongly convex with parameter m, then dual gradient
ascent with constant step sizes tk = m converges at sublinear
rate O(1/ε)

• If f is strongly convex with parameter m and ∇f is Lipschitz
with parameter L, then dual gradient ascent with step sizes
tk = 2/(1/m+ 1/L) converges at linear rate O(log(1/ε))

Note that these results describe convergence of the dual objective
to its optimal value

8

Dual decomposition

Consider

min
x

B∑
i=1

fi(xi) subject to Ax = b

Here x = (x1, . . . xB) ∈ Rn divides into B blocks of variables, with
each xi ∈ Rni . We can also partition A accordingly

A = [A1 . . . AB], where Ai ∈ Rm×ni

Simple but powerful observation, in calculation of (sub)gradient, is
that the minimization decomposes into B separate problems:

x+ ∈ argmin
x

B∑
i=1

fi(xi) + uTAx

⇐⇒ x+
i ∈ argmin

xi
fi(xi) + uTAixi, i = 1, . . . B

9

Dual decomposition algorithm: repeat for k = 1, 2, 3, . . .

x
(k)
i ∈ argmin

xi
fi(xi) + (u(k−1))TAixi, i = 1, . . . B

u(k) = u(k−1) + tk

(B∑
i=1

Aix
(k)
i − b

)

Can think of these steps as:

• Broadcast: send u to each of
the B processors, each
optimizes in parallel to find xi
• Gather: collect Aixi from

each processor, update the
global dual variable u

ux1

u x2 u x3

10

Dual decomposition with inequality constraints

Consider

min
x

B∑
i=1

fi(xi) subject to

B∑
i=1

Aixi ≤ b

Dual decomposition, i.e., projected subgradient method:

x
(k)
i ∈ argmin

xi
fi(xi) + (u(k−1))TAixi, i = 1, . . . B

u(k) =

(
u(k−1) + tk

(B∑
i=1

Aix
(k)
i − b

))
+

where u+ denotes the positive part of u, i.e., (u+)i = max{0, ui},
i = 1, . . . ,m

11

Price coordination interpretation (Vandenberghe):

• Have B units in a system, each unit chooses its own decision
variable xi (how to allocate its goods)

• Constraints are limits on shared resources (rows of A), each
component of dual variable uj is price of resource j

• Dual update:

u+
j = (uj − tsj)+, j = 1, . . .m

where s = b−∑B
i=1Aixi are slacks

I Increase price uj if resource j is over-utilized, sj < 0

I Decrease price uj if resource j is under-utilized, sj > 0

I Never let prices get negative

12

Augmented Lagrangian method
also known as: method of multipliers

Disadvantage of dual ascent: require strong conditions to ensure
convergence. Improved by augmented Lagrangian method, also
called method of multipliers. We transform the primal problem:

min
x

f(x) +
ρ

2
‖Ax− b‖22

subject to Ax = b

where ρ > 0 is a parameter. Clearly equivalent to original problem,
and objective is strongly convex when A has full column rank. Use
dual gradient ascent:

x(k) = argmin
x

f(x) + (u(k−1))TAx+
ρ

2
‖Ax− b‖22

u(k) = u(k−1) + ρ(Ax(k) − b)

13

Notice step size choice tk = ρ in dual algorithm. Why? Since x(k)

minimizes f(x) + (u(k−1))TAx+ ρ
2‖Ax− b‖22 over x, we have

0 ∈ ∂f(x(k)) +AT
(
u(k−1) + ρ(Ax(k) − b)

)
= ∂f(x(k)) +ATu(k)

This is the stationarity condition for original primal problem; under
mild conditions Ax(k) − b→ 0 as k →∞ (primal iterates become
feasible), so KKT conditions are satisfied in the limit and x(k), u(k)

converge to solutions

• Advantage: much better convergence properties

• Disadvantage: lose decomposability! (Separability is ruined by
augmented Lagrangian ...)

14

Alternating direction method of multipliers

Alternating direction method of multipliers or ADMM: try for best
of both worlds. Consider the problem

min
x,z

f(x) + g(z) subject to Ax+Bz = c

As before, we augment the objective

min
x

f(x) + g(z) +
ρ

2
‖Ax+Bz − c‖22

subject to Ax+Bz = c

for a parameter ρ > 0. We define augmented Lagrangian

Lρ(x, z, u) = f(x) + g(z) + uT (Ax+Bz − c) +
ρ

2
‖Ax+Bz − c‖22

15

ADMM repeats the steps, for k = 1, 2, 3, . . .

x(k) = argmin
x

Lρ(x, z
(k−1), u(k−1))

z(k) = argmin
z

Lρ(x
(k), z, u(k−1))

u(k) = u(k−1) + ρ(Ax(k) +Bz(k) − c)

Note that the usual method of multipliers would have replaced the
first two steps by a joint minimization

(x(k), z(k)) = argmin
x,z

Lρ(x, z, u
(k−1))

16

Convergence guarantees

Under modest assumptions on f, g (these do not require A,B to
be full rank), the ADMM iterates satisfy, for any ρ > 0:

• Residual convergence: r(k) = Ax(k) −Bz(k) − c→ 0 as
k →∞, i.e., primal iterates approach feasibility

• Objective convergence: f(x(k)) + g(z(k))→ f? + g?, where
f? + g? is the optimal primal objective value

• Dual convergence: u(k) → u?, where u? is a dual solution

For details, see Boyd et al. (2010). Note that we do not generically
get primal convergence, but this is true under more assumptions

Convergence rate: roughly, ADMM behaves like first-order method.
Theory still being developed, see, e.g., in Hong and Luo (2012),
Deng and Yin (2012), Iutzeler et al. (2014), Nishihara et al. (2015)

17

Scaled form ADMM

Scaled form: denote w = u/ρ, so augmented Lagrangian becomes

Lρ(x, z, w) = f(x) + g(z) +
ρ

2
‖Ax+Bz − c+ w‖22 −

ρ

2
‖w‖22

and ADMM updates become

x(k) = argmin
x

f(x) +
ρ

2
‖Ax+Bz(k−1) − c+ w(k−1)‖22

z(k) = argmin
z

g(z) +
ρ

2
‖Ax(k) +Bz − c+ w(k−1)‖22

w(k) = w(k−1) +Ax(k) +Bz(k) − c

Note that here kth iterate w(k) is just a running sum of residuals:

w(k) = w(0) +

k∑
i=1

(
Ax(i) +Bz(i) − c

)
18

Remainder of the lecture

• Examples, practicalities

• Consensus ADMM

• Special decompositions

19

Connection to proximal operators

Consider

min
x

f(x) + g(x) ⇐⇒ min
x,z

f(x) + g(z) subject to x = z

ADMM steps (equivalent to Douglas-Rachford, here):

x(k) = proxf,1/ρ(z
(k−1) − w(k−1))

z(k) = proxg,1/ρ(x
(k) + w(k−1))

w(k) = w(k−1) + x(k) − z(k)

where proxf,1/ρ is the proximal operator for f at parameter 1/ρ,
and similarly for proxg,1/ρ

In general, the update for block of variables reduces to prox update
whenever the corresponding linear transformation is the identity

20

Example: lasso regression

Given y ∈ Rn, X ∈ Rn×p, recall the lasso problem:

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1

We can rewrite this as:

min
β,α

1

2
‖y −Xβ‖22 + λ‖α‖1 subject to β − α = 0

ADMM steps:

β(k) = (XTX + ρI)−1
(
XT y + ρ(α(k−1) − w(k−1))

)
α(k) = Sλ/ρ(β

(k) + w(k−1))

w(k) = w(k−1) + β(k) − α(k)

21

Notes:

• The matrix XTX + ρI is always invertible, regardless of X

• If we compute a factorization (say Cholesky) in O(p3) flops,
then each β update takes O(p2) flops

• The α update applies the soft-thresolding operator St, which
recall is defined as

[St(x)]j =

xj − t x > t

0 −t ≤ x ≤ t
xj + t x < −t

, j = 1, . . . p

• ADMM steps are “almost” like repeated soft-thresholding of
ridge regression coefficients

22

Comparison of various algorithms for lasso regression: 100 random
instances with n = 200, p = 50

0 10 20 30 40 50 60

1e
−

10
1e

−
07

1e
−

04
1e

−
01

Iteration k

S
ub

op
tim

al
ity

 fk
−

fs
ta

r

Coordinate desc
Proximal grad
Accel prox
ADMM (rho=50)
ADMM (rho=100)
ADMM (rho=200)

23

Practicalities

In practice, ADMM usually obtains a relatively accurate solution in
a handful of iterations, but it requires a large number of iterations
for a highly accurate solution (like a first-order method)

Choice of ρ can greatly influence practical convergence of ADMM:

• ρ too large → not enough emphasis on minimizing f + g

• ρ too small → not enough emphasis on feasibility

Boyd et al. (2010) give a strategy for varying ρ; it can work well in
practice, but does not have convergence guarantees

Like deriving duals, transforming a problem into one that ADMM
can handle is sometimes a bit subtle, since different forms can lead
to different algorithms

24

Example: group lasso regression

Given y ∈ Rn, X ∈ Rn×p, recall the group lasso problem:

min
β

1

2
‖y −Xβ‖22 + λ

G∑
g=1

cg‖βg‖2

Rewrite as:

min
β,α

1

2
‖y −Xβ‖22 + λ

G∑
g=1

cg‖αg‖2 subject to β − α = 0

ADMM steps:

β(k) = (XTX + ρI)−1
(
XT y + ρ(α(k−1) − w(k−1))

)
α(k)
g = Rcgλ/ρ

(
β(k)
g + w(k−1)

g

)
, g = 1, . . . G

w(k) = w(k−1) + β(k) − α(k)

25

Notes:

• The matrix XTX + ρI is always invertible, regardless of X

• If we compute a factorization (say Cholesky) in O(p3) flops,
then each β update takes O(p2) flops

• The α update applies the group soft-thresolding operator Rt,
which recall is defined as

Rt(x) =

(
1− t

‖x‖2

)
+

x

• Similar ADMM steps follow for a sum of arbitrary norms of as
regularizer, provided we know prox operator of each norm

• ADMM algorithm can be rederived when groups have overlap
(hard problem to optimize in general!). See Boyd et al. (2010)

26

Example: sparse subspace estimation

Given S ∈ Sp (typically S � 0 is a covariance matrix), consider the
sparse subspace estimation problem (Vu et al., 2013):

max
Y

tr(SY)− λ‖Y ‖1 subject to Y ∈ Fk

where Fk is the Fantope of order k, namely

Fk = {Y ∈ Sp : 0 � Y � I, tr(Y) = k}

Note that when λ = 0, the above problem is equivalent to ordinary
principal component analysis (PCA)

This above is an SDP and in principle solveable with interior point
methods, though these can be complicated to implement and quite
slow for large problem sizes

27

Rewrite as:

min
Y,Z
−tr(SY) + IFk

(Y) + λ‖Z‖1 subject to Y = Z

ADMM steps are:

Y (k) = PFk
(Z(k−1) −W (k−1) + S/ρ)

Z(k) = Sλ/ρ(Y
(k) +W (k−1))

W (k) = W (k−1) + Y (k) − Z(k)

Here PFk
is Fantope projection operator, computed by clipping the

eigendecomposition A = UΣUT , Σ = diag(σ1, . . . , σp):

PFk
(A) = UΣθU

T , Σθ = diag(σ1(θ), . . . , σp(θ))

where each σi(θ) = min{max{σi − θ, 0}, 1}, and
∑p

i=1 σi(θ) = k

28

Example: sparse + low rank decomposition

Given M ∈ Rn×m, consider the sparse plus low rank decomposition
problem (Candes et al., 2009):

min
L,S

‖L‖tr + λ‖S‖1

subject to L+ S = M

ADMM steps:

L(k) = Str
1/ρ(M − S(k−1) +W (k−1))

S(k) = S`1λ/ρ(M − L
(k) +W (k−1))

W (k) = W (k−1) +M − L(k) − S(k)

where, to distinguish them, we use Str
λ/ρ for matrix soft-thresolding

and S`1λ/ρ for elementwise soft-thresolding

29

Example from Candes et al. (2009):

(a) Original frames (b) Low-rank L̂ (c) Sparse Ŝ (d) Low-rank L̂ (e) Sparse Ŝ

Convex optimization (this work) Alternating minimization [47]

Figure 2: Background modeling from video. Three frames from a 200 frame video sequence
taken in an airport [32]. (a) Frames of original video M . (b)-(c) Low-rank L̂ and sparse
components Ŝ obtained by PCP, (d)-(e) competing approach based on alternating minimization
of an m-estimator [47]. PCP yields a much more appealing result despite using less prior
knowledge.

Figure 2 (d) and (e) compares the result obtained by Principal Component Pursuit to a state-of-
the-art technique from the computer vision literature, [47].12 That approach also aims at robustly
recovering a good low-rank approximation, but uses a more complicated, nonconvex m-estimator,
which incorporates a local scale estimate that implicitly exploits the spatial characteristics of natural
images. This leads to a highly nonconvex optimization, which is solved locally via alternating
minimization. Interestingly, despite using more prior information about the signal to be recovered,
this approach does not perform as well as the convex programming heuristic: notice the large
artifacts in the top and bottom rows of Figure 2 (d).

In Figure 3, we consider 250 frames of a sequence with several drastic illumination changes.
Here, the resolution is 168 ⇥ 120, and so M is a 20, 160 ⇥ 250 matrix. For simplicity, and to
illustrate the theoretical results obtained above, we again choose � = 1/

p
n1.

13 For this example,
on the same 2.66 GHz Core 2 Duo machine, the algorithm requires a total of 561 iterations and 36
minutes to converge.

Figure 3 (a) shows three frames taken from the original video, while (b) and (c) show the
recovered low-rank and sparse components, respectively. Notice that the low-rank component
correctly identifies the main illuminations as background, while the sparse part corresponds to the

12We use the code package downloaded from http://www.salleurl.edu/~ftorre/papers/rpca/rpca.zip, modi-
fied to choose the rank of the approximation as suggested in [47].

13For this example, slightly more appealing results can actually be obtained by choosing larger � (say, 2/
p

n1).

25

30

Consensus ADMM

Consider a problem of the form: min
x

B∑
i=1

fi(x)

The consensus ADMM approach begins by reparametrizing:

min
x1,...xB ,x

B∑
i=1

fi(xi) subject to xi = x, i = 1, . . . B

This yields the decomposable ADMM steps:

x
(k)
i = argmin

xi
fi(xi) +

ρ

2
‖xi − x(k−1) + w

(k−1)
i ‖22, i = 1, . . . B

x(k) =
1

B

B∑
i=1

(
x

(k)
i + w

(k−1)
i

)
w

(k)
i = w

(k−1)
i + x

(k)
i − x(k), i = 1, . . . B

31

Write x̄ = 1
B

∑B
i=1 xi and similarly for other variables. Not hard to

see that w̄(k) = 0 for all iterations k ≥ 1

Hence ADMM steps can be simplified, by taking x(k) = x̄(k):

x
(k)
i = argmin

xi
fi(xi) +

ρ

2
‖xi − x̄(k−1) + w

(k−1)
i ‖22, i = 1, . . . B

w
(k)
i = w

(k−1)
i + x

(k)
i − x̄(k), i = 1, . . . B

To reiterate, the xi, i = 1, . . . B updates here are done in parallel

Intuition:

• Try to minimize each fi(xi), use (squared) `2 regularization to
pull each xi towards the average x̄

• If a variable xi is bigger than the average, then wi is increased

• So the regularization in the next step pulls xi even closer

32

General consensus ADMM

Consider a problem of the form: min
x

B∑
i=1

fi(a
T
i x+ bi) + g(x)

For consensus ADMM, we again reparametrize:

min
x1,...xB ,x

B∑
i=1

fi(a
T
i xi + bi) + g(x) subject to xi = x, i = 1, . . . B

This yields the decomposable ADMM updates:

x
(k)
i = argmin

xi
fi(a

T
i xi + bi) +

ρ

2
‖xi − x(k−1) + w

(k−1)
i ‖22,

i = 1, . . . B

x(k) = argmin
x

Bρ

2
‖x− x̄(k) − w̄(k−1)‖22 + g(x)

w
(k)
i = w

(k−1)
i + x

(k)
i − x(k), i = 1, . . . B

33

Notes:

• It is no longer true that w̄(k) = 0 at a general iteration k, so
ADMM steps do not simplify as before

• To reiterate, the xi, i = 1, . . . B updates are done in parallel

• Each xi update can be thought of as a loss minimization on
part of the data, with `2 regularization

• The x update is a proximal operation in regularizer g

• The w update drives the individual variables into consensus

• A different initial reparametrization will give rise to a different
ADMM algorithm

See Boyd et al. (2010), Parikh and Boyd (2013) for more details
on consensus ADMM, strategies for splitting up into subproblems,
and implementation tips

34

Special decompositions

ADMM can exhibit much faster convergence than usual, when we
parametrize subproblems in a “special way”

• ADMM updates relate closely to block coordinate descent, in
which we optimize a criterion in an alternating fashion across
blocks of variables

• With this in mind, get fastest convergence when minimizing
over blocks of variables leads to updates in nearly orthogonal
directions

• Suggests we should design ADMM form (auxiliary constraints)
so that primal updates de-correlate as best as possible

• This is done in, e.g., Ramdas and Tibshirani (2014), Wytock
et al. (2014), Barbero and Sra (2014), W., Sharpnack,
Tibshirani and Smola (2016)

35

Example: Trend Filtering

min
θ

1

2
‖y − θ‖22 + λ‖D(k+1)θ‖1

where we can construct the discrete difference operators recursively

D(k+1) = D(1)D(k)

There is an alternative decomposition that results in Fast ADMM
updates (Ramdas and Tibshirani, 2014)

D(k+1) = D(k)D(1)

min
θ

1

2
‖y − θ‖22 + λ‖D(1)z‖1 subject to D(k)θ = z

Generalization possible to Trend Filtering on Graphs! Leverage fast
Laplacian solvers for the linear system (Multi-grids methods /
Graph-Sparsifiers), and graph-cut (Boykov and Kolmogorov) /
parametric maxflow (Champolle an Darbon) for the prox operator.

36

Example: 2d fused lasso

Given an image Y ∈ Rd×d, equivalently written as y ∈ Rn, recall
the 2d fused lasso or 2d total variation denoising problem:

min
Θ

1

2
‖Y −Θ‖2F + λ

∑
i,j

(
|Θi,j −Θi+1,j |+ |Θi,j −Θi,j+1|

)
⇐⇒ min

θ

1

2
‖y − θ‖22 + λ‖Dθ‖1

Here D ∈ Rm×n is a 2d difference operator giving the appropriate
differences (across horizontally and vertically adjacent positions)

164 Parallel and Distributed Algorithms

Figure 5.2: Variables are black dots; the partitions P and Q are in orange and cyan.

The next step is to transform (5.3) into the canonical form (5.1):

minimize ∑N
i=1 fi(xi) + IC(x1, . . . , xN), (5.4)

where C is the consensus set

C = {(x1, . . . , xN) | x1 = · · · = xN}. (5.5)

In this formulation we have moved the consensus constraint into the
objective using an indicator function. In the notation of (5.1), f is the
sum of the terms fi, while g is the indicator function of the consistency
constraint. The partitions are given by

P = {[n], n + [n], 2n + [n], . . . , (N − 1)n + [n]},
Q = {{i, n + i, 2n + i, . . . , (N − 1)n + i} | i = 1, . . . , N}.

The first partition is clear since f is additive. The consensus constraint
splits across its components; it can be written as a separate consensus
constraint for each component. Since the full optimization variable for
(5.4) is in RnN , it is easiest to view it as in Figure 5.2, in which case
it is easy to see that f is separable across columns while g is separable
across rows.

We now apply ADMM as above. Evaluating proxλg reduces to pro-
jecting onto the consensus set (5.5). This is simple: we replace each
zi with its average z = (1/N)∑N

i=1 zi. From this we conclude that∑N
i=1 u

k
i = 0, which allows for some simplifications of the general algo-

37

First way to rewrite:

min
θ,z

1

2
‖y − θ‖22 + λ‖z‖1 subject to θ = Dz

Leads to ADMM steps:

θ(k) = (I + ρDTD)−1
(
y + ρDT (z(k−1) + w(k−1))

)
z(k) = Sλ/ρ(Dθ

(k) − w(k−1))

w(k) = w(k−1) + z(k−1) −Dθ(k)

Notes:

• The θ update solves linear system in I + ρL, with L = DTD
the graph Laplacian matrix of the 2d grid, so this can be done
efficiently, in roughly O(n) operations

• The z update applies soft thresholding operator St
• Hence one entire ADMM cycle uses roughly O(n) operations

38

Second way to rewrite:

min
H,V

1

2
‖Y −H‖2F + λ

∑
i,j

(
|Hi,j −Hi+1,j |+ |Vi,j − Vi,j+1|

)
subject to H = V

Leads to ADMM steps:

H
(k)
·,j = FL1d

λ/(1+ρ)

(
Y + ρ(V

(k−1)
·,j −W (k−1)

·,j)

1 + ρ

)
, j = 1, . . . , d

V
(k)
i,· = FL1d

λ/ρ

(
H

(k)
i,· +W

(k−1)
i,·

)
, i = 1, . . . , d

W (k) = W (k−1) +H(k) − V (k)

Notes:

• Both H,V updates solve (sequence of) 1d fused lassos, where
we write FL1d

τ (a) = argminx
1
2‖a− x‖22 + τ

∑d−1
i=1 |xi − xi+1|

39

• Critical: each 1d fused lasso solution can be computed exactly
in O(d) operations with specialized algorithms (e.g., Johnson,
2013; Davies and Kovac, 2001)

• Hence one entire ADMM cycle again uses O(n) operations164 Parallel and Distributed Algorithms

Figure 5.2: Variables are black dots; the partitions P and Q are in orange and cyan.

The next step is to transform (5.3) into the canonical form (5.1):

minimize ∑N
i=1 fi(xi) + IC(x1, . . . , xN), (5.4)

where C is the consensus set

C = {(x1, . . . , xN) | x1 = · · · = xN}. (5.5)

In this formulation we have moved the consensus constraint into the
objective using an indicator function. In the notation of (5.1), f is the
sum of the terms fi, while g is the indicator function of the consistency
constraint. The partitions are given by

P = {[n], n + [n], 2n + [n], . . . , (N − 1)n + [n]},
Q = {{i, n + i, 2n + i, . . . , (N − 1)n + i} | i = 1, . . . , N}.

The first partition is clear since f is additive. The consensus constraint
splits across its components; it can be written as a separate consensus
constraint for each component. Since the full optimization variable for
(5.4) is in RnN , it is easiest to view it as in Figure 5.2, in which case
it is easy to see that f is separable across columns while g is separable
across rows.

We now apply ADMM as above. Evaluating proxλg reduces to pro-
jecting onto the consensus set (5.5). This is simple: we replace each
zi with its average z = (1/N)∑N

i=1 zi. From this we conclude that∑N
i=1 u

k
i = 0, which allows for some simplifications of the general algo-

40

Comparison of 2d fused lasso algorithms: an image of dimension
300× 200 (so n = 60, 000)

3
4

5
6

7

Data Exact solution

41

Two ADMM algorithms, (say) standard and specialized ADMM:

0 20 40 60 80 100

1e
+

01
1e

+
02

1e
+

03
1e

+
04

1e
+

05

k

f(
k)

−
fs

ta
r

Standard
Specialized

42

ADMM iterates visualized after k = 10, 30, 50, 100 iterations:

3
4

5
6

7

Standard ADMM Specialized ADMM
10 iterations 10 iterations

43

ADMM iterates visualized after k = 10, 30, 50, 100 iterations:

3
4

5
6

7

Standard ADMM Specialized ADMM
30 iterations 30 iterations

43

ADMM iterates visualized after k = 10, 30, 50, 100 iterations:

3
4

5
6

7

Standard ADMM Specialized ADMM
50 iterations 50 iterations

43

ADMM iterates visualized after k = 10, 30, 50, 100 iterations:

3
4

5
6

7

Standard ADMM Specialized ADMM
100 iterations 100 iterations

43

References

• A. Barbero and S. Sra (2014), “Modular proximal optimization
for multidimensional total-variation regularization”

• S. Boyd and N. Parikh and E. Chu and B. Peleato and J.
Eckstein (2010), “Distributed optimization and statistical
learning via the alternating direction method of multipliers”

• E. Candes and X. Li and Y. Ma and J. Wright (2009),
“Robust principal component analysis?”

• N. Parikh and S. Boyd (2013), “Proximal algorithms”

• V. Vu and J. Cho and J. Lei and K. Rohe (2013),“Fantope
projection and selection: a near-optimal convex relaxation of
sparse PCA”

• M. Wytock and S. Sra. and Z. Kolter (2014), “Fast Newton
methods for the group fused lasso”

44

More references

• A. Johnson (2013). “A dynamic programming algorithm for
the fused lasso and l 0-segmentation”.

• A. Ramdas, and R. Tibshirani. (2014) “Fast and flexible
ADMM algorithms for trend filtering”

• Y.-X. Wang, J. Sharpnack, A. Smola, R. Tibshirani (2016).
“Trend filtering on graphs”.

• A. Chambolle and J. Darbon (2009)“On total variation
minimization and surface evolution using parametric
maximum flows”

• D. S. Hochbaum (2001) “An efficient algorithm for image
segmentation, Markov random fields and related problems”

• Y. Boykov and V. Kolmogorov (2004) “An Experimental
Comparison of Min-Cut/Max-Flow Algorithms for Energy
Minimization in Vision.”

45

