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Last time: optimization basics

® Optimization terminology (e.g., criterion, constraints, feasible
points, solutions)

® Properties and first-order optimality

® Equivalent transformations (e.g., partial optimization, change
of variables, eliminating equality constraints)



Outline

Today:
® |inear programs
® Quadratic programs
® Semidefinite programs

® Cone programs



Hierarchy of Canonical Optimizations

Linear programs
Quadratic programs
Semidefinite programs

Cone programs






Linear program

A linear program or LP is an optimization problem of the form

min L

T

subject to Dz <d
Ax=b

Observe that this is always a convex optimization problem

® First introduced by Kantorovich in the late 1930s and Dantzig
in the 1940s

e Dantzig's simplex algorithm gives a direct (noniterative) solver
for LPs (later in the course we'll see interior point methods)

® Fundamental problem in convex optimization. Many diverse
applications, rich history



Example: diet problem

Find cheapest combination of foods that satisfies some nutritional
requirements (useful for graduate students!)

min L

xT

subject to Dz >d
x>0

Interpretation:
® c; : per-unit cost of food j
® d; : minimum required intake of nutrient ¢
® D;; : content of nutrient ¢ per unit of food j

® z; : units of food j in the diet



Example: transportation problem
Ship commodities from given sources to destinations at min cost
m n
mljn Z Z CijTij
i=1 j=1

n
subject to inj <sj,t=1,....m
j=1

m
ZIL‘ijZdj,j:l,...,n, x>0
1=1

Interpretation:
® s; : supply at source %
® d; : demand at destination j
® ¢;; : per-unit shipping cost from i to j

® x;; : units shipped from 7 to j



Example: basis pursuit

Given y € R™ and X € R™*P, where p > n. Suppose that we seek
the sparsest solution to underdetermined linear system X5 =y

Nonconvex formulation:
min 0
i 151
subject to X8 =1y
where recall [|8]lo = >2%_; 1{; # 0}, the £ “norm”
The /1 approximation, often called basis pursuit:
min Bl
i 181

subject to XpB =y



Basis pursuit is a linear program. Reformulation:

min min
i 1511 ui
subject to XG =1y subject to

(Check that this makes sense to you)

172
z2>f
z>—p
XB=y
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Example: Dantzig selector

Modification of previous problem, where we allow for X ~ y (we
don’t require exact equality), the Dantzig selector:?

min I5]
i 181
subject to || XT(y — XB)||oo < A
Here A > 0 is a tuning parameter

Again, this can be reformulated as a linear program (check this!)

!Candes and Tao (2007), “The Dantzig selector: statistical estimation when
p is much larger than n”

11



Standard form

A linear program is said to be in standard form when it is written as

min lx

x

subject to Ax =b
x>0

Any linear program can be rewritten in standard form (check this!)
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Convex quadratic program

A convex quadratic program or QP is an optimization problem of
the form

min o+ azTQ:c
x

subject to Dz < d
Axr=b>

where ) = 0, i.e., positive semidefinite
Note that this problem is not convex when @ % 0

From now on, when we say quadratic program or QP, we implicitly
assume that @ >~ 0 (so the problem is convex)
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Example: portfolio optimization

Construct a financial portfolio, trading off performance and risk:

max ple— szQa:
T 2
subject to 1Tz =1
x>0

Interpretation:
® 1 : expected assets’ returns
® () : covariance matrix of assets’ returns
® ~ : risk aversion

e 1 : portfolio holdings (percentages)
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Example: support vector machines

Given y € {—1,1}", X € R™™P having rows z1,...x,, recall the
support vector machine or SVM problem:

L, oo -
min = +C ;
mn o lErOYs
subject to § >0,i=1,...n

yi(aTB+B)>1—&, i=1,...n

This is a quadratic program
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Example: lasso

Given y € R", X € R™ P, recall the lasso problem:
min [y - X85
subject to  ||B]]1 < s

Here s > 0 is a tuning parameter. Indeed, this can be reformulated
as a quadratic program (check this!)

Alternative parametrization (called Lagrange, or penalized form):
1 2
min 3 ly = X518+ A5

Now A > 0 is a tuning parameter. And again, this can be rewritten
as a quadratic program (check this!)
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Standard form

A quadratic program is in standard form if it is written as

1
min e+ -2TQu
T 2

subject to Ax =b
x>0

Any quadratic program can be rewritten in standard form
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Motivation for semidefinite programs

Consider linear programming again:
min '
X
subject to Dz <d
Axr=10>
Can generalize by changing < to different (partial) order. Recall:

e S™ is space of n X n symmetric matrices
® S is the space of positive semidefinite matrices, i.e.,

S ={X €S":u" Xu >0 for all weR"}
e S%, is the space of positive definite matrices, i.e.,

St ={XeS":u"Xu>0forallueR"\{0}}
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Facts about S", S, S |

® Basic linear algebra facts, here A\(X) = (A1 (X), ..., A\ (X)):

X eSS = )\(X)GR"
X eSS AX) e RY
Xesh, AX) eRY

® We can define an inner product over S™: given X,Y € S",
XeY =tr(XY)
® We can define a partial ordering over S™: given X, Y € S",
XY << X-YeS}

Note: for z,y € R", diag(x) = diag(y) < z > y (recall,
the latter is interpreted elementwise)
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Semidefinite program

A semidefinite program or SDP is an optimization problem of the
form

min 'z
xr
subject to x1F1 + ...+ z,F, X F)
Ar =b

Here I} € s, forj=0,1,...n,and A € R™*" ¢ R", b € R™.
Observe that this is always a convex optimization problem

Also, any linear program is a semidefinite program (check this!)
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Standard form

A semidefinite program is in standard form if it is written as
min CeX
X
subject to A; e X =b;,i=1,...m
X >0

Any semidefinite program can be written in standard form (for a
challenge, check this!)
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Example: theta function

Let G = (N, E) be an undirected graph, N = {1,...,n}, and
® w(@G) : clique number of G
® X(G) : chromatic number of G

The Lovasz theta function:2
9(G) = max 117 e X

subject to e X =1
X0

The Lovasz sandwich theorem: w(G) < 9(G) < x(G), where G is
the complement graph of G

2| ovasz (1979), “On the Shannon capacity of a graph”
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Example: trace norm minimization

Let A: R™*™ — RP be a linear map,

Al e X
AX) =
Ape X
for Aj,... A, € R™" (and where A; o X = tr(A] X)). Finding
lowest-rank solution to an underdetermined system, nonconvex:

min rank(X)
X
subject to A(X) =b
Trace norm approximation:
min 1 X ||
X
subject to A(X) =b
This is indeed an SDP (but harder to show, requires duality ...)
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Conic program

A conic program is an optimization problem of the form:

min L

T

subject to Ax =b
D(z)+dec K

Here:
e c,x € R", and A € R™*" b e R™
e D:R™ — Y is a linear map, d € Y, for Euclidean space Y
e K CY is a closed convex cone

Both LPs and SDPs are special cases of conic programming. For
LPs, K = R"; for SDPs, K = S"}
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Second-order cone program

A second-order cone program or SOCP is an optimization problem
of the form:

min '
x
subject to || Djz 4+ di|l < elz+ fi, i=1,...p
Az =b

This is indeed a cone program. Why? Recall the second-order cone

Q=A{(z,1): ||z]2 <t}

So we have
| Dz + di|2 < e;frx + fi <= (Dijxz+d;, eiTa: + fi) € Qi

for second-order cone @); of appropriate dimensions. Now take
K=0Q1x...xQp
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Observe that every LP is an SOCP. Further, every SOCP is an SDP

Why? Turns out that

tl =z

el <t = | 15 7] =0

Hence we can write any SOCP constraint as an SDP constraint

The above is a special case of the Schur complement theorem:

A B 1 pT
[BT C]§O<:>A—BC B* >0

for A, C' symmetric and C >~ 0
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Hey, what about QPs?

Finally, our old friend QPs “sneak” into the hierarchy. Turns out
QPs are SOCPs, which we can see by rewriting a QP as

ngltn ot
subject to Dx < d, %xTQx <t
Az =b
Now write 327 Qz < t <« ||(%Q1/2m, 31 =1)ll2 < 5(1+1)
Take a breath (phew!). Thus we have established the hierachy

LPs C QPs C SOCPs C SDPs C Conic programs

completing the picture we saw at the start
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Approximation Algorithm for MaxCut

Given a graph with nodes and edges and edge weights. Find a
subset S of the nodes such that the sum of the weights w;; of
the edges between S and its complement .S is maximizes.

Letz; =1ifjeSandz;=—-1ifj€S.

max E E Wy — TiT4
s l] ? .7

=1 j=1
s.t. zje{-1,1},7=1,..,n

Goemans and Williamson algorithm:

1. Convex relaxation: solve an SDP instead.
2. Randomized rounding.

You get a 0.87856 approximation of an NP-complete problem.
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Approximation Algorithm for MaxCut
Reformulation (without changing the problem):

max g g wm J
YR X" zcR™ ’

=1 j=1
s.t. Yii=1 Vi=1,..,n
Y =z’

The convex relaxation:

max w;
YeRnxn Z Z (L= Yig)

=1 j=1
st. Yi,=1 Yj=1,....n
Y = 0.

Goemans and Williamson: Sample v uniformly from the unit
sphere in R”, decompose Y = UU”, output sign(Uw).
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Proof ideas of Goemans and Williamson's algorithm
Observe:

ith row of matrix U, u; € R™ can be thought of as a
nonparametric vector-space embedding of the graph node 1.
sign(u] v) is the output of a random linear separator.

The probability that Node 7 and Node j being classified
differently is proportional to §;;/m where §;; is the angle
between u; and u;.

cos(0;;) = (u;, u;) =Y ; (notice that u;, u; are both unit
vectors (why?)).

We can lower bound 6;; = arccos(Y; ;) with B(1 — (u;, u;))
with some constant 3. (see next slide for an illustration).
The objective function of the relaxed problem is larger than
that of the original Maxcut problem, but the randomized
rounding gives us a “feasible solution” to the original problem,
therefore the solution is in expectation a /7 ~ 0.878
constant approximation to Maxcut.

See the more detailed proof in the sketched notes.
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Proof ideas of Goemans and Williamson's algorithm

Key idea in Goemans-Williamson
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