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Review of optimization

min
θ∈C

f (θ) (1)

Here C is a convex set and f (·) is a convex function
We care about the complexity

f (θk)− f (θ∗) ≤ ε (2)

If k = log 1
ε , it is linear convergence
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Complexity Table

convex + smooth + strong convex

gradient 1
ε2

1
ε →

1√
ε

L
m log 1

ε →
√

L
m log 1

ε

SGD 1
ε2

1
ε2

1
mε

finite sum
+ SGD

1
ε2

n + 1
ε →

1√
ε

(n + L
m ) log 1

ε → (n +
√

L
m ) log 1

ε

Table: Complexity of first order methods
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Not covered

Second order method: LBFGS, quasi-newton

Non-convex optimization: have to convexify or adding noise to escape
from local solutions

How about DNN: too many local/global solutions!
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Online learning

Problem statement for statistical learning: Given any dataset
(x1, y1), . . . , (xn, yn) iid from D. To find H : X → Y

Reliable setting: ∃h∗ ∈ H s.t. P(h∗(x) = y) = 1

Error error(f ) = E1(h(x) 6= y) ≈ 1
n

∑n
i=1 1(h(xi ) 6= yi )

Online learning:
1 set x1, choose h1 ∈ H, such as ŷ1 = h1(x1),
2 set x2, choose h2 ∈ H, such as ŷ2 = h2(x2), ...

The cumulative loss 1
n

∑n
i=1 1(ŷi 6= yi )

Design algorithm such that M(A) ≤ O(n)

Example: X ∈ {0, 1}d , Y ∈ {0, 1}, h = x(1) or x(4) or x(16)
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Algorithm 1: Online ERM/FTL

V1 = H

for t = 1, 2, . . . , n:
1 receive xt , pick any h ∈ Vt

2 predict ŷt = h(xt)
3 Receive yt
4 loss 1(ŷt 6= yt) Update Vt+1 = {h ∈ Vt , h(xt) = yt}

Convergence speed: 1 ≤ |Vt | ≤ |H| −Mt , so Mt ≤ |H| − 1
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Algorithm 2: Majority voting (Halving)

V1 = H

for t = 1, . . . , n
1 Receive xt
2 Majority voting: for any h ∈ Vt , ŷt = arg max

∑
h 1(h(xt) = yt)

3 Receive yt
4 Update Vt+1 = {h ∈ Vt , h(xt) = yt}

1 ≤ |Vt | ≤ |H|12
mt , so mt ≤ log2(|H|)
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Agnostic online learning

If there does not exist a h such that h(xi ) = yi ,∀i = 1, . . . , n

regret(h) =
n∑

i=1

1(yt = ht(xt))− min
h∈H

n∑
i=1

1(yt 6= h(xt)) (3)
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Example: stock prediction, Google

Dearaj Omid Yuqing Paul the Octopus Truth

Day 1 Down Up Up Down Down
Day 2 Up Up Down Down Down
Day 3 Up Down Up Up Up
Day 4

Table: Choices of expert

Dearaj Omid Yuqing Paul the Octopus

Day 1 1 1 1 1
Day 2 1 1

2
1
2 1

Day 3 1
2

1
4

1
2 1

Day 4 1
2

1
8

1
2 1

Table: Weights of expert
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Algorithm 3: Weighted majority

M: Number of mistakes

m: Number of mistakes of the best expert

n: Number of expert

Wt =
∑n

i=1 wit , W1 = n, and Wt+1 ≤Wt(1− 1
4)

(
1

2
)m ≤W ≤ n(

3

4
)m (4)

M ≤ − log 1/2
log 3/4m + log n

log 3/4
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ε-weighted majority

Wit+1 = Wit(1− ε) if ŷit 6= yt (5)

Then

(1− ε)m ≤W ≤ m(1− 1

2
(1− ε))m (6)

m log(1− ε) ≤ logm + m log(
1

2
+

1

2
ε) (7)

M ≤ − log(1− ε)
−log(12 + 1

2ε)
m +

log n

− log(12 + 1
2ε)
≤ 2(1 + ε)m +O(logm) (8)
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Algorithm 4: randomized weighted majority (RWM)

Set W
(i)
1 = 1 for all i

for t = 1, . . . ,T ,

Output =

{
Up with probability

∑
i W

i1(y i
t=up)

W
Down Otherwise
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Analysis

Ft =
∑n

i=1 W
i
t 1(ŷ

i
t 6=y t)

Wt
, Wt = n(1− εF1) . . . (1− εFT )

m log(1− ε) ≤ log(Wt+1) ≤ log n +
∑n

i=1 log(1− εFt)
≤ log n − ε

∑T
t=1 Ft = log n − E(M)

E(M) ≤ log n
ε + − log(1−ε)

ε m ≈ (1 + ε
2)m + log n

ε ≤ m +
√

m log n
2

The last equality holds when ε =
√

2 log n
m
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Relationship with convex optimization

Learning with expert: min
∑

i fi (θi )

fi (θi ) = 〈θi , `〉 = Eθi [li ]
Ci

∑
θi = 1, θi ≥ 0

15 / 15


	Review of optimizatio
	Online learning
	Online learning algorithms

