Proximal gradient (Part II)

Yu-Xiang Wang CS292F

(Based on Ryan Tibshirani's 10-725)

Last time: proximal gradient descent

Consider the problem

$$\min_{x} g(x) + h(x)$$

with g,h convex, g differentiable, and h "simple" in so much as

$$\operatorname{prox}_{t}(x) = \underset{z}{\operatorname{argmin}} \ \frac{1}{2t} ||x - z||_{2}^{2} + h(z)$$

is computable. Proximal gradient descent: let $x^{(0)} \in \mathbb{R}^n$, repeat:

$$x^{(k)} = \operatorname{prox}_{t_k} (x^{(k-1)} - t_k \nabla g(x^{(k-1)})), \quad k = 1, 2, 3, \dots$$

Step sizes t_k chosen to be fixed and small, or via backtracking

If ∇g is Lipschitz with constant L, then this has convergence rate $O(1/\epsilon)$. Lastly we can accelerate this, to optimal rate $O(1/\sqrt{\epsilon})$

Last time: proximal gradient descent

In the convergence proof (HW2 Q3), we rewrote update as the following:

$$x^{(k)} = x^{(k-1)} - t_k \cdot G_{t_k}(x^{(k-1)})$$

where G_t is the generalized gradient of f, (Nesterov's Gradient Mapping!)

$$G_t(x) = \frac{x - \text{prox}_t(x - t\nabla g(x))}{t}$$

Then we more or less followed the convergence proof of the standard Gradient Descent (Lecture 3).

What is G_t ? Is G_t the gradient of some function?

What exactly is the proximal gradient algorithm descent doing?

Outline

Today:

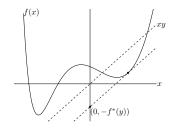
- Fenchel conjugate
- Prox Operator, Moreau Envelope and Smoothing
- Interpreting proximal algorithms

(Fenchel) Conjugate function

Given a function $f: \mathbb{R}^n \to \mathbb{R}$, define its conjugate $f^*: \mathbb{R}^n \to \mathbb{R}$,

$$f^*(y) = \max_{x} \ y^T x - f(x)$$

Note that f^* is always convex, since it is the pointwise maximum of convex (affine) functions in y (here f need not be convex)



 $f^*(y)$: maximum gap between linear function y^Tx and f(x)

(From B & V page 91)

For differentiable f, conjugation is called the Legendre transform

Examples:

• Simple quadratic: let $f(x)=\frac{1}{2}x^TQx$, where $Q\succ 0$. Then $y^Tx-\frac{1}{2}x^TQx$ is strictly concave in x and is maximized at $x=Q^{-1}y$, so

$$f^*(y) = \frac{1}{2}y^T Q^{-1}y$$

• Indicator function: if $f(x) = I_C(x)$, then its conjugate is

$$f^*(y) = I_C^*(y) = \max_{x \in C} y^T x$$

called the support function of C

• Norm: if f(x) = ||x||, then its conjugate is

$$f^*(y) = I_{\{z : ||z||_* \le 1\}}(y)$$

where $\|\cdot\|_*$ is the dual norm of $\|\cdot\|$

Properties:

• Fenchel's inequality: for any x, y,

$$f(x) + f^*(y) \ge x^T y$$

- Conjugate of conjugate f^{**} satisfies $f^{**} \leq f$
- If f is closed and convex, then $f^{**} = f$
- If f is closed and convex, then for any x, y,

$$x \in \partial f^*(y) \iff y \in \partial f(x)$$

 $\iff f(x) + f^*(y) = x^T y$

• If $f(u,v) = f_1(u) + f_2(v)$, then

$$f^*(w,z) = f_1^*(w) + f_2^*(z)$$

Moreau Envelope and Smoothing

We talked about prox operator

$$\operatorname{prox}_{t,f}(x) \in \underset{y}{\operatorname{argmin}} \frac{1}{2t} ||y - x||^2 + f(y).$$

Note that the output of prox is in the dom_f . The Moreau envelope of a function f defined as

$$M_{t,f}(x) := \min_{y} \frac{1}{2t} ||y - x||^2 + f(y)$$
$$= \frac{1}{2t} ||\operatorname{prox}_{t,f}(x) - x||^2 + f(\operatorname{prox}_{t,f}(x)).$$

The Moreau envelope outputs the optimal objective value.

These quantities can be defined by for general functions but many of their remarkable properties only apply to convex f.

Example: Huber function

Coming from robust statistics (Huber, 1964, Annals of Statistics).

$$L_{\delta}(x) = \begin{cases} \frac{1}{2}x^2 & \text{if } |x| \leq \delta \\ \delta(|x| - \frac{1}{2}\delta) & \text{otherwise.} \end{cases}$$

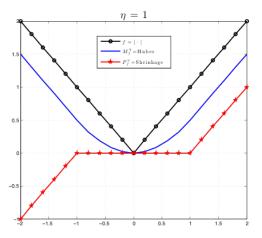
We can rewrite the Huber function as the Moreau Envelope of the absolute value function $|\cdot|$.

$$M_{\delta|\cdot|}(x) = \min_{y} \frac{1}{2} (x - y)^2 + \delta|y|.$$

Proof.

We know that the argmax is the soft-shresholding operator. Substitute that into the equation. If $|x|>\delta$, the optimal solution $y^*=x-\delta \mathrm{sign}(x)$, and the criterion value is $\frac{1}{2}\delta^2+\delta|x|-\delta^2$. If $|x|<\delta$, the $y^*=0$ and $M_{\delta|\cdot|}(x)=\frac{1}{2}x^2$

Example: Huber function



(Stolen from Yaoliang Yu's wonderful notes. [Click Here].)

Properties of a Moreau Envelope and Prox Operator

- 1. (Yoshida-Moreau Smoothing) $M_{t,f}(x)$ of any convex function is 1/t-smooth. (Need duality to write down a clean proof.)
- 2. (Preservation of optimal criterion.) $\min_x f(x) = \min_x M_f(x)$.
- 3. (Preservation of optimal solution.) x minimizes f if and only if x minimizes $M_{t,f}(x)$ for all t>0 (even for nonconvex functions).
- 4. (Gradient of a Moreau-Envelope) $\nabla M_{t,f}(x) = \frac{x \operatorname{prox}_{t,f}(x)}{t}$
- 5. (Fixed Point Iteration) x^* minimizes f if and only if $x^* = \text{prox}_{t,f}(x^*)$.

More properties of a Moreau Envelope and Prox Operator

- 1. (Moreau Decomposition) $x = \operatorname{prox}_f(x) + \operatorname{prox}_{f^*}(x)$
 - lackbox You can think of it as a generalization of the orthogonal projection decomposition to a subspace S

$$x = \Pi_S(x) + \Pi_{S^{\perp}}(x).$$

- ▶ Combine with the gradients, you have: $\nabla M_f(x) = \operatorname{prox}_{f^*}(x)$.
- 2. (Proximal average) Let $f_1, ..., f_m$ be closed proper convex functions, there exists a convex function g, such that

$$\frac{1}{m} \sum_{i=1}^{m} \operatorname{prox}_{f} = \operatorname{prox}_{g}.$$

3. (Non-Expansiveness) prox_f is a non-expansion, namely, for all x,y

$$\|\operatorname{prox}_f(x) - \operatorname{prox}_f(y)\|^2 \le \langle x - y, \operatorname{prox}_f(x) - \operatorname{prox}_f(y) \rangle.$$

Operator-theoretic view of a prox operator

 ∂f maps a point $x \in \mathrm{dom} f$ to the set $\partial f(x)$. $(I+t\partial f)^{-1}$ is called the resolvent of an operator ∂f .

Theorem: Consider convex function f (so that the subgradient exists in the rel-int)

$$\operatorname{prox}_{t,f}(x) = (I + t\partial f)^{-1}(x).$$

Proof: Recall the definition:

 $\operatorname{prox}_f(x) = \operatorname{argmin}_y \frac{1}{2} ||y - x||^2 + f(y).$

By the first order optimality condition x^* obeys that

$$0 \in (x^* - x) + \partial f(x^*) \Leftrightarrow x \in x^* + \partial f(x^*) = (I + \partial f)(x^*)$$

if an only if

$$x^* = (I + \partial f)^{-1}x.$$

Proximal Point Algorithm (aka Proximal Minimization)

To minimize a convex function f. Iterate:

$$x^{k+1} = \operatorname{prox}_{tf}(x^k).$$

1. This is a fixed point iteration (note that prox is a non-expansion).

$$x^{k+1} = (I + t\partial f)^{-1}x^k.$$

2. Also, this is a gradient descent on the Moreau Envelope.

$$x^{k+1} = x_k - (I - (I + t\partial f)^{-1})x_k = x_k - t\nabla M_f(x_k).$$

Question: Is the learning rate appropriate for the GD to converge?

Proximal Gradient Algorithm

For minimizing a composition objective f + h

$$x^{k+1} = \operatorname{prox}_{th}(x^k - t\nabla f(x^k)).$$

1. As a fixed point iteration:

$$x^{k+1} = (I + t\partial h)^{-1}(I - t\nabla f)x_k$$

2. As a Smoothed Majorization-Minimization objective

$$x^{k+1} = \operatorname*{argmin}_{y} f(x^{k}) + \langle \nabla f(x^{k}), y - x^{k} \rangle + \frac{1}{2t} ||y - x_{k}||^{2} + h(y)$$

3. The generalized gradient is the gradient of a Moreau-Envelope of $f_{Linearized} + h$ at x^k .

Summary of Proximal Algorithms

- 1. Proximal point algorithm is to minimize the smoothed version of a nonsmooth objective using gradient descent.
- 2. Proximal gradient is to combine the idea of local quadratic approximation (with Majorization-Minimization) with the Moreau-Yoshida smoothing.
- 3. We can express things in operator-theoretic form as fixed point iterations.
- 4. If the fixed point iterations are conducted using a contraction map, then we have linear convergence.

References and further reading

- Parikh, N. and Boyd, S. (2014). "Proximal algorithms".
 Foundations and Trends® in Optimization, 1(3), 127-239.
- Yaoliang Yu (2015). "Proximity Operator".
 https://cs.uwaterloo.ca/~y328yu/mynotes/po.pdf.
- Fenchel, W. (1949). "On conjugate convex functions".
 Canadian Journal of Mathematics, 1(1), 73-77.
- Rockafellar, R. T. (1976). "Monotone operators and the proximal point algorithm. SIAM journal on control and optimization", 14(5), 877-898.
- Vandenberghe's Lecture Notes for ECE 236C "Proximal Operator". http://www.seas.ucla.edu/~vandenbe/236C/ lectures/proxop.pdf