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2.1 Optimization terminology

A convex optimization problem (or program) is

min
x∈D

f(x)

subject to gi(x) ≤ 0, i = 1, ...,m

Ax = b

(2.1)

where f amd gi, i = 1, ...,m are all convex. The optimization domain is D = dom(f) ∩mi=1 dom(gi). f is
called criterion or objective function. gi is called inequaltiy constraint function.

If x ∈ D, gi(x) ≤ 0, i = 1, ...,m, and Ax = b, then x is called a feasible point. The minimum of f(x) over
all feasible points x is called optimal value f∗. If x is feasible and f(x) = f∗, then x is called optimal, or a
solution or minimizer. If x is feasible and f(x) ≤ f∗ + ε, then x is called ε-suboptimal. If x is feasible and
gi(x) = 0, gi is active at x.

Lemma 2.1. Let Xopt be the set of all solutions of a convex optimization problem. Then Xopt is a convex
set. If f is strictly convex, then there exists at most one solution.

Proof. If Xopt = ∅, then Xopt is trivially convex. If not, let x1, x2 ∈ Xopt. Consider tx1+(1−t)x2,∀t, 0 ≤ t ≤ 1.

gi(tx1 + (1− t)x2) ≤ tgi(x1) + (1− t)gi(x2) ≤ 0.

A(tx1 + (1− t)x2) = tAx1 + (1− t)Ax2 = tb+ (1− t)b = b.

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2) = tf∗ + (1− t)f∗ = f∗.

tx1 + (1− t)x2 ∈ Xopt and therefore Xopt is a convex set.

Now suppose Xopt 6= ∅ and f is strictly convex. Suppose there exist x1, x2 ∈ Xopt and x1 6= x2. Then by the
convexity of Xopt,

1
2x1 + 1

2x2 ∈ Xopt. However,

f(
1

2
x1 +

1

2
x2) <

1

2
f(x1) +

1

2
f(x2) =

1

2
f∗ +

1

2
f∗ = f∗,

which is a contradiction to the optimality of f∗.

Example 2.2. Lasso.
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Given y ∈ Rn, X ∈ Rn×p,

min
β

‖y −Xβ‖22

subject to ‖β‖1 ≤ s

is a convex optimization problem.

The criterion function f(β) = ‖y−Xβ‖22 is a convex function (least square loss). The inequality constraint is
g(β) = ‖β‖1− s is a convex function (norm minus a constant). The feasible set is {v|‖v‖1 ≤ s, v ∈∈ Rp}. The
solution is unique when n ≥ p and X has full column rank, because XTX is positive definite and therefore
f is strictly convex. However, when p > n, XTX is not positive definite. The criterion can be changed to
Huber loss

n∑
i=1

ρ(yi − xTi β), ρ(z) =

{
1
2z

2 |z| ≤ δ
δ|z| − 1

2δ
2 |z| > δ

,

but ρ(z) is not strictly convex. /

Example 2.3. Support vector machine.

Given y ∈ −1, 1n, X ∈ Rn×p with rows x1, ..., xn,

min
β,β0,ξ

1

2
‖β‖22 + C

n∑
i=1

ξi

subject to ξi ≥ 0, i = 1, ..., n

yi(x
T
i β + β0) ≥ 1− ξi, i = 1, ..., n

(2.2)

is a convex optimization problem for reasons similar to the above.

The criterion function is not strictly convex in β0 or ξ. The criterion function is strictly convex in β, so the β
component at the solution is unique. If the criterion function is changed to

1

2
‖β‖22 +

1

2
β2
0 + C

n∑
i=1

ξ1.01i ,

then the criterion function is strictly convex in β, β0 and ξ and the solution is unique. /

For a convex problem, a feasible point x is called locally optimal when there is some R > 0 such that
f(x) ≤ f(y) for all feasible y such that ‖x− y‖2 ≤ R.

Proposition 2.4. For convex optimization problems, local optima are global optima.

Proof. Suppose that x is a local optimum for some radius R > 0. Now suppose x is not a global optimum,
i.e., there exists a feasible y such that f(y) < f(x). Then ‖x − y‖2 > R. Consider z = (1 − θ)x + θy, θ =
R/((2‖x − y‖2)). By the convexity of the feasible set, z is feasible. And ‖x − z‖2 = R/2 < R. Therefore,
since x is a local optimum for radius R, it should be the case that f(x) ≤ f(z). But because f is convex and
f(y) < f(x), f(z) ≤ (1− θ)f(x) + θf(y) < f(x). This is a contradiction.

We can rewrite the convex optimization problem in (2.1) as follows

min
x

f(x)

subject to x ∈ C = {x|gi(x) ≤ 0, i = 1, ...,m,Ax = b}.

Note that C is a convex set.

We can rewrite it further with IC (the indicator function of C) into an unconstrained form, minx f(x) + IC(x).
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2.2 Optimality conditions

The following is called the first-order condition for optimality.

Proposition 2.5. For a convex problem minx f(x) subject to x ∈ C, if f is differentiable, a feasible point x
is optimal if and only if ∇f(x)T (y − x) ≥ 0 for all y ∈ C.

Proof. Suppose x ∈ C and ∇f(x)T (y − x) ≥ 0 for all y ∈ C. Choose any y ∈ C. Since f is convex and
differentiable, f(y) ≥ f(x) +∇f(x)T (y − x) ≥ f(x). So x is optimal.

Suppose x is optimal. Suppose ∇f(x)T (y − x) < 0 for some y ∈ C. Consider z(t) = (1− t)x+ ty, t ∈ [0, 1].
z(t) ∈ C due to the convexity of C. Since

lim
t→0

f(z(t))− f(x)

t
= ∇f(x)T (y − x) < 0.

Therefore, for some small positive t, f(z(t)) < f(x), which contradicts the optimality of x.

If C = Rn, then the condition reduces to ∇f(x) = 0. C = Rn implies that ∇f(x)T v ≥ 0 holds for all v ∈ R.
For a particular nonzero v, ∇f(x)T v ≥ 0 and ∇f(x)T (−v) ≥ 0. So ∇f(x) = 0.

Example 2.6. Quadratic minimization.

Consider minimizing

f(x) =
1

2
xTQx+ bTx+ c,Q � 0

over Rn. The first-order optimality condition says that the solution satisfies

∇f(x) = Qx+ b = 0.

If Q � 0, then there is a unique solution x = −Q−1b.

If Q is singular and b /∈ col(Q), then there is no solution, i.e., minx f(x) = −∞.

If Q is singular and b ∈ col(Q), then there are infinitely many solutions x = −Q+b+ z, z ∈ null(Q), where
Q+ is the pseudoinverse of Q. /

Example 2.7. Equality-constrained minimization.

Consider
min
x
f(x) subject to Ax = b,

where f is differentiable. According to the first-order optimality condition, x is optimal if Ax = b and

∇f(x)T (y − x) ≥ 0,∀y : Ay = b.

For any y, y = x+ v for some v ∈ null(A). Therefore the condition becomes ∇f(x)T v ≥ 0,∀v ∈ null(A). If a
linear function is nonnegative on a subspace, then it must be zero on the subspace. Then ∇f(x)T v = 0,∀v ∈
null(A), i.e., ∇f(x) ⊥ null(A). Since null(A)⊥ = row(AT ), the condition becomes ∇f(x) ∈ row(AT ), i.e.,

∃v,∇f(x) +AT v = 0,

which is known as Lagrange multiplier optimality condition. /

Example 2.8. Projection onto a convex set.
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Given a and a convex set C, consider

min
x
‖a− x‖22 subject to x ∈ C.

By the first-order optimality condition, x satisfies

∇f(x)T (y − x) = (x− a)T (y − x) ≥ 0,∀y ∈ C.

Rewrite this equation into (a− x)Tx ≥ (a− x)T y, and recall that the normal cone to C at x is NC(x) = {g :
gTx ≥ gT y,∀y ∈ C}. So the condition becomes a− x ∈ NC(x). /

2.3 Equivalent transformations

Informally, we call two problems equivalent if from a solution of one, a solution of the other is readily found,
and vice versa. The following transformation techniques convert an optimization problem into an equivalent
optimization problem.

2.3.1 Partial optimization

Partial optimization preserves the convexity of a problem. Consider the convex optimization problem

min
x1,x2

f(x1, x2)

subject to g1(x1) ≤ 0, g2(x2) ≤ 0.

If we decompose x = (x1, x2) ∈ Rn1+n2 , then the problem

min
x1

f̃(x1, x2) = min{f(x1, x2) : g2(x2) ≤ 0}

subject to g1(x1) ≤ 0.

is also convex.

Example 2.9. Hinge form of SVM

Rewrite the constraints in the SVM problem (2.2) as

ξi ≥ max{0, 1− yi(xTi β + β0)}.

At the optimal solution, we must have those constraints active, i.e., the equality must be achieved. (Suppose
the constraints are not active at the optimal solution, i.e., we have ξi > max{0, 1− yi(xTi β + β0)}. We can
decrease ξi without violating the constraints and thus decrease the objective, which is a contradiction to the
optimality of the solution.) If we plug in the values of the optimal ξi, we have the hinge form of SVM,

min
β,β0

1

2
‖β‖22 + C

n∑
i=1

[1− yi(xTi β + β0)]+,

where a+ = max{0, a} is called the hinge function. /
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2.3.2 Transformation and change of variables

Let h : R→ R be a monotonically increasing transformation. Then

min
x
f(x) subject to x ∈ C ⇐⇒ min

x
h(f(x)) subject to x ∈ C.

Similarly, inequality or equality constraints can be transformed and yield equivalent optimization problems.

If phi : Rn → Rm is one-to-one, and its image covers the feasible set C, then we can changevariables, i.e.,

min
x
f(x) subject to x ∈ C ⇐⇒ min

y
f(φ(y)) subject to φ(y) ∈ C.

Example 2.10. Geometric programming.

A monomial is a function f : Rn++ → R of the form f(x) = γxa11 x
a2

2 · · ·xann where γ > 0, a1, ..., an ∈ R. A

posynomial is a sum of monomials, f(x) =
∑p
k=1 γkx

ak1
1 x

ak2
2 · · ·xakn

n . A geometric program is of the form

min
x

f(x)

subject to gi(x) ≤ 1, i = 1, ...,m

hj(x) = 1, j = 1, ..., r

where f, gi, i = 1, ...,m are posynomials and hj , j = 1, ..., r are monomials. This is nonconvex.

Given f(x) = γxa11 x
a2

2 · · ·xann , let yi = log xi and rewrite this as γ(ey1)a1(ey2)a2 · · · (eyn)an = ea
T y+b where

b = log γ. A posynomial can be rewritten as
∑p
k=1 e

aTk y+bk . After taking logarithms, a geometric program is
equivalent to

min
x

log(

p0∑
k=1

ea
T
0ky+b0k)

subject to log(

pi∑
k=1

ea
T
iky+bik) ≤ 0, i = 1, ...,m

cTj y + dj = 0, j = 1, ..., r,

which is a convex optimization problem. /

2.3.3 Eliminating equality constraints

Given a convex optimization problem (2.1), any feasible point can be expressed as x = My + x0, where
Ax0 = b and col(M) = null(A). Equivalently, the problem becomes

min
y

f(My + x0)

subject to gi(My + x0) ≤ 0, i = 1, ...,m.
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2.3.4 Introducing slack variables

Given a convex optimization problem (2.1), we can transform the inequality constraints as follows

min
x,s

f(x)

subject to si ≥ 0, i = 1, ...,m

gi(x) + si = 0, i = 1, ...,m

Ax = b.

This problem is no longer convex unless gi, i = 1, ..., n are affine.

2.3.5 Relaxation

Given an optimization problem

min
x
f(x) subject to x ∈ C,

we can always take an enlarged constraint set C̃ ⊇ C and consider

min
x
f(x) subject to x ∈ C̃.

This is called a relaxation and its optimal value is always smaller or equal to that of the original problem.

An important special case is relaxing nonaffine equality constraints, i.e.,

hj(x) = 0, j = 1, ..., r,

where hj , j = 1, ..., r are convex but nonaffine, are replaced with

hj(x) ≤ 0, j = 1, ..., r.

Example 2.11. Maximum utility problem.

The maximum utility problem models investment or consumption

max
x,b

T∑
t=1

αtu(xt)

subject to bt+1 = bt + f(bt)− xt, t = 1, ..., T

0 ≤ xt ≤ bt, t = 1, ..., T,

where bt is the budget, xt is the amount consumed at time t, f is an investment return function, u is an
utility function, and f and u are concave and increasing.

This is not a convex optimization problem because the equality constraints are not affine in b. If we relax the
equality constraints to

bt+1 ≤ bt + f(bt)− xt, t = 1, ..., T,

which becomes a convex optimization problem. /

Example 2.12. Principal component analysis.
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Given X ∈ Rn×p, consider
min
R
‖X −R‖2F subject to rank(R) = k.

This is not convex because of rank.

Given X = UΣV T (the singular value decomposition of X), the solution is R = UΣkV
T , where Σk is a

diagonal matrix with the first k diagonal elements of Σ. R is said to be a reconstruction of X from its first k
principal components.

Now we rewrite this problem into the following equivalent form (explained in [1])

min
Z
‖X −XZ‖2F subject to rank(Z) = k, Z2 = Z,Z = ZT .

The solution to this problem is Z = VkV
T
k where V k contains the first k columns of V and the rest of the

entries are 0.

Now the feasible set can be written as

C = {Z ∈ Sp : λi(Z) ∈ {0, 1}, i = 1, ..., p, tr(Z) = k},

where λi(Z) are the eigenvalues of Z and Sp is the set of symmetric p× p matrices. We can now relax this
set into its convex hull

Fk = {Z ∈ Sp : λi(Z) ∈ [0, 1], i = 1, ..., p, tr(Z) = k}
= {Z ∈ Sp : 0 � Z � I, tr(Z) = k}.

Fk is called the Fantope of order k, and it’s a convex set. Now the problem becomes

min
Z
‖X −XZ‖2F subject to Z ∈ Fk.

Note that

‖X −XZ‖2F = tr((X −XZ)T (X −XZ)) = tr(XTX − ZTXTX) = trXTX − tr(XTXZ),

so the minimization of ‖X − XZ‖2F is equivalent to the maximization of tr(XTXZ). Now the problem
becomes

max
Z

tr(XTXZ) subject to Z ∈ Fk,

which is a convex problem because it is the maximization of a linear objective over a convex set.

The advantage of an optimization formulation is that the problem can be modified to address additional
problem specific considerations. If we want the recovered principal components to be sparse, we can modified
the problem into

max
Z

tr(XTXZ)− λ
∑
i,j

|Zi.j | subject to Z ∈ Fk,

which is the problem considered in [2]. /

Example 2.13. Approximate algorithm for Max-Cut.

Given a graph with nodes, edges and edge weights, we want to find a subset S of the nodes such that the
sum of the weights wij of the edges between S and its complement S̄ is maximized.

We can formulate the problem as follows. Let xj = 1 if j ∈ S and xj = −1 if j ∈ S̄. Then

max
x

1

4

n∑
i=1

n∑
j=1

wij(1− xixj)

subject to xj ∈ {−1, 1}, j = 1, ..., n.
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Let Y = xxT . Note that Yi,i = 1, i = 1, ..., n. Rewriting the above problem, we have

max
x

n∑
i=1

n∑
j=1

wij(1− (xxT )i,j)

subject to x ∈ {−1, 1}n.

Relaxing the problem into a convex problem, we have

max
Y ∈Rn×n

n∑
i=1

n∑
j=1

wij(1− Yi,j)

subject to Yi,i = 1, i = 1, ..., n

Y � 0.

Then we sample v uniformly from the unit sphere in Rn and output sign(Y v). This can be shown to be a
0.87856 approximation of this NP-complete problem. It is known as Geomans and Williamson algorithm. /
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