
Proximal gradient (Part II)

CS292A Convex Optimization: Gradient Methods and Online Learning Spring 2019

Lecture 6 Proximal gradient (Part II): April 25
Lecturer: Yu-Xiang Wang Scribes: Kaiqi Zhang

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

6.1 Fenchel conjugate

Given a function f : Rn → R, define its conjugate f∗ : Rn → R,

f∗(y) = max
x

yTx− f(x) (6.1)

Note that f∗ is always convex, since it is the pointwise maximum of function convex (affine) functions in y.

It has the following properties:

• Fenchel’s inequality: for any x, y
f(x) + f∗(y) ≥ xT y (6.2)

• Conjugate of conjugate f∗∗ satisfies f∗∗ ≤ f .

• If f is closed and convex, then for any x, y,

x ∈ ∂f∗(y)⇐⇒ y ∈ ∂f(x)⇐⇒ f(x) + f∗(y) = xT y (6.3)

• If f(u, v) = f1(u) + f2(v), then f∗(w, z) = f∗1 (w) + f∗2 (z)

Examples:
f(x) f∗(x)

1
2x

TQx(Q � 0) 1
2y
TQ−1y

IC(x) (indicator function) max
x∈C

yTx (support function)

‖x‖ I{z:‖z‖∗≤1}(y)

6.2 Moreau Envelope and Smoothing

Mt,f (x) := miny
1
2t‖y − x‖

2 + f(y)
= 1

2t‖proxt,f (x)− x‖2 + f(proxt,f (x))
(6.4)

Example: Huber function is

Lδ(x) =

{
1
2x

2 if |x| ≤ δ
δ(|x| − 1

2δ) otherwise
(6.5)
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Figure 6.1: Huber envelope of absolute value function

is the Moreau Envelope of the absolute value function

Mδ|·|(x) = min
y

1

2
(x− y)2 + δ|y| (6.6)

Huber envelope and prox operators has the following properties:

• (Yoshida-Moreau Smoothing) Mt,f (x) of any convex function is 1/t-smooth.

• (Preservation of optimal criterion.) minx f(x) = minxMf (x).

• (Preservation of optimal solution.) x minimizes f if and only if x minimizes Mt,f (x) for all t > 0 (even
for nonconvex functions).

• (Gradient of a Moreau-Envelope) ∇Mt,f (x) =
x−proxt,f (x)

t .

• (Fixed Point Iteration) x∗ minimizes f if and only if x∗ = proxt,f (x∗).

• (Moreau Decomposition) x = proxf (x)+proxf∗(x). This a generalization of the orthogonal projection
decomposition to a subspace S. x = ΠS(x) + ΠS⊥(x). Combine with the gradients, we have ∇Mf (x) =
proxf∗(x).

• (Proximal average) Let f1, . . . , fm be closed proper convex functions, there exists a convex function g,
such that

1

m

m∑
i=1

proxf = proxg (6.7)

• (Non-Expansiveness) proxf is a non-expansion, namely, for all x, y,

‖proxf (x)− proxf (y)‖2 ≤ 〈x− y,proxf (x)− proxf (y)〉 (6.8)
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6.3 Operator-theoretic view of a prox operator

∂f maps a point x ∈ domf to the set ∂f(x). (I + t∂f)−1 is called the resolvent of an operator ∂f .

Theorem 6.1 Consider convex function f ,

proxt,f (x) = (I + t∂f)−1(x). (6.9)

Proof: Recall the definition:

proxf (x) = arg min
y

1

2
‖y − x‖2 + f(y). (6.10)

By the first order optimality condition x∗ obeys that

0 ∈ (x∗ − x) + ∂f(x∗)⇐⇒ x ∈ x∗ + ∂f(x∗) = (I + ∂f)(x∗) (6.11)

if an only if
x∗ = (I + ∂f)−1x. (6.12)

6.4 Proximal Point Algorithm (aka Proximal Minimization)

To minimize a convex function f . Iterate:

xk+1 = proxtf (xk). (6.13)

• This is a fixed point iteration (note that prox is a non-expansion) xk+1 = (I + t∂f)−1xk .

• Also, this is a gradient descent on the Moreau Envelope. xk+1 = xk − (I − (I + t∂f)−1)xk = xk −
t∇Mf (xk).

6.5 Proximal Gradient Algorithm

For minimizing a composition objective f + h

xk+1 = proxth(xk − t∇f(xk)). (6.14)

• It can be taken as a fixed point iteration:

xk+1 = (I + t∂h)−1(I − t∇f)xk (6.15)

• Or, it can be taken as a Smoothed Majorization-Minimization objective

xk+1 = arg min
y
f(xk) + 〈∇f(xk), y − xk〉+

1

2t
‖y − xk‖2 + h(y) (6.16)

Proof:
x∗ is optimal ⇐⇒ 0 ∈ ∇f(x∗) + ∂h(x∗)

⇐⇒ 0 ∈ ∇f(x∗)− x∗ + x∗ + ∂h(x∗)
⇐⇒ x∗ −∇f(x∗) ∈ x∗ + ∂h(x∗)
⇐⇒ x∗ −∇f(x∗) ∈ (I + ∂h)(x∗)
⇐⇒ x∗ = (I + ∂h)−1(I −∇f)(x∗)

(6.17)
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• The generalized gradient is the gradient of a Moreau-Envelope of fLinearized + h at xk .

We now delve right into the proof.

Lemma 6.2 This is the first lemma of the lecture.

Proof: The proof is by induction on . . .. For fun, we throw in a figure.

Figure 6.1: A Fun Figure

This is the end of the proof, which is marked with a little box.

6.5.1 A few items of note

Here is an itemized list:

• this is the first item;

• this is the second item.

Here is an enumerated list:

1. this is the first item;

2. this is the second item.

Here is an exercise:

Exercise: Show that P 6= NP.

Here is how to define things in the proper mathematical style. Let fk be the AND −OR function, defined
by

fk(x1, x2, . . . , x2k) =

 x1 if k = 0;
AND(fk−1(x1, . . . , x2k−1), fk−1(x2k−1+1, . . . , x2k)) if k is even;
OR(fk−1(x1, . . . , x2k−1), fk−1(x2k−1+1, . . . , x2k)) otherwise.

Theorem 6.3 This is the first theorem.

Proof: This is the proof of the first theorem. We show how to write pseudo-code now.

Consider a comparison between x and y:
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if x or y or both are in S then
answer accordingly

else
Make the element with the larger score (say x) win the comparison
if F (x) + F (y) < n

t−1 then

F (x)← F (x) + F (y)
F (y)← 0

else
S ← S ∪ {x}
r ← r + 1

endif
endif

This concludes the proof.

6.6 Next topic

Here is a citation, just for fun [CW87].
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