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6.1 Fenchel conjugate

Given a function f:R™ — R, define its conjugate f* : R® — R,
*(y) = maxy "z — f(x) (6.1)
Note that f* is always convex, since it is the pointwise maximum of function convex (affine) functions in y.

It has the following properties:

e Fenchel’s inequality: for any z,y
f@)+ f*(y) = 2Ty (6.2)

e Conjugate of conjugate f** satisfies f** < f.
o If f is closed and convex, then for any z,y,

w € df(y) ==y € 0f(z) <= flx) + f*(y) =Ty (6.3)

o If f(u,v) = fi(u) + fa(v), then f*(w,2) = fi(w) + f5(2)

Examples:
f(x) [ ()
%zTQx(Q = 0) %yTQfly
Ic(z) (indicator function) max yTx (support function)
TE
llz]] Tz <y (W)

6.2 Moreau Envelope and Smoothing

My p(w) = miny g ly — z|* + ()

6.4
= %Hproxt)f(x) —z|* + f(proxt’f(x)) (6.4)
Example: Huber function is
12 if |[2| <4
— 2 —
Ls(z) = { 6(|lz| — 16)  otherwise (6:5)
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Figure 6.1: Huber envelope of absolute value function
is the Moreau Envelope of the absolute value function

My () = min (& — y)* + 3y (6.6)

Huber envelope and prox operators has the following properties:

o (Yoshida-Moreau Smoothing) M, ¢(z) of any convex function is 1/t-smooth.

(Preservation of optimal criterion.) min, f(z) = min, M(x).

(Preservation of optimal solution.) z minimizes f if and only if « minimizes M ¢(z) for all ¢ > 0 (even
for nonconvex functions).

e (Gradient of a Moreau-Envelope) VM, ¢(z) = %X’f(w)
e (Fixed Point Iteration) z* minimizes f if and only if 2* = prox, ;(z*).
o (Moreau Decomposition) « = prox¢(z) +proz s (x). This a generalization of the orthogonal projection

decomposition to a subspace S. z = IIg(x) +IIg1 (z). Combine with the gradients, we have VM (x) =

Prox ;. ().
e (Proximal average) Let f1,..., fi, be closed proper convex functions, there exists a convex function g,
such that
1 m
- Z; prox; = prox, (6.7)
1=

e (Non-Expansiveness) prox ¢ 1s a non-expansion, namely, for all z,y,

Iprox, () — prox; (m)|I* < {x — y, prox ;(x) — prox,(y)) (6.5)
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6.3 Operator-theoretic view of a prox operator

df maps a point x € domf to the set df(z). (I +t0f)~! is called the resolvent of an operator Jf.

Theorem 6.1 Consider convez function f,

proz, () = (I +tof) " (z). (6.9)
Proof: Recall the definition: 1
prox, (@) = argmin 5 ly — 1 + (»). (6.10)
By the first order optimality condition x* obeys that
O€(@*—x)+0f(z") <=z eca”"+0f(z*) =T+ 9f)(z¥) (6.11)
if an only if
¥ = (I+0f) 'a. (6.12)
|

6.4 Proximal Point Algorithm (aka Proximal Minimization)

To minimize a convex function f . Iterate:

o = prox, (zF). (6.13)

e This is a fixed point iteration (note that prox is a non-expansion) z**1 = (I +t9f)~ 12" .

e Also, this is a gradient descent on the Moreau Envelope. z*+! = 2% — (I — (I +t0f) ap = zp —
tVMf(xk).

6.5 Proximal Gradient Algorithm

For minimizing a composition objective f + h

* L = prox,, (zF — tV f(z")). (6.14)

e It can be taken as a fixed point iteration:
Ty = (I +tOh) "I —tVf)azk (6.15)
e Or, it can be taken as a Smoothed Majorization-Minimization objective
. . 1
2" = arg min PR+ (VF @)y = 2%) + olly = ol + hly) (6.16)
Proof:
z* is optimal <= 0 € Vf(z*) + Oh(z*)
< 0€e Vf(z*) —z* +z* + Oh(z*)
< z* = Vf(z*) € a* + Oh(z*) (6.17)

(
< z* — Vf(z*) € (I + 0h)(x*)
< a* = ([ +0h)" I - Vf)(z*)
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e The generalized gradient is the gradient of a Moreau-Envelope of frinearized + 7 at Ty .

We now delve right into the proof.
Lemma 6.2 This is the first lemma of the lecture.

Proof: The proof is by induction on .... For fun, we throw in a figure.

Figure 6.1: A Fun Figure

This is the end of the proof, which is marked with a little box. ]

6.5.1 A few items of note

Here is an itemized list:

e this is the first item;

e this is the second item.
Here is an enumerated list:

1. this is the first item;

2. this is the second item.

Here is an exercise:

Exercise: Show that P # NP.

Here is how to define things in the proper mathematical style. Let fi be the AND — OR function, defined
by

I lfk:(),
fe(@1, 22,y x0r) = AND(fr—1(z1,. .., Tor—1), fo—1(Tar-141,...,29r)) if k is even;
OR(fr—1(x1,. .., @ar-1), fr—1(Tar—1,1, ..., Tox)) otherwise.

Theorem 6.3 This is the first theorem.

Proof: This is the proof of the first theorem. We show how to write pseudo-code now.

Consider a comparison between = and y:
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if z or y or both are in S then
answer accordingly
else
Make the element with the larger score (say x) win the comparison
if F(x) + F(y) < 7 then
F(z) + F(z) + F(y)
F(y) <0
else
S« Su{z}
rnr+1
endif
endif

This concludes the proof. [ |

6.6 Next topic

Here is a citation, just for fun [CW8T].
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