Proximal gradient (Part II)

Yu-Xiang Wang
CS292F

(Based on Ryan Tibshirani's 10-725)

Last time: proximal gradient descent

Consider the problem

$$
\min _{x} g(x)+h(x)
$$

with g, h convex, g differentiable, and h "simple" in so much as

$$
\operatorname{prox}_{t}(x)=\underset{z}{\operatorname{argmin}} \frac{1}{2 t}\|x-z\|_{2}^{2}+h(z)
$$

is computable. Proximal gradient descent: let $x^{(0)} \in \mathbb{R}^{n}$, repeat:

$$
x^{(k)}=\operatorname{prox}_{t_{k}}\left(x^{(k-1)}-t_{k} \nabla g\left(x^{(k-1)}\right)\right), \quad k=1,2,3, \ldots
$$

Step sizes t_{k} chosen to be fixed and small, or via backtracking
If ∇g is Lipschitz with constant L, then this has convergence rate $O(1 / \epsilon)$. Lastly we can accelerate this, to optimal rate $O(1 / \sqrt{\epsilon})$

Last time: proximal gradient descent

In the convergence proof (HW2 Q3), we rewrote update as the following:

$$
x^{(k)}=x^{(k-1)}-t_{k} \cdot G_{t_{k}}\left(x^{(k-1)}\right)
$$

where G_{t} is the generalized gradient of f, (Nesterov's Gradient Mapping!)

$$
G_{t}(x)=\frac{x-\operatorname{prox}_{t}(x-t \nabla g(x))}{t}
$$

Then we more or less followed the convergence proof of the standard Gradient Descent (Lecture 3).

What is G_{t} ? Is G_{t} the gradient of some function?
What exactly is the proximal gradient algorithm descent doing?

Outline

Today:

- Fenchel conjugate
- Prox Operator, Moreau Envelope and Smoothing
- Interpreting proximal algorithms

(Fenchel) Conjugate function

Given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, define its conjugate $f^{*}: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
f^{*}(y)=\max _{x} y^{T} x-f(x)
$$

Note that f^{*} is always convex, since it is the pointwise maximum of convex (affine) functions in y (here f need not be convex)

$f^{*}(y)$: maximum gap between linear function $y^{T} x$ and $f(x)$
(From B \& V page 91)

For differentiable f, conjugation is called the Legendre transform

Examples:

- Simple quadratic: let $f(x)=\frac{1}{2} x^{T} Q x$, where $Q \succ 0$. Then $y^{T} x-\frac{1}{2} x^{T} Q x$ is strictly concave in x and is maximized at $x=Q^{-1} y$, so

$$
f^{*}(y)=\frac{1}{2} y^{T} Q^{-1} y
$$

- Indicator function: if $f(x)=I_{C}(x)$, then its conjugate is

$$
f^{*}(y)=I_{C}^{*}(y)=\max _{x \in C} y^{T} x
$$

called the support function of C

- Norm: if $f(x)=\|x\|$, then its conjugate is

$$
f^{*}(y)=I_{\left\{z:\|z\|_{*} \leq 1\right\}}(y)
$$

where $\|\cdot\|_{*}$ is the dual norm of $\|\cdot\|$

Properties:

- Fenchel's inequality: for any x, y,

$$
f(x)+f^{*}(y) \geq x^{T} y
$$

- Conjugate of conjugate $f^{* *}$ satisfies $f^{* *} \leq f$
- If f is closed and convex, then $f^{* *}=f$
- If f is closed and convex, then for any x, y,

$$
\begin{aligned}
x \in \partial f^{*}(y) & \Longleftrightarrow y \in \partial f(x) \\
& \Longleftrightarrow f(x)+f^{*}(y)=x^{T} y
\end{aligned}
$$

- If $f(u, v)=f_{1}(u)+f_{2}(v)$, then

$$
f^{*}(w, z)=f_{1}^{*}(w)+f_{2}^{*}(z)
$$

Moreau Envelope and Smoothing

We talked about prox operator

$$
\operatorname{prox}_{t, f}(x) \in \underset{y}{\operatorname{argmin}} \frac{1}{2 t}\|y-x\|^{2}+f(y)
$$

Note that the output of prox is in the dom_{f}. The Moreau envelope of a function f defined as

$$
\begin{aligned}
M_{t, f}(x) & :=\min _{y} \frac{1}{2 t}\|y-x\|^{2}+f(y) \\
& =\frac{1}{2 t}\left\|\operatorname{prox}_{t, f}(x)-x\right\|^{2}+f\left(\operatorname{prox}_{t, f}(x)\right)
\end{aligned}
$$

The Moreau envelope outputs the optimal objective value.
These quantities can be defined by for general functions but many of their remarkable properties only apply to convex f.

Example: Huber function

Coming from robust statistics (Huber, 1964, Annals of Statistics).

$$
L_{\delta}(x)= \begin{cases}\frac{1}{2} x^{2} & \text { if }|x| \leq \delta \\ \delta\left(|x|-\frac{1}{2} \delta\right) & \text { otherwise }\end{cases}
$$

We can rewrite the Huber function as the Moreau Envelope of the absolute value function $|\cdot|$.

$$
M_{\delta|\cdot|}(x)=\min _{y} \frac{1}{2}(x-y)^{2}+\delta|y|
$$

Proof.

We know that the argmax is the soft-shresholding operator.
Substitute that into the equation. If $|x|>\delta$, the optimal solution $y^{*}=x-\delta \operatorname{sign}(x)$, and the criterion value is $\frac{1}{2} \delta^{2}+\delta|x|-\delta^{2}$.
If $|x|<\delta$, the $y^{*}=0$ and $M_{\delta|\cdot|}(x)=\frac{1}{2} x^{2}$

Example: Huber function

(Stolen from Yaoliang Yu's wonderful notes. [Click Here].)

Properties of a Moreau Envelope and Prox Operator

1. (Yoshida-Moreau Smoothing) $M_{t, f}(x)$ of any convex function is $1 / t$-smooth. (Need duality to write down a clean proof.)
2. (Preservation of optimal criterion.) $\min _{x} f(x)=\min _{x} M_{f}(x)$.
3. (Preservation of optimal solution.) x minimizes f if and only if x minimizes $M_{t, f}(x)$ for all $t>0$ (even for nonconvex functions).
4. (Gradient of a Moreau-Envelope) $\nabla M_{t, f}(x)=\frac{x-\operatorname{prox}_{t, f}(x)}{t}$
5. (Fixed Point Iteration) x^{*} minimizes f if and only if $x^{*}=\operatorname{prox}_{t, f}\left(x^{*}\right)$.

More properties of a Moreau Envelope and Prox Operator

1. (Moreau Decomposition) $x=\operatorname{prox}_{f}(x)+\operatorname{prox}_{f^{*}}(x)$

- You can think of it as a generalization of the orthogonal projection decomposition to a subspace S

$$
x=\Pi_{S}(x)+\Pi_{S^{\perp}}(x) .
$$

- Combine with the gradients, you have: $\nabla M_{f}(x)=\operatorname{prox}_{f^{*}}(x)$.

2. (Proximal average) Let f_{1}, \ldots, f_{m} be closed proper convex functions, there exists a convex function g, such that

$$
\frac{1}{m} \sum_{i=1}^{m} \operatorname{prox}_{f}=\operatorname{prox}_{g}
$$

3. (Non-Expansiveness) prox_{f} is a non-expansion, namely, for all x, y

$$
\left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|^{2} \leq\left\langle x-y, \operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\rangle
$$

Operator-theoretic view of a prox operator

∂f maps a point $x \in \operatorname{dom} f$ to the set $\partial f(x)$.
$(I+t \partial f)^{-1}$ is called the resolvent of an operator ∂f.
Theorem: Consider convex function f (so that the subgradient exists in the rel-int)

$$
\operatorname{prox}_{t, f}(x)=(I+t \partial f)^{-1}(x)
$$

Proof: Recall the definition:
$\operatorname{prox}_{f}(x)=\operatorname{argmin}_{y} \frac{1}{2}\|y-x\|^{2}+f(y)$.
By the first order optimality condition x^{*} obeys that

$$
0 \in\left(x^{*}-x\right)+\partial f\left(x^{*}\right) \Leftrightarrow x \in x^{*}+\partial f\left(x^{*}\right)=(\mathrm{I}+\partial f)\left(x^{*}\right)
$$

if an only if

$$
x^{*}=(\mathrm{I}+\partial f)^{-1} x
$$

Proximal Point Algorithm (aka Proximal Minimization)

To minimize a convex function f. Iterate:

$$
x^{k+1}=\operatorname{prox}_{t f}\left(x^{k}\right)
$$

1. This is a fixed point iteration (note that prox is a non-expansion).

$$
x^{k+1}=(\mathrm{I}+t \partial f)^{-1} x^{k} .
$$

2. Also, this is a gradient descent on the Moreau Envelope.

$$
x^{k+1}=x_{k}-\left(\mathrm{I}-(\mathrm{I}+t \partial f)^{-1}\right) x_{k}=x_{k}-t \nabla M_{f}\left(x_{k}\right)
$$

Question: Is the learning rate appropriate for the GD to converge?

Proximal Gradient Algorithm

For minimizing a composition objective $f+h$

$$
x^{k+1}=\operatorname{prox}_{t h}\left(x^{k}-t \nabla f\left(x^{k}\right)\right)
$$

1. As a fixed point iteration:

$$
x^{k+1}=(I+t \partial h)^{-1}(I-t \nabla f) x_{k}
$$

2. As a Smoothed Majorization-Minimization objective

$$
x^{k+1}=\underset{y}{\operatorname{argmin}} f\left(x^{k}\right)+\left\langle\nabla f\left(x^{k}\right), y-x^{k}\right\rangle+\frac{1}{2 t}\left\|y-x_{k}\right\|^{2}+h(y)
$$

3. The generalized gradient is the gradient of a Moreau-Envelope of $f_{\text {Linearized }}+h$ at x^{k}.

Summary of Proximal Algorithms

1. Proximal point algorithm is to minimize the smoothed version of a nonsmooth objective using gradient descent.
2. Proximal gradient is to combine the idea of local quadratic approximation (with Majorization-Minimization) with the Moreau-Yoshida smoothing.
3. We can express things in operator-theoretic form as fixed point iterations.
4. If the fixed point iterations are conducted using a contraction map, then we have linear convergence.

References and further reading

- Parikh, N. and Boyd, S. (2014). "Proximal algorithms". Foundations and Trends® in Optimization, 1(3), 127-239.
- Yaoliang Yu (2015). "Proximity Operator". https://cs.uwaterloo.ca/~y328yu/mynotes/po.pdf.
- Fenchel, W. (1949). "On conjugate convex functions". Canadian Journal of Mathematics, 1(1), 73-77.
- Rockafellar, R. T. (1976). "Monotone operators and the proximal point algorithm. SIAM journal on control and optimization", 14(5), 877-898.
- Vandenberghe's Lecture Notes for ECE 236C "Proximal Operator". http://www.seas.ucla.edu/~vandenbe/236C/ lectures/proxop.pdf

