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This lecture’s notes illustrate some uses of various LATEX macros. Take a look at this and imitate.

19.1 Remainder of Lecture 18

Examples of ADMM:

min
θ
‖θ − y‖22 + λ‖D(k+1)θ‖1 ⇔min

θ
‖θ − y‖22 + λ‖D(1)z‖1

s.t.D(k)θ = z

The Lagrangian L is L = ‖θ − y‖2 + λ‖D(1)z‖1 + uT (D(k)θ − z) + ρ
2‖D

(k)θ − z‖2.

Update rule is:

1. Find argminθ L(θ, z, u) = argminθ θ
(
ρ
2
T
D(k)TD(k) + I

)
θ + b̃T θ. — a linear system that is banded

diagonal, which can be solved in O(kn) time by Gaussian elimination.

2. argminz L(θ, z, u) = prox‖D(1).‖1(b̃) → Fused lasso/TV denoising → can be solved by Dynamic Pro-
gramming algorithm in O(n).

3. u+ = u+ (D(k)θ − z)

Further generalization: D is the incidence matrix of a graph. The linear system can be solved by fast
Laplacian solvers. The prox-operator can be solved by graph-cut, parametric max-flow and etc.

19.2 Recap of Online Convex Optimization

For t = 1, 2, . . . , T then

Player chooses xt ∈ K
Adversary chooses ft ∈ F (strongly convex functions)
Player incurs a loss ft(xt)
Player receives feedback:
5ft(xt) ∈ full information setting

ft(xt) ∈ bandit setting

5ft(xt) + zt ∈ noisy gradient setting
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End For

Goal:

Regret =

T∑
t=1

ft(xt)−min
x

T∑
t=1

ft(x)

no-regret algorithm ⇐⇒ lim
T→∞

RegretT
t

= 0.

Definition of ”Static Regret” with respect to parameter u [1]:

Regret(u) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(u)

Example 1. Let ft(x) = (x− t/T )2, K = [0, 1]. What is the best expert in the hindsight?

minx
∑T
t=1 ft(x) =

∑T
t=1(x− t/T )2 ⇒5 =

∑T
t=1 2(x− t/T ) = 0⇒ x∗ = T+1

2T �
1
2 .

Then, the optimal value is:
∑T
t=1(T+1

2T − t/T )2 = 1
T 2

∫ T
1

(T+1
2 − t)2dt = 1

T 2

[
1
3 (t− T+1

2 )3
]T
1
� O(T )!

The conclusion is that even though we can get O(log T ) regret in this case, it doesn’t mean much because we
are comparing to a very weak baseline.

Question: Can we do any better?

19.3 Dynamic Regret [Zinkevich, 2003]

Dynamic regret competes against an arbitrary sequence of competitors in the hindsight.

D.Regret =

T∑
t=1

ft(xt)− min
(u1,...,uT )

T∑
t=1

ft(ut)

Example 2.

ft(x) =

{
(x− 1)2 ,w.p 1/2

(x+ 1)2 ,w.p 1/2

So, the best dynamic competitor in the hindsight when f1, . . . , fT are known is ut = argminx ft(x) which

gives min(u1,...,uT )

∑T
t=1 ft(ut) = 0. This is not possible to achieve. Why?

Take time t, suppose the player knows the adversary is doing the above random sampling:

min
x

E[ft(x)] = min
x

1

2
(x− 1)2 +

1

2
(x+ 1)2 x=0

= 1⇒ D.Regret of any player = T !

What do we do?

1. Restrict the family of competitor class u1, . . . , uT :{
(u1, . . . , uT )

∣∣∣∣∣
T∑
t=2

‖ut − ut−1‖2 ≤ PT

}
path constraint [Zinkevich, 2003] (19.1)
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2. Make assumptions on sequence of f1, . . . , fT such that they change slowly, e.g., what Besbes et al. [2015]
assume

T∑
t=2

‖ft − ft−1‖∞ ≤ VT ⇔
T∑
t=2

sup
x
|ft(x)− ft−1(x)| ≤ VT (19.2)

A generalization of the above is:

(

T∑
t=2

‖xt − xt−1‖qp)1/q ≤ VT (p, q) (19.3)

which is the topic of [Chen et al., 2019].

An alternative assumption about the function-variation is the following. Let x∗t = argminx ft(x). Then
an assumption can be made on x∗1, . . . , x

∗
T changing slowly, i.e.,

T∑
t=2

‖x∗t − x∗t−1‖2 ≤ UT

which is studied in [Yang et al., 2016].

Note that the original path-length-regret is very general because it parameterizes the regret with the
path-length instead of making any assumptions about the functions (which we typically can only assume,
but not verify.)

19.4 Path-length constraint, full information feedback

In the first class of assumption:

Regret(T, u1, . . . , uT ) =

T∑
t=1

ft(xt)− ft(ut) ≤ function

(
T, PT (u, 1, . . . , uT ) =

T∑
t=2

‖ut − ut−1‖2

)

Online Gradient Descent (OGD):

xt+1 = projK(xt − yt 5t (xt)) ⇒ S.Regret ≤ O(GD
√
T ),

where 5‖ft(x)‖2 ≤ G, i.e., ft is G-lipschiz, and ‖u1 − u2‖2 ≤ D ∀u1, u2 ∈ K.

Theorem 19.1 (Thm. 2 [Zinkevich, 2003]). If ηt = η, then:

G.Regret(T, PT ) ≤ D2

2η
+
PTD

η
+
TηG2

2
�
√
T (D2 + PTD)G2. (19.4)

Proof. We rely on:

1. Convexity of ft,∀u ∈ K : ft(xt)− ft(u) ≤ 〈gt, xt − u〉.

2. By OGD algorithm:

‖xt − u‖22 = ‖ΠK(xt − ηgt)− u‖2
u∈K
≤ ‖xt − ηgt − u‖22 = ‖xt − u‖22 + η2‖gt‖22 − 2η〈gt, xt − u〉.

3. ‖xt+1−ut‖22 = ‖xt+1 +ut+1−ut+1−ut‖22 = ‖xt+1−ut+1‖22 + ‖ut+1−ut‖22 + 2〈xt+1−ut+1, ut+1−ut〉.
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Take u = ut. Then following (2), we have: ‖xt − ut‖22 ≤ ‖xt − ut‖22 + η2‖gt‖22 − 2η〈gt, xt − ut〉. Furthermore,
we have:

ft(xt)− ft(ut)
(1)

≤ 〈gt, xt − ut〉
(2)

≤ 1

2η

(
‖xt − ut‖22 + η2‖gt‖22 − ‖xt+1 − ut‖22

)
(3)

≤ 1

2η

(
‖xt − ut‖22 + η2‖gt‖22 − ‖xt+1 − ut+1‖22 − ‖ut+1 − ut‖22 − 2〈xt+1 − ut+1, ut+1 − ut〉

)
≤ 1

2η

(
‖xt − ut‖22 − ‖xt+1 − ut+1‖22 + 2D‖ut+1 − ut‖22 + η2G2

)
.

Now, sum up t = 1, . . . , T , Telescope:

T∑
t=1

ft(xt)− ft(ut) ≤
1

2η

(
‖x1 − u1‖22 − ‖xT+1 − uT+1‖22 + 2D

T∑
t=1

‖ut+1 − ut‖22 + Tη2G2

)

≤ D2

2η
+
ηG2T

2
+

2DPT
2η

η=

√
D2+DPT√

TG
=

√
TG2(D2 +DPT ).

• This bound is optimal in T, PT but the OGD cannot compete against all u1, . . . , uT , simultaneously. So,
we want to design an Adaptive Algorithm when PT is not an input which is done by [Zhang et al., 2018]

• if PT = 1, we get static regret bound. If PT = T (Example 2), then we get D.Regret = T

19.5 Function variation constraint, noisy gradient feedback

Now, suppose we make assumption on function variation and have noisy gradient feedback:

T∑
t=2

sup
x
|ft(x)− ft−1(x)| ≤ VT .

The feedback model is gt = 5ft(xt) + zt, where zt is independent sub-Gaussian noise. The dynamic regret is
defined as follows:

D.Regret = E

[
T∑
t=1

ft(xt)

]
−

T∑
t=1

ft(x
∗
t )

, where x∗t = argminx ft(x). The final regret bound would be a function of T and VT .

The algorithm takes any sub-routine A that is OCO with static regret bound. We partition the time horizon
into batches of size ∆T . Then, the algorithm runs A in each sequence of ∆T rounds and restarts at the end
of that time slot.

Theorem 19.2 (Prop. 2 [Besbes et al., 2015]). Regret(T, VT ) ≤ [ T∆T
]RegretA(∆T ) + 2∆TVT .
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Proof. Let x∗j = argminx
∑∆T

tj=1 ftj (x).

T∑
t=1

ft(xt)− ft(x∗t ) =

T
∆T∑
j=1

∆T∑
tj=1

ftj (xtj )− ftj (x∗j ) + ftj (x∗j )− ftj (x∗tj )

≤ T

∆T
RegretA(∆T ) +

T
∆T∑
j=1

∆T∑
tj=1

ftj (x∗j )− ftj (x∗tj )

︸ ︷︷ ︸
(F)

Now, we bound (F).

(F) =
∑
j

∆T

 1

∆T

∆T∑
tj=1

ftj

 (x∗j )−
∆T∑
tj=1

ftj (x∗tj )

x∗j is optimal

≤
∑
j

∆T

 1

∆T

∆T∑
tj=1

ftj

 (
1

∆T

∑
j

x∗tj )−
∆T∑
tj=1

ftj (x∗tj )

1
∆T

∑∆T
tj=1 ftj is convex

≤
∑
j

 1

∆T

∆T∑
tj=1

ftj

 (x∗tj )− ftj (x∗tj )


Let 1

∆T

∑∆T

tj=1 ftj = f̃j and VT =
∑
j V

(j)
T . For ∀i1, i2 ∈ j-th Bin, we have ‖fi1 − fi2‖∞ ≤ V

(j)
T . Hence:

(F) ≤
∑
j

V
(j)
T ≤ ∆TVT ⇒ D.Regret ≤ T

∆T
RegretA(∆T ) + ∆TVT

If A is Convex OGD ⇒ D.Regret � T 2/3V
1/3
T .

If A is Strongly Convex OGD ⇒ D.Regret �
√

T log TVTG
m �

√
TVT .

19.6 A natural family of definitions for the variational functionals?

Now, we get back to Example 1: ft(x) = (x − t/T )2 = (x − Θt)
2. Suppose, the player has access to

gt = 2(xt − Θt) + zt. So, Θ̂t = − gt2 + xt = Θt + noise. This is called a non-parametric regression
problem where we assume Θt changes slowly and want to design an algorithm A to minimize MSE =

E
[∑

t (At(g1, . . . , gt)−Θt)
2
]
.

• If
∑T
t |Θt −Θt−1| ≤ PT ⇒ Θ ∈ TV(PT ).

• If
√∑T

t |Θt −Θt−1|2 ≤ PT ⇒ Θ ∈ Sobolev( PT√
T

).

• If
(∑T

t (Θt −Θt−1)p
)1/p

≤ PT ⇒ Θ
p→∞
∈ Holder Class(PT

T ).

The scaling is chosen to match their definitions in the corresponding continuous function class.
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For the sequences in the first setting, the optimal rate of offline problem is O(T 1/3P
2/3
T ), a well-known

information-theoretic lower bound due to [Donoho et al., 1990] If we think of this feedback model as

5(yt − xt)2 ⇔ yt = Θt + noise, OGD and Restarting OGD can achieve regret O(T 1/2P
1/2
T ), which is also

a lower bound for all linear smoothers — a class of algorithms that subsume OGD and Restarting OGD.
On the other hand, with a more careful design of the algorithm one can have an optimal algorithm for this
problem [Baby and Wang, 2019].
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