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Last time: gradient descent

Consider the problem
min
x

f(x)

for f convex and differentiable, dom(f) = Rn. Gradient descent:
choose initial x(0) ∈ Rn, repeat

x(k) = x(k−1) − tk · ∇f(x(k−1)), k = 1, 2, 3, . . .

Step sizes tk chosen to be fixed and small, or by backtracking line
search.

Question: Why are we not using line searches in deep learning?
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Last time: gradient descent

We derived computational guarantees:

• If f is L-smooth, then gradient descent has iteration
complexity O(L/ε) or an O(L/k) sublinear convergence rate.

• If f is L-smooth and m-strongly convex, then gradient
descent has iteration complexity of O( Lm log(1/ε)), or an
O((1−m/L)k) linear convergence rate.

• The linear convergence result generalizes to functions that
satisfy the Polyak- Lojasiewicz condition.

Other related conditions: RSI, QC, EB.
Theorem: (Karimi, Nutini, Schmidt, ECML2016) For smooth
functions (RSI)→ (EB) ≡ (PL)→ (QG). If in addition, f is
convex, then (RSC) ≡ (PL) ≡ (QC) ≡ (EB).
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Last time: gradient descent

Assuming Lipschitz gradient as before, and also strong convexity:

Theorem: Gradient descent with fixed step size t ≤ 2/(m+ L)
or with backtracking line search search satisfies

f(x(k))− f? ≤ ckL
2
‖x(0) − x?‖22

where 0 < c < 1.

There is one gap from the proof we had to the above theorem. We

proved convergence when choosing t ≤ 1/L and c = (1−mt).
It does not cover t ∈ (1/L, 2/(m+ L)]. In fact, by choosing
t = 2/(m+L) and use strong convexity directly (rather than using
the KL-condition), we could get a constant improvement

c = 1− 4Lm

(L+m)2
=

(
L/m− 1

L/m+ 1

)2

=

(
1−m/L
1 +m/L

)2
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Last time: gradient descent

Nesterov Acceleration:

• For L-smooth functions, O(L/ε) can be improved to
O(
√
L/ε).

• For L-smooth and m-strongly convex functions, O( Lm log(1ε ))

can be improved to O(
√

L
m log(1ε )).

These bounds are optimal.
Question: AGD dominates GD. Why are we learning GD at all?

Downsides:

• Requires f to be smooth

Can we apply gradient descent to solve a larger class of problems?
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Outline

Today: crucial mathematical underpinnings!

• Subgradients

• Examples

• Properties

• Optimality characterizations

Next Lecture: Subgradient descent and proximal gradient descent.

If time permits, we will do the “gradient boosting” example from
the previous lecture.
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Subgradients

Recall that for convex and differentiable f ,

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y

I.e., linear approximation always underestimates f

A subgradient of a convex function f at x is any g ∈ Rn such that

f(y) ≥ f(x) + gT (y − x) for all y

• Always exists1

• If f differentiable at x, then g = ∇f(x) uniquely

• Same definition works for nonconvex f (however, subgradients
need not exist)

1On the relative interior of dom(f)
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Examples of subgradients

Consider f : R→ R, f(x) = |x|
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• For x 6= 0, unique subgradient g = sign(x)

• For x = 0, subgradient g is any element of [−1, 1]
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Consider f : Rn → R, f(x) = ‖x‖2

x1

x2

f(x)

• For x 6= 0, unique subgradient g = x/‖x‖2
• For x = 0, subgradient g is any element of {z : ‖z‖2 ≤ 1}
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Consider f : Rn → R, f(x) = ‖x‖1

x1

x2

f(x)

• For xi 6= 0, unique ith component gi = sign(xi)

• For xi = 0, ith component gi is any element of [−1, 1]
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Consider f(x) = max{f1(x), f2(x)}, for f1, f2 : Rn → R convex,
differentiable
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• For f1(x) > f2(x), unique subgradient g = ∇f1(x)
• For f2(x) > f1(x), unique subgradient g = ∇f2(x)
• For f1(x) = f2(x), subgradient g is any point on line segment

between ∇f1(x) and ∇f2(x)
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Subdifferential

Set of all subgradients of convex f is called the subdifferential:

∂f(x) = {g ∈ Rn : g is a subgradient of f at x}

• Nonempty (only for convex f)

• ∂f(x) is closed and convex (even for nonconvex f)

• If f is differentiable at x, then ∂f(x) = {∇f(x)}
• If ∂f(x) = {g}, then f is differentiable at x and ∇f(x) = g
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Connection to convex geometry

Convex set C ⊆ Rn, consider indicator function IC : Rn → R,

IC(x) = I{x ∈ C} =

{
0 if x ∈ C
∞ if x /∈ C

For x ∈ C, ∂IC(x) = NC(x), the normal cone of C at x is, recall

NC(x) = {g ∈ Rn : gTx ≥ gT y for any y ∈ C}

Why? By definition of subgradient g,

IC(y) ≥ IC(x) + gT (y − x) for all y

• For y /∈ C, IC(y) =∞
• For y ∈ C, this means 0 ≥ gT (y − x)
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Subgradient calculus
Basic rules for convex functions:

• Scaling: ∂(af) = a · ∂f provided a > 0

• Addition*: ∂(f1 + f2) = ∂f1 + ∂f2 (Minkowski set addition )

• Affine composition*: if g(x) = f(Ax+ b), then

∂g(x) = AT∂f(Ax+ b)

• Finite pointwise maximum: if f(x) = maxi=1,...m fi(x), then

∂f(x) = conv

( ⋃
i:fi(x)=f(x)

∂fi(x)

)
convex hull of union of subdifferentials of active functions at x

* The ⊃ direction are true without additional conditions, the ⊂ direction are true

under additional regularity conditions. It suffices that the intersection of the relative

interiors is not an empty set. See Chap 23 of the Rockafellar book for more details.
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• General pointwise maximum: if f(x) = maxs∈S fs(x), then

∂f(x) ⊇ cl

{
conv

( ⋃
s:fs(x)=f(x)

∂fs(x)

)}

Under some regularity conditions (on S, fs), we get equality

• Norms: important special case, f(x) = ‖x‖p. Let q be such
that 1/p+ 1/q = 1, then

‖x‖p = max
‖z‖q≤1

zTx

(This is the definition of the dual norm) And

∂f(x) = argmax
‖z‖q≤1

zTx.

(This is what Yaoliang Yu calls a polar operator (see e.g.,
Zhang, Yu and Schuurmans, NIPS’13).)
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Why subgradients?

Subgradients are important for two reasons:

• Convex analysis: optimality characterization via subgradients,
monotonicity, relationship to duality

• Convex optimization: if you can compute subgradients, then
you can minimize any convex function
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Optimality condition

For any f (convex or not),

f(x?) = min
x

f(x) ⇐⇒ 0 ∈ ∂f(x?)

I.e., x? is a minimizer if and only if 0 is a subgradient of f at x?.
This is called the subgradient optimality condition

Why? Easy: g = 0 being a subgradient means that for all y

f(y) ≥ f(x?) + 0T (y − x?) = f(x?)

Note the implication for a convex and differentiable function f ,
with ∂f(x) = {∇f(x)}
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Derivation of first-order optimality

Example of the power of subgradients: we can use what we have
learned so far to derive the first-order optimality condition. Recall

min
x

f(x) subject to x ∈ C

is solved at x, for f convex and differentiable, if and only if

∇f(x)T (y − x) ≥ 0 for all y ∈ C

Intuitively: says that gradient increases as we move away from x.
How to prove it? First recast problem as

min
x

f(x) + IC(x)

Now apply subgradient optimality: 0 ∈ ∂(f(x) + IC(x))
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Observe

0 ∈ ∂
(
f(x) + IC(x)

)
⇐⇒ 0 ∈ {∇f(x)}+NC(x)
⇐⇒ −∇f(x) ∈ NC(x)
⇐⇒ −∇f(x)Tx ≥ −∇f(x)T y for all y ∈ C
⇐⇒ ∇f(x)T (y − x) ≥ 0 for all y ∈ C

as desired

Note: the condition 0 ∈ ∂f(x) +NC(x) is a fully general condition
for optimality in convex problems. But it’s not always easy to work
with (KKT conditions, later, are easier)
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Example: lasso optimality conditions

Given y ∈ Rn, X ∈ Rn×p, lasso problem can be parametrized as

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1

where λ ≥ 0. Subgradient optimality:

0 ∈ ∂
(1
2
‖y −Xβ‖22 + λ‖β‖1

)
⇐⇒ 0 ∈ −XT (y −Xβ) + λ∂‖β‖1
⇐⇒ XT (y −Xβ) = λv

for some v ∈ ∂‖β‖1, i.e.,

vi ∈


{1} if βi > 0

{−1} if βi < 0

[−1, 1] if βi = 0

, i = 1, . . . p
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Write X1, . . . Xp for columns of X. Then our condition reads:{
XT
i (y −Xβ) = λ · sign(βi) if βi 6= 0

|XT
i (y −Xβ)| ≤ λ if βi = 0

Note: subgradient optimality conditions don’t lead to closed-form
expression for a lasso solution ... however they do provide a way to
check lasso optimality

They are also helpful in understanding the lasso estimator; e.g., if
|XT

i (y −Xβ)| < λ, then βi = 0. This is very useful!

• Screening rules. Support recovery guarantees for Lasso.
(Wainwright, Trans. on Info Theory, 2009)

• Used in the analysis of e.g., Sparse Subspace Clustering.
(Soltanokoltabi and Candes, Annals of Statistics 2012) (W. and Xu, ICML’13)
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Example: soft-thresholding

Simplfied lasso problem with X = I:

min
β

1

2
‖y − β‖22 + λ‖β‖1

This we can solve directly using subgradient optimality. Solution is
β = Sλ(y), where Sλ is the soft-thresholding operator:

[Sλ(y)]i =


yi − λ if yi > λ

0 if − λ ≤ yi ≤ λ
yi + λ if yi < −λ

, i = 1, . . . n

Check: from last slide, subgradient optimality conditions are{
yi − βi = λ · sign(βi) if βi 6= 0

|yi − βi| ≤ λ if βi = 0
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Now plug in β = Sλ(y) and check these are satisfied:

• When yi > λ, βi = yi − λ > 0, so yi − βi = λ = λ · 1
• When yi < −λ, argument is similar

• When |yi| ≤ λ, βi = 0, and |yi − βi| = |yi| ≤ λ

Soft-thresholding in
one variable:

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

24



Example: distance to a convex set

Recall the distance function to a closed, convex set C:

dist(x,C) = min
y∈C

‖y − x‖2

This is a convex function. What are its subgradients?

Write dist(x,C) = ‖x−PC(x)‖2, where PC(x) is the projection of
x onto C. It turns out that when dist(x,C) > 0,

∂dist(x,C) =

{
x− PC(x)
‖x− PC(x)‖2

}
Only has one element, so in fact dist(x,C) is differentiable and
this is its gradient
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We will only show one direction, i.e., that

x− PC(x)
‖x− PC(x)‖2

∈ ∂dist(x,C)

Write u = PC(x). Then by first-order optimality conditions for a
projection,

(x− u)T (y − u) ≤ 0 for all y ∈ C

Hence
C ⊆ H = {y : (x− u)T (y − u) ≤ 0}

Claim:

dist(y, C) ≥ (x− u)T (y − u)
‖x− u‖2

for all y

Check: first, for y ∈ H, the right-hand side is ≤ 0
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Now for y /∈ H, we have (x− u)T (y− u) = ‖x− u‖2‖y− u‖2 cos θ
where θ is the angle between x− u and y − u. Thus

(x− u)T (y − u)
‖x− u‖2

= ‖y − u‖2 cos θ = dist(y,H) ≤ dist(y, C)

as desired

Using the claim, we have for any y

dist(y, C) ≥ (x− u)T (y − x+ x− u)
‖x− u‖2

= ‖x− u‖2 +
(

x− u
‖x− u‖2

)T
(y − x)

Hence g = (x− u)/‖x− u‖2 is a subgradient of dist(x,C) at x
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More on distance to a convex set

Recall the distance function to a closed, convex set C:

dist(x,C) = min
y∈C

‖y − x‖2

We have shown that x−PC(x)
‖x−PC(x)‖2 ∈ ∂dist(x,C) for those x such

that dist(x,C) > 0.

• Quiz #1: Prove the converse?

• Quiz #2: How about when x ∈ C? (Hint: Discuss when
x ∈ int(C) and when x ∈ ∂C.) Is it differentiable?

• Quiz #3: What happens when we consider dist2(x,C)? Can
we show that it is differentiable?
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One more thing:

1. For differentiable functions, we have a way to talk about
stationary points via gradients.

2. For nonconvex functions, subgradients are good for
characterizing global optimal solution, but not stationary
points and local optimal solutions.

3. For those who are bugged by this issue like I do. Read about
“Clarke subgradient”.
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