
CS292F Convex Optimization: Online Newton Method Spring 2020

Lecture 16: May 20
Lecturer: Yu-Xiang Wang Scribes: Xuandong Zhao

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They
may be distributed outside this class only with the permission of the Instructor.

16.1 Universal Portfolio

Here we consider a model of stock market. We have a repeated investing scenario: for t = 1, 2, · · · , there is

a vector of prices ratio which we will call rt ∈ Rn+, where rt(i) = price of stock i at time t
price of stock i at time t−1 = Pricet(i)

Pricet−1(i)
. We

define xt ∈ ∆n is the asset allocation on N stocks. And we have the update Wt+1 = Wt ·
(
r>t xt

)
The total

wealth after T days is:

WT = W1 ·
T∏
t=1

(r>t xt)

So we have:

log(
WT

W1
) =

T∑
t=1

log(r>t xt) = −
T∑
t=1

ft(xt),

where f
(x)
t = − log(r>t xt).

The total regret is:

Regret =

T∑
t=1

ft(xt)−
∑

ft(u) (16.1)

For example, consider a market of two stocks that fluctuate wildly. The first stock increases by 100% every
even day and returns to its original price the following (odd) day. The second stock does exactly the opposite:
decreases by 50% on even days and rises back on odd days. Formally, we have

rt(1) =

(
2,

1

2
, 2,

1

2
, . . .

)

rt(2) =

(
1

2
, 2,

1

2
, 2, . . .

)
Clearly, any investment in either of the stocks will not gain in the long run. However, the portfolio u = [0.5, 0.5]
increases the wealth by a factor of 1.25 daily because:

WT = W1 ·
∑

ft(u) = W1 ·
(

1

2
· 2 +

1

2
· 0.5

)>
= W1 · 1.25>.

Such a mixed distribution is called a fixed rebalanced portfolio, as it needs to rebalance the proportion of
total capital invested in each stock at each iteration to maintain this fixed distribution strategy.

16-1

16-2 Lecture 16: May 20

Thus, vanishing average regret guarantees long-run growth as the best constant rebalanced portfolio in
hindsight. Such a portfolio strategy is called universal portfolio. We have seen that the online gradient
descent algorithm gives essentially a universal algorithm with regret O(

√
T). Can we get better regret

guarantees?

16.2 Exponential Concavity

For OGD, we have Regret = GD
√
T = O(

√
nT). For FTRL (entropy regularizer), we have Regret =

O(
√
T log n). We want to have better regret bounds. Recall that when ft is m-strongly convex, OGD is

G2

m log T regret guarantee. However, ft = − log(r>t x) is not strongly convex. So we want to introduce
exponential concavity.

Definition 16.1. A convex function f : Rn 7→ R is defined to be α-exp-concave over K ⊆ Rn if the function
g is concave, where g : K 7→ R is defined as

g(x) = e−αf(x)

Lemma 16.2. A twice-differentiable function f : Rn 7→ R is α-exp-concave at x if and only if

∇2f(x) � α∇f(x)∇f(x)>

It is similar as strong convexity: ∇2f(x) � m · I.

For example:
f(x) = − log(r>t x)

∇
(
− log(r>t x)

)
= − rt

r>t x

∇2
(
− log(r>t x)

)
= −0− rtr

>
t

(r>t x)
2 =

rtr
>
t

(r>t x)
2 = ∇ · ∇>

∇2 � 1 · ∇ · ∇> ⇒ 1-exp-concave

Another example: f is m-strongly convex in domain K, s.t. ‖∇f‖2 ≤ G. We have:

∇f∇f> � G2I � G2

m
∇2f, for all x ∈ K

The first bound is for G-Lipschitz and the second bound is for m-strongly convexity. Then we get

∇2f � m

G2
∇f∇f> ⇒ f is

m

G2
-exp-concave.

Lemma 16.3. Let f : K → R be an α-exp-concave function, and D,G denote the diameter of K and a bound
on the (sub)gradients of f respectively. The following holds for all γ ≤ 1

2 min
{

1
4GD , α

}
and all x,y ∈ K

f(x) ≥ f(y) +∇f(y)>(x− y) +
γ

2
(x− y)>∇f(y)∇f(y)>(x− y)

Proof. We do the proof based on [1]. Since exp(−αf(x)) is concave and 2γ ≤ α by definition, it follows from
Lemma 16.2 that the function h(x) , exp(−2γf(x)) is also concave. Then by the concavity of h(x)

h(x) ≤ h(y) +∇h(y)>(x− y)

Lecture 16: May 20 16-3

Plugging in ∇h(y) = −2γ exp(−2γf(y))∇f(y) gives

exp(−2γf(x)) ≤ exp(−2γf(y))
[
1− 2γ∇f(y)>(x− y)

]
Simplifying gives

f(x) ≥ f(y)− 1

2γ
log
(
1− 2γ∇f(y)>(x− y)

)
Next, note that

∣∣2γ∇f(y)>(x− y)
∣∣ ≤ 2γGD ≤ 1

4 and that for |z| ≤ 1
4 ,− log(1− z) ≥ z + 1

4z
2. Applying the

inequality for z = 2γ∇f(y)>(x− y) implies the lemma.

16.3 Online Newton step

Algorithm 1 online Newton step

Input: convex set K, T,x1 ∈ K ⊆ Rn, parameters γ, ε > 0, A0 = εIn
for t = 1 to T do

Play x
Observe loss ft(xt), receive ∇t = ∇ft(xt)
Rank-1 update: At = At−1 +∇t∇>t
Newton step and projection:

yt+1 = xt − 1
γA
−1
t ∇t

xt+1 =
∏At

K (yt+1) = argminx∈K ‖yt+1 − x‖2At

return

Theorem 16.4. Algorithm 1 with parameters γ = min
{

1
4GD , α

}
and ε = 1

γ2D2 , guarantees for (T > 4)

RegretT ≤ 5

(
1

α
+GD

)
n log T

To prove Theorem 16.4 we begin by proving the following:

Lemma 16.5. The regret of online Newton step (with appropriate choice of parameters) is bounded by

RegretT ≤ 4

(
1

α
+GD

)(T∑
t=1

∇tA−1t ∇t + 1

)

Proof. Let x∗ ∈ K be the best decision in hindesight. By Lemma 16.3 we have for our choice of γ :

ft (x∗) ≥ ft (xt) +∇>t (x∗ − xt) +
γ

2
(x∗ − xt)

>∇t∇>t (x∗ − xt)

ft (xt)− ft (x∗) ≤ ∇>t (xt − x∗)− γ

2
(x∗ − xt)

>∇t∇>t (x∗ − xt) (16.2)

By the update rule of xt+1 =
∏At

K (xt − 1
γA
−1
t ∇t)

‖xt+1 − x∗‖2At
≤ ‖yt+1 − x∗‖2At

=

∥∥∥∥xt − 1

γ
A−1t ∇t − x∗

∥∥∥∥2
At

= ‖xt − x∗‖2At
+

1

γ2
∥∥A−1t ∇t∥∥2At

− 2

γ
(xt − x∗)

>
AtA

−1
t ∇t

16-4 Lecture 16: May 20

By move it around:

2

γ
(xt − x∗)

>∇t ≤
1

γ2
∥∥A−1t ∇t∥∥2At

+ ‖xt − x∗‖2At
− ‖xt+1 − x∗‖2At

Multiply γ
2 on both sides and sum over t = 1, 2, . . . , T

T∑
t=1

(xt − x∗)
>∇t ≤

1

2γ

∑
t

‖∇t‖2A−1
t

+
γ

2
‖x1 − x∗‖2A1

+
γ

2

T∑
t=2

(xt − x∗)>(At −At−1)(xt − x∗)− γ

2
‖xT+1 − x∗‖2AT

≤ 1

2γ

∑
t

‖∇t‖2A−1
t

+
γ

2
‖x1 − x∗‖2A1

+
γ

2

T∑
t=2

(xt − x∗)>∇t∇Tt (xt − x∗) + 0

for At = At−1 +∇t∇Tt and dropping the negative term.

Plug into equation (16.2)

t∑
t=1

(ft (xt)− ft (x∗)) ≤ 1

2γ

∑
t

‖∇t‖2A−1
t

+
γ

2
‖x1 − x∗‖2A1

+
γ

2

T∑
t=2

(xt − x∗)>∇t∇Tt (xt − x∗)− γ

2

T∑
t=1

(xt − x∗)
>∇t∇>t (xt − x∗)

=
1

2γ

∑
t

‖∇t‖2A−1
t

+
γ

2
(x1 − x∗)>A1(x1 − x∗)− γ

2
(x1 − x∗)>∇t∇Tt (x1 − x∗)

=
1

2γ

∑
t

‖∇t‖2A−1
t

+
γ

2
(x1 − x∗)>(A1 −∇t∇Tt)(x1 − x∗)

(A1 = εI +∇1∇T1) =
1

2γ

∑
t

‖∇t‖2A−1
t

+
γ

2
ε ‖x1 − x∗‖22

For ε = 1
γ2D2 , γ

2 ε ‖x1 − x∗‖22 ≤
γ
2 εD

2. Then by γ = 1
2 min(α, 1

4GD),

t∑
t=1

(ft (xt)− ft (x∗)) ≤ 1

2γ

(∑
t

‖∇t‖2A−1
t

+ 1

)

≤ 4

(
1

α
+GD

)(T∑
t=1

∇tA−1t ∇t + 1

)

Proof. of the main Theorem (Theorem 16.4): First we show that the term
∑T
t=1∇>t A

−1
t ∇t tis upper bounded

Lecture 16: May 20 16-5

by a telescoping sum. Notice that

‖∇t‖2A−1
t

= ∇Tt A−1t ∇t
= tr(∇Tt A−1t ∇t)
= tr(A−1t ∇t∇Tt)

= tr
(
A−1t (At −At−1)

)
= tr(I −A−1t At−1)

=
∑
i

(
1− λi(A−1t At−1)

)
≤

n∑
i=1

log(λ−1i (A−1t At−1))

= log

(
n∏
i=1

λ−1i A−1t At−1

)
= log

∣∣(A−1t At−1)−1
∣∣

= log
|At|
|At−1|

= log |At| − log |At−1|

where λi(·) denotes the ith eigenvalues of a matrix and the inequality is by ε ≤ log
(

1
1−ε

)
and take ε =

1 − λi(A
−1
t At−1). Recall that by the Jordan canonical form of a matrix X, trX =

∑
i λi(X) also the

determinant |X| =
∏
i λi(X). Notice that λi will be complex if A is not symmetric, but the traces and

determinants will be real numbers.

Sum up t = 1, 2, . . . , T , we have:
T∑
t=1

‖∇t‖2A−1
t

= log |AT | − log |A0|

Since AT =
∑T
t=1∇t∇>t + εIn and ‖∇t‖ ≤ G, the largest eigenvalue of AT is at most TG2 + ε. Hence

the determinant of AT can be bounded by |AT | ≤
(
TG2 + ε

)n
. Hence recalling that ε = 1

γ2D2 and γ =
1
2 min

{
1

4GD , α
}

for T > 4,

T∑
t=1

‖∇t‖2A−1
t

=

T∑
t=1

∇>t A−1t ∇t ≤ log

(
TG2 + ε

ε

)n
≤ n log

(
TG2γ2D2 + 1

)
≤ n log T

Plugging into Lemma 16.5 we obtain the main Theorem 16.4.

RegretT ≤ 5

(
1

α
+GD

)
(n log T + 1)

16.4 Running Time

Every iteration of the online Newton step requires the computation of the matrix A−1t , which usually in time
O(n3). However, by the Sherwin-Morrison Woodbury (matrix inversion lemma)[2],(

A+ xx>
)−1

= A−1 − A−1xx>A−1

1 + x>A−1x

16-6 Lecture 16: May 20

given A−1t−1 and ∇t one can compute A−1t in time O
(
n2
)

using only matrix-vector and vector-vector products.

The online Newton step algorithm requires O(n2) space to store the matrix A−1t . If making projections onto
K can be solved in O(n2) time (this may or may not be the case...), the algorithm can be implemented in
time and space O(n2).

Beware of the numerical instability of SMW identity though, if you are to implement this trick in practice.

16.5 Additional thoughts?

You get either
√
T log n (from the multiplicative weights updates, or FTRL with entropy regularization) or

n log T (from online Newton step.)

Is it possible to get poly log(n, T) regret for this problem?

References

[1] Hazan, Elad ”Introduction to online convex optimization.” arXiv preprint arXiv:1909.05207
(2019).

[2] Sherman, Jack, and Winifred J. Morrison, ”Adjustment of an inverse matrix correspond-
ing to a change in one element of a given matrix.” The Annals of Mathematical Statistics 21.1
(1950): 124-127.

	Universal Portfolio
	Exponential Concavity
	Online Newton step
	Running Time
	Additional thoughts?

