
Canonical Problem Forms

Yu-Xiang Wang
CS292F

(Based on Ryan Tibshirani’s 10-725)



Last time: optimization basics

• Optimization terminology (e.g., criterion, constraints, feasible
points, solutions)

• Properties and first-order optimality

• Equivalent transformations (e.g., partial optimization, change
of variables, eliminating equality constraints)
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Outline

Today:

• Linear programs

• Quadratic programs

• Semidefinite programs

• Cone programs
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Hierarchy of Canonical Optimizations

• Linear programs

• Quadratic programs

• Semidefinite programs

• Cone programs
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Linear program

A linear program or LP is an optimization problem of the form

min
x

cTx

subject to Dx ≤ d
Ax = b

Observe that this is always a convex optimization problem

• First introduced by Kantorovich in the late 1930s and Dantzig
in the 1940s

• Dantzig’s simplex algorithm gives a direct (noniterative) solver
for LPs (later in the course we’ll see interior point methods)

• Fundamental problem in convex optimization. Many diverse
applications, rich history
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Example: diet problem

Find cheapest combination of foods that satisfies some nutritional
requirements (useful for graduate students!)

min
x

cTx

subject to Dx ≥ d
x ≥ 0

Interpretation:

• cj : per-unit cost of food j

• di : minimum required intake of nutrient i

• Dij : content of nutrient i per unit of food j

• xj : units of food j in the diet
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Example: transportation problem

Ship commodities from given sources to destinations at min cost

min
x

m∑
i=1

n∑
j=1

cijxij

subject to

n∑
j=1

xij ≤ si, i = 1, . . . ,m

m∑
i=1

xij ≥ dj , j = 1, . . . , n, x ≥ 0

Interpretation:

• si : supply at source i

• dj : demand at destination j

• cij : per-unit shipping cost from i to j

• xij : units shipped from i to j
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Example: basis pursuit

Given y ∈ Rn and X ∈ Rn×p, where p > n. Suppose that we seek
the sparsest solution to underdetermined linear system Xβ = y

Nonconvex formulation:

min
β

‖β‖0

subject to Xβ = y

where recall ‖β‖0 =
∑p

j=1 1{βj 6= 0}, the `0 “norm”

The `1 approximation, often called basis pursuit:

min
β

‖β‖1

subject to Xβ = y
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Basis pursuit is a linear program. Reformulation:

min
β

‖β‖1

subject to Xβ = y

⇐⇒
min
β,z

1T z

subject to z ≥ β
z ≥ −β
Xβ = y

(Check that this makes sense to you)
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Example: Dantzig selector

Modification of previous problem, where we allow for Xβ ≈ y (we
don’t require exact equality), the Dantzig selector:1

min
β

‖β‖1

subject to ‖XT (y −Xβ)‖∞ ≤ λ

Here λ ≥ 0 is a tuning parameter

Again, this can be reformulated as a linear program (check this!)

1Candes and Tao (2007), “The Dantzig selector: statistical estimation when
p is much larger than n”
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Standard form

A linear program is said to be in standard form when it is written as

min
x

cTx

subject to Ax = b

x ≥ 0

Any linear program can be rewritten in standard form (check this!)
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Convex quadratic program

A convex quadratic program or QP is an optimization problem of
the form

min
x

cTx+
1

2
xTQx

subject to Dx ≤ d
Ax = b

where Q � 0, i.e., positive semidefinite

Note that this problem is not convex when Q 6� 0

From now on, when we say quadratic program or QP, we implicitly
assume that Q � 0 (so the problem is convex)
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Example: portfolio optimization

Construct a financial portfolio, trading off performance and risk:

max
x

µTx− γ

2
xTQx

subject to 1Tx = 1

x ≥ 0

Interpretation:

• µ : expected assets’ returns

• Q : covariance matrix of assets’ returns

• γ : risk aversion

• x : portfolio holdings (percentages)
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Example: support vector machines

Given y ∈ {−1, 1}n, X ∈ Rn×p having rows x1, . . . xn, recall the
support vector machine or SVM problem:

min
β,β0,ξ

1

2
‖β‖22 + C

n∑
i=1

ξi

subject to ξi ≥ 0, i = 1, . . . n

yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . n

This is a quadratic program
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Example: lasso

Given y ∈ Rn, X ∈ Rn×p, recall the lasso problem:

min
β

‖y −Xβ‖22

subject to ‖β‖1 ≤ s

Here s ≥ 0 is a tuning parameter. Indeed, this can be reformulated
as a quadratic program (check this!)

Alternative parametrization (called Lagrange, or penalized form):

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1

Now λ ≥ 0 is a tuning parameter. And again, this can be rewritten
as a quadratic program (check this!)
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Standard form

A quadratic program is in standard form if it is written as

min
x

cTx+
1

2
xTQx

subject to Ax = b

x ≥ 0

Any quadratic program can be rewritten in standard form
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Motivation for semidefinite programs

Consider linear programming again:

min
x

cTx

subject to Dx ≤ d
Ax = b

Can generalize by changing ≤ to different (partial) order. Recall:

• Sn is space of n× n symmetric matrices

• Sn+ is the space of positive semidefinite matrices, i.e.,

Sn+ = {X ∈ Sn : uTXu ≥ 0 for all u ∈ Rn}

• Sn++ is the space of positive definite matrices, i.e.,

Sn++ =
{
X ∈ Sn : uTXu > 0 for all u ∈ Rn \ {0}

}
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Facts about Sn, Sn+, Sn++

• Basic linear algebra facts, here λ(X) = (λ1(X), . . . , λn(X)):

X ∈ Sn =⇒ λ(X) ∈ Rn

X ∈ Sn+ ⇐⇒ λ(X) ∈ Rn+
X ∈ Sn++ ⇐⇒ λ(X) ∈ Rn++

• We can define an inner product over Sn: given X,Y ∈ Sn,

X • Y = tr(XY )

• We can define a partial ordering over Sn: given X,Y ∈ Sn,

X � Y ⇐⇒ X − Y ∈ Sn+

Note: for x, y ∈ Rn, diag(x) � diag(y) ⇐⇒ x ≥ y (recall,
the latter is interpreted elementwise)
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Semidefinite program

A semidefinite program or SDP is an optimization problem of the
form

min
x

cTx

subject to x1F1 + . . .+ xnFn � F0

Ax = b

Here Fj ∈ Sd, for j = 0, 1, . . . n, and A ∈ Rm×n, c ∈ Rn, b ∈ Rm.
Observe that this is always a convex optimization problem

Also, any linear program is a semidefinite program (check this!)

20



Standard form

A semidefinite program is in standard form if it is written as

min
X

C •X

subject to Ai •X = bi, i = 1, . . .m

X � 0

Any semidefinite program can be written in standard form (for a
challenge, check this!)
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Example: theta function

Let G = (N,E) be an undirected graph, N = {1, . . . , n}, and

• ω(G) : clique number of G

• χ(G) : chromatic number of G

The Lovasz theta function:2

ϑ(G) = max
X

11T •X

subject to I •X = 1

Xij = 0, (i, j) /∈ E
X � 0

The Lovasz sandwich theorem: ω(G) ≤ ϑ(Ḡ) ≤ χ(G), where Ḡ is
the complement graph of G

2Lovasz (1979), “On the Shannon capacity of a graph”
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Example: trace norm minimization

Let A : Rm×n → Rp be a linear map,

A(X) =

 A1 •X
. . .

Ap •X


for A1, . . . Ap ∈ Rm×n (and where Ai •X = tr(ATi X)). Finding
lowest-rank solution to an underdetermined system, nonconvex:

min
X

rank(X)

subject to A(X) = b

Trace norm approximation:

min
X

‖X‖tr

subject to A(X) = b

This is indeed an SDP (but harder to show, requires duality ...)
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Conic program

A conic program is an optimization problem of the form:

min
x

cTx

subject to Ax = b

D(x) + d ∈ K

Here:

• c, x ∈ Rn, and A ∈ Rm×n, b ∈ Rm

• D : Rn → Y is a linear map, d ∈ Y , for Euclidean space Y

• K ⊆ Y is a closed convex cone

Both LPs and SDPs are special cases of conic programming. For
LPs, K = Rn+; for SDPs, K = Sn+
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Second-order cone program

A second-order cone program or SOCP is an optimization problem
of the form:

min
x

cTx

subject to ‖Dix+ di‖2 ≤ eTi x+ fi, i = 1, . . . p

Ax = b

This is indeed a cone program. Why? Recall the second-order cone

Q = {(x, t) : ‖x‖2 ≤ t}
So we have

‖Dix+ di‖2 ≤ eTi x+ fi ⇐⇒ (Dix+ di, e
T
i x+ fi) ∈ Qi

for second-order cone Qi of appropriate dimensions. Now take
K = Q1 × . . .×Qp
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Observe that every LP is an SOCP. Further, every SOCP is an SDP

Why? Turns out that

‖x‖2 ≤ t ⇐⇒
[
tI x
xT t

]
� 0

Hence we can write any SOCP constraint as an SDP constraint

The above is a special case of the Schur complement theorem:[
A B
BT C

]
� 0 ⇐⇒ A−BC−1BT � 0

for A,C symmetric and C � 0
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Hey, what about QPs?

Finally, our old friend QPs “sneak” into the hierarchy. Turns out
QPs are SOCPs, which we can see by rewriting a QP as

min
x,t

cTx+ t

subject to Dx ≤ d, 1

2
xTQx ≤ t

Ax = b

Now write 1
2x

TQx ≤ t ⇐⇒ ‖( 1√
2
Q1/2x, 12(1− t))‖2 ≤ 1

2(1 + t)

Take a breath (phew!). Thus we have established the hierachy

LPs ⊆ QPs ⊆ SOCPs ⊆ SDPs ⊆ Conic programs

completing the picture we saw at the start
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Approximation Algorithm for MaxCut

• Given a graph with nodes and edges and edge weights. Find a
subset S of the nodes such that the sum of the weights wij of
the edges between S and its complement S̄ is maximizes.

• Let xj = 1 if j ∈ S and xj = −1 if j ∈ S̄.

max
x

1

4

n∑
i=1

n∑
j=1

wij(1− xixj)

s.t. xj ∈ {−1, 1}, j = 1, ..., n

• Goemans and Williamson algorithm:

1. Convex relaxation: solve an SDP instead.
2. Randomized rounding.

• You get a 0.87856 approximation of an NP-complete problem.
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Approximation Algorithm for MaxCut
Reformulation (without changing the problem):

max
Y ∈Rn×n,x∈Rn

n∑
i=1

n∑
j=1

wij(1− Yi,j)

s.t. Yi,i = 1 ∀j = 1, ..., n

Y = xxT .

The convex relaxation:

max
Y ∈Rn×n

n∑
i=1

n∑
j=1

wij(1− Yi,j)

s.t. Yi,i = 1 ∀j = 1, ..., n

Y � 0.

Goemans and Williamson: Sample v uniformly from the unit
sphere in Rn, decompose Y = UUT , output sign(Uv).
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Proof ideas of Goemans and Williamson’s algorithm
Observe:
• ith row of matrix U , ui ∈ Rn can be thought of as a

nonparametric vector-space embedding of the graph node i.
• sign(uTi v) is the output of a random linear separator.
• The probability that Node i and Node j being classified

differently is proportional to θij/π where θij is the angle
between ui and uj .
• cos(θij) = 〈ui, uj〉 = Yi,j (notice that ui, uj are both unit

vectors (why?)).
• We can lower bound θij = arccos(Yi,j) with β(1− 〈ui, uj〉)

with some constant β. (see next slide for an illustration).
• The objective function of the relaxed problem is larger than

that of the original Maxcut problem, but the randomized
rounding gives us a “feasible solution” to the original problem,
therefore the solution is in expectation a β/π ≈ 0.878
constant approximation to Maxcut.

See the more detailed proof in the sketched notes.
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Proof ideas of Goemans and Williamson’s algorithm
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