Lecture 6 Proximal gradient (Part II): April 25

Lecturer: Yu-Xiang Wang
Scribes: Kaiqi Zhang

Note: LaTeX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

6.1 Fenchel conjugate

Given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, define its conjugate $f^{*}: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
\begin{equation*}
f^{*}(y)=\max _{x} y^{T} x-f(x) \tag{6.1}
\end{equation*}
$$

Note that f^{*} is always convex, since it is the pointwise maximum of function convex (affine) functions in y. It has the following properties:

- Fenchel's inequality: for any x, y

$$
\begin{equation*}
f(x)+f^{*}(y) \geq x^{T} y \tag{6.2}
\end{equation*}
$$

- Conjugate of conjugate $f^{* *}$ satisfies $f^{* *} \leq f$.
- If f is closed and convex, then for any x, y,

$$
\begin{equation*}
x \in \partial f^{*}(y) \Longleftrightarrow y \in \partial f(x) \Longleftrightarrow f(x)+f^{*}(y)=x^{T} y \tag{6.3}
\end{equation*}
$$

- If $f(u, v)=f_{1}(u)+f_{2}(v)$, then $f^{*}(w, z)=f_{1}^{*}(w)+f_{2}^{*}(z)$

Examples:

$f(x)$	$f^{*}(x)$				
$\frac{1}{2} x^{T} Q x(Q \succ 0)$	$\frac{1}{2} y^{T} Q^{-1} y$				
$I_{C}(x)^{\text {(indicator function) }}$	$\max _{x \in C} y^{T} x$ (support function)				
$\\|x\\|$	$I_{\left\{z:\\|z\\|_{*} \leq 1\right\}}(y)$				

6.2 Moreau Envelope and Smoothing

$$
\begin{align*}
M_{t, f}(x) & :=\min _{y} \frac{1}{2 t}\|y-x\|^{2}+f(y) \tag{6.4}\\
& =\frac{1}{2 t}\left\|\operatorname{prox}_{t, f}(x)-x\right\|^{2}+f\left(\operatorname{prox}_{t, f}(x)\right)
\end{align*}
$$

Example: Huber function is

$$
L_{\delta}(x)= \begin{cases}\frac{1}{2} x^{2} & \text { if }|x| \leq \delta \tag{6.5}\\ \delta\left(|x|-\frac{1}{2} \delta\right) & \text { otherwise }\end{cases}
$$

Figure 6.1: Huber envelope of absolute value function
is the Moreau Envelope of the absolute value function

$$
\begin{equation*}
M_{\delta|\cdot|}(x)=\min _{y} \frac{1}{2}(x-y)^{2}+\delta|y| \tag{6.6}
\end{equation*}
$$

Huber envelope and prox operators has the following properties:

- (Yoshida-Moreau Smoothing) $M_{t, f}(x)$ of any convex function is $1 / t$-smooth.
- (Preservation of optimal criterion.) $\min _{x} f(x)=\min _{x} M_{f}(x)$.
- (Preservation of optimal solution.) x minimizes f if and only if x minimizes $M_{t, f}(x)$ for all $t>0$ (even for nonconvex functions).
- (Gradient of a Moreau-Envelope) $\nabla M_{t, f}(x)=\frac{x-\operatorname{prox}_{t, f}(x)}{t}$.
- (Fixed Point Iteration) x^{*} minimizes f if and only if $x^{*}=\operatorname{prox}_{t, f}\left(x^{*}\right)$.
- (Moreau Decomposition) $x=\operatorname{prox}_{f}(x)+\operatorname{prox}_{f^{*}}(x)$. This a generalization of the orthogonal projection decomposition to a subspace S. $x=\Pi_{S}(x)+\Pi_{S^{\perp}}(x)$. Combine with the gradients, we have $\nabla M_{f}(x)=$ $\operatorname{prox}_{f^{*}}(x)$.
- (Proximal average) Let f_{1}, \ldots, f_{m} be closed proper convex functions, there exists a convex function g, such that

$$
\begin{equation*}
\frac{1}{m} \sum_{i=1}^{m} \operatorname{prox}_{f}=\operatorname{prox}_{g} \tag{6.7}
\end{equation*}
$$

- (Non-Expansiveness) prox_{f} is a non-expansion, namely, for all x, y,

$$
\begin{equation*}
\left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|^{2} \leq\left\langle x-y, \operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\rangle \tag{6.8}
\end{equation*}
$$

6.3 Operator-theoretic view of a prox operator

∂f maps a point $x \in \operatorname{dom} f$ to the set $\partial f(x) .(I+t \partial f)^{-1}$ is called the resolvent of an operator ∂f.
Theorem 6.1 Consider convex function f,

$$
\begin{equation*}
\operatorname{prox}_{t, f}(x)=(I+t \partial f)^{-1}(x) \tag{6.9}
\end{equation*}
$$

Proof: Recall the definition:

$$
\begin{equation*}
\operatorname{prox}_{f}(x)=\arg \min _{y} \frac{1}{2}\|y-x\|^{2}+f(y) \tag{6.10}
\end{equation*}
$$

By the first order optimality condition x^{*} obeys that

$$
\begin{equation*}
0 \in\left(x^{*}-x\right)+\partial f\left(x^{*}\right) \Longleftrightarrow x \in x^{*}+\partial f\left(x^{*}\right)=(I+\partial f)\left(x^{*}\right) \tag{6.11}
\end{equation*}
$$

if an only if

$$
\begin{equation*}
x^{*}=(I+\partial f)^{-1} x \tag{6.12}
\end{equation*}
$$

6.4 Proximal Point Algorithm (aka Proximal Minimization)

To minimize a convex function f. Iterate:

$$
\begin{equation*}
x^{k+1}=\operatorname{prox}_{t f}\left(x^{k}\right) \tag{6.13}
\end{equation*}
$$

- This is a fixed point iteration (note that prox is a non-expansion) $x^{k+1}=(I+t \partial f)^{-1} x^{k}$.
- Also, this is a gradient descent on the Moreau Envelope. $x^{k+1}=x^{k}-\left(I-(I+t \partial f)^{-1}\right) x_{k}=x_{k}-$ $t \nabla M_{f}\left(x_{k}\right)$.

6.5 Proximal Gradient Algorithm

For minimizing a composition objective $f+h$

$$
\begin{equation*}
x^{k+1}=\operatorname{prox}_{t h}\left(x^{k}-t \nabla f\left(x^{k}\right)\right) \tag{6.14}
\end{equation*}
$$

- It can be taken as a fixed point iteration:

$$
\begin{equation*}
x_{k+1}=(I+t \partial h)^{-1}(I-t \nabla f) x^{k} \tag{6.15}
\end{equation*}
$$

- Or, it can be taken as a Smoothed Majorization-Minimization objective

$$
\begin{equation*}
x^{k+1}=\arg \min _{y} f\left(x^{k}\right)+\left\langle\nabla f\left(x^{k}\right), y-x^{k}\right\rangle+\frac{1}{2 t}\left\|y-x_{k}\right\|^{2}+h(y) \tag{6.16}
\end{equation*}
$$

Proof:

$$
\begin{align*}
x^{*} \text { is optimal } & \Longleftrightarrow 0 \in \nabla f\left(x^{*}\right)+\partial h\left(x^{*}\right) \\
& \Longleftrightarrow 0 \in \nabla f\left(x^{*}\right)-x^{*}+x^{*}+\partial h\left(x^{*}\right) \\
& \Longleftrightarrow x^{*}-\nabla f\left(x^{*}\right) \in x^{*}+\partial h\left(x^{*}\right) \tag{6.17}\\
& \Longleftrightarrow x^{*}-\nabla f\left(x^{*}\right) \in(I+\partial h)\left(x^{*}\right) \\
& \Longleftrightarrow x^{*}=(I+\partial h)^{-1}(I-\nabla f)\left(x^{*}\right)
\end{align*}
$$

- The generalized gradient is the gradient of a Moreau-Envelope of $f_{\text {Linearized }}+h$ at x_{k}.

We now delve right into the proof.

Lemma 6.2 This is the first lemma of the lecture.

Proof: The proof is by induction on For fun, we throw in a figure.

Figure 6.1: A Fun Figure

This is the end of the proof, which is marked with a little box.

6.5.1 A few items of note

Here is an itemized list:

- this is the first item;
- this is the second item.

Here is an enumerated list:

1. this is the first item;
2. this is the second item.

Here is an exercise:
Exercise: Show that $\mathrm{P} \neq \mathrm{NP}$.
Here is how to define things in the proper mathematical style. Let f_{k} be the $A N D-O R$ function, defined by

$$
f_{k}\left(x_{1}, x_{2}, \ldots, x_{2^{k}}\right)= \begin{cases}x_{1} & \text { if } k=0 \\ A N D\left(f_{k-1}\left(x_{1}, \ldots, x_{2^{k-1}}\right), f_{k-1}\left(x_{2^{k-1}+1}, \ldots, x_{2^{k}}\right)\right) & \text { if } k \text { is even } \\ \operatorname{OR}\left(f_{k-1}\left(x_{1}, \ldots, x_{2^{k-1}}\right), f_{k-1}\left(x_{2^{k-1}+1}, \ldots, x_{2^{k}}\right)\right) & \text { otherwise }\end{cases}
$$

Theorem 6.3 This is the first theorem.

Proof: This is the proof of the first theorem. We show how to write pseudo-code now.
Consider a comparison between x and y :

```
if \(x\) or \(y\) or both are in \(S\) then
    answer accordingly
else
    Make the element with the larger score ( \(\operatorname{say} x\) ) win the comparison
    if \(F(x)+F(y)<\frac{n}{t-1}\) then
        \(F(x) \leftarrow F(x)+F(y)\)
        \(F(y) \leftarrow 0\)
    else
        \(S \leftarrow S \cup\{x\}\)
        \(r \leftarrow r+1\)
    endif
endif
```

This concludes the proof.

6.6 Next topic

Here is a citation, just for fun [CW87].

References

[CW87] D. Coppersmith and S. Winograd, "Matrix multiplication via arithmetic progressions," Proceedings of the 19th ACM Symposium on Theory of Computing, 1987, pp. 1-6.

