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What is privacy?  What are the differences between 
“privacy”, “confidentiality” and “security”?
• Philosophically,

• “Confidentiality” = “Don’t tell”
• “Privacy” = “Don’t ask”

• Legally speaking:  Privacy is about the right to be left alone (from public 
scrutiny);  Confidentiality is about a promise from people who have 
privileged access.

• “Security” vs “Privacy”:
• Security is to prevent risks due to unintended system use.
• Privacy prevents risks due to intended system use.
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Importance of privacy by the United Nations

Universal declaration of human rights 

Article 12. No one shall be subjected to arbitrary interference with his 
privacy, family, home or correspondence, nor to attacks upon his honour

and reputation. Everyone has the right to the protection of the law 
against such interference or attacks.

https://www.un.org/en/about-us/universal-declaration-of-human-rights
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Personal data in Big Data era

• Government, company, research centers collect personal information and analyze them.

• Social networks: Facebook, LinkedIn

• YouTube & Amazon use viewing/buying records for recommendations.
• Emails in Gmail are used for targeted Ads and for completing your sentence!
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Recent legislations on privacy forces
businesses to revise their data practice

- I can’t keep personal data for more
than three weeks?

- I will have to delete all traces of a user
upon request?

How about my machine learning models
trained on user data?
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Scientists need to have access to data, but 

Medical diagnosis Clean energy

Understand how brain works

Epidemic forecast/prevention

Food safety

Better treatm
ent

Better education

Fraud detection

Increasing privacy awareness

Privacy law
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The census bureau’s dilemma
• Article I, Section 2 of the United States Constitution requires 

the US Census to count individuals accurately for tasks such 
as “congressional apportionment”.

• Title 13 of the United States Code. “It is against the law for 
any Census Bureau employee to disclose or publish any 
census or survey information that identifies an individual or 
business. This is true even for inter-agency communication: 
the FBI and other government entities do not have the legal 
right to access this information. ”

• What if the two goals contradict each other?
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Do we really need math / science for “privacy”?

• Can’t we just remove personal identifiable information from the data 
so that it is de-identified?

• We are only seeing aggregate statistics usually?

• Secure multi-party computation (MPC) and federated learning have 
made it possible for companies to train ML models with my data 
while keeping my data on my device. 
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Removing/modifying personal identifiable
information

• Name? Gender? Zip code? Watched movies?

• Fragile under appropriate side information
• Easier to get in Big Data era

Narayanan, Arvind, and Vitaly Shmatikov. "How to break anonymity of the netflix prize dataset.” (2006).
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“Just six days of step counts are enough 
to uniquely identify you among 100 million other 
people.”

https://www.mobihealthnews.com/news/contributed-when-fitness-data-becomes-research-
data-your-privacy-may-be-risk 10



Differencing attack and side information 
identifies individuals from aggregate statistics
• “Who likes Justin Bieber?”

• Questionaire:   “Year, Program, Gender, Like Bieber or not?”
• Results as of Monday:   “How many like Bieber” 16
• Results as of  Tuesday:  “How many like Bieber” 17
• Side information (available to the instructor): You enrolled late on Tuesday.
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ML models memorize training datasets, even
though they are generalizing well!
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Abstract—We quantitatively investigate how machine learning

models leak information about the individual data records on

which they were trained. We focus on the basic membership

inference attack: given a data record and black-box access to

a model, determine if the record was in the model’s training

dataset. To perform membership inference against a target model,

we make adversarial use of machine learning and train our own

inference model to recognize differences in the target model’s

predictions on the inputs that it trained on versus the inputs

that it did not train on.

We empirically evaluate our inference techniques on classi-

fication models trained by commercial “machine learning as a

service” providers such as Google and Amazon. Using realistic

datasets and classification tasks, including a hospital discharge

dataset whose membership is sensitive from the privacy perspec-

tive, we show that these models can be vulnerable to membership

inference attacks. We then investigate the factors that influence

this leakage and evaluate mitigation strategies.

I. INTRODUCTION

Machine learning is the foundation of popular Internet
services such as image and speech recognition and natural lan-
guage translation. Many companies also use machine learning
internally, to improve marketing and advertising, recommend
products and services to users, or better understand the data
generated by their operations. In all of these scenarios, ac-
tivities of individual users—their purchases and preferences,
health data, online and offline transactions, photos they take,
commands they speak into their mobile phones, locations they
travel to—are used as the training data.

Internet giants such as Google and Amazon are already
offering “machine learning as a service.” Any customer in
possession of a dataset and a data classification task can upload
this dataset to the service and pay it to construct a model.
The service then makes the model available to the customer,
typically as a black-box API. For example, a mobile-app maker
can use such a service to analyze users’ activities and query
the resulting model inside the app to promote in-app purchases
to users when they are most likely to respond. Some machine-
learning services also let data owners expose their models to
external users for querying or even sell them.
Our contributions. We focus on the fundamental question
known as membership inference: given a machine learning
model and a record, determine whether this record was used as

⇤This research was performed while the author was at Cornell Tech.

part of the model’s training dataset or not. We investigate this
question in the most difficult setting, where the adversary’s
access to the model is limited to black-box queries that
return the model’s output on a given input. In summary,
we quantify membership information leakage through the
prediction outputs of machine learning models.

To answer the membership inference question, we turn
machine learning against itself and train an attack model

whose purpose is to distinguish the target model’s behavior
on the training inputs from its behavior on the inputs that it
did not encounter during training. In other words, we turn the
membership inference problem into a classification problem.

Attacking black-box models such as those built by com-
mercial “machine learning as a service” providers requires
more sophistication than attacking white-box models whose
structure and parameters are known to the adversary. To
construct our attack models, we invented a shadow training

technique. First, we create multiple “shadow models” that
imitate the behavior of the target model, but for which we
know the training datasets and thus the ground truth about
membership in these datasets. We then train the attack model
on the labeled inputs and outputs of the shadow models.

We developed several effective methods to generate training
data for the shadow models. The first method uses black-box
access to the target model to synthesize this data. The second
method uses statistics about the population from which the
target’s training dataset was drawn. The third method assumes
that the adversary has access to a potentially noisy version
of the target’s training dataset. The first method does not
assume any prior knowledge about the distribution of the target
model’s training data, while the second and third methods
allow the attacker to query the target model only once before
inferring whether a given record was in its training dataset.

Our inference techniques are generic and not based on any
particular dataset or model type. We evaluate them against
neural networks, as well as black-box models trained using
Amazon ML and Google Prediction API. All of our experi-
ments on Amazon’s and Google’s platforms were done without
knowing the learning algorithms used by these services, nor
the architecture of the resulting models, since Amazon and
Google don’t reveal this information to the customers. For our
evaluation, we use realistic classification tasks and standard
model-training procedures on concrete datasets of images,
retail purchases, location traces, and hospital inpatient stays. In
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access to the model is limited to black-box queries that
return the model’s output on a given input. In summary,
we quantify membership information leakage through the
prediction outputs of machine learning models.

To answer the membership inference question, we turn
machine learning against itself and train an attack model

whose purpose is to distinguish the target model’s behavior
on the training inputs from its behavior on the inputs that it
did not encounter during training. In other words, we turn the
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Attacking black-box models such as those built by com-
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more sophistication than attacking white-box models whose
structure and parameters are known to the adversary. To
construct our attack models, we invented a shadow training
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know the training datasets and thus the ground truth about
membership in these datasets. We then train the attack model
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access to the target model to synthesize this data. The second
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target’s training dataset was drawn. The third method assumes
that the adversary has access to a potentially noisy version
of the target’s training dataset. The first method does not
assume any prior knowledge about the distribution of the target
model’s training data, while the second and third methods
allow the attacker to query the target model only once before
inferring whether a given record was in its training dataset.

Our inference techniques are generic and not based on any
particular dataset or model type. We evaluate them against
neural networks, as well as black-box models trained using
Amazon ML and Google Prediction API. All of our experi-
ments on Amazon’s and Google’s platforms were done without
knowing the learning algorithms used by these services, nor
the architecture of the resulting models, since Amazon and
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Abstract
Machine learning models based on neural networks and
deep learning are being rapidly adopted for many pur-
poses. What those models learn, and what they may
share, is a significant concern when the training data may
contain secrets and the models are public—e.g., when a
model helps users compose text messages using models
trained on all users’ messages.

This paper presents exposure, a simple-to-compute
metric that can be applied to any deep learning model
for measuring the memorization of secrets. Using this
metric, we show how to extract those secrets efficiently
using black-box API access. Further, we show that un-
intended memorization occurs early, is not due to over-
fitting, and is a persistent issue across different types of
models, hyperparameters, and training strategies. We ex-
periment with both real-world models (e.g., a state-of-
the-art translation model) and datasets (e.g., the Enron
email dataset, which contains users’ credit card numbers)
to demonstrate both the utility of measuring exposure
and the ability to extract secrets.

Finally, we consider many defenses, finding some in-
effective (like regularization), and others to lack guaran-
tees. However, by instantiating our own differentially-
private recurrent model, we validate that by appropri-
ately investing in the use of state-of-the-art techniques,
the problem can be resolved, with high utility.

1 Introduction

Once a secret has been learned, it can be difficult not to
share it more widely—whether it is revealed indirectly,
by our actions, by accident, or directly—as artfully ex-
plored in Joseph Conrad’s The Secret Sharer [9].

This issue also arises in the domain of machine learn-
ing: whenever training data contains sensitive informa-
tion, a natural concern is whether the trained model has
learned any secrets, and whether the model may possibly
share those secrets, whether directly or indirectly.

In the machine-learning domain, such unintended
sharing of secrets is a real-world concern of pressing im-
portance. Machine learning is seeing rapid adoption and
it is increasingly common for models to be trained on
data very likely to contain secrets, such as people’s per-
sonal messages, location histories, or medical informa-
tion [4, 37, 49]. We must worry about sharing of se-
crets, since the currently popular deep-learning methods
are prone to both memorizing details about their training
data and inadvertently revealing aspects of those details
in their behavior [44, 57]. Most worryingly, secrets may
be shared widely: models are commonly made available
to third parties, or even the public, through black-box
prediction services on the network, or as white-box pre-
trained models [8, 24].

Contributions. We introduce the entropy-based met-
ric exposure for measuring a models memorization of a
given secret, and show how this metric can be efficiently
estimated using numerical methods. We focus our study
specifically on deep-learning generative sequence mod-
els trained on text data (as used in, e.g., language models
and translation) where the secrets may be, for example,
social-security or credit card numbers. We empirically
establish that secrets are memorized early and quickly
during training, with models often fully memorizing
them in fewer than a dozen epochs, long before train-
ing completes. Furthermore, for a given training data
corpus we show that memorization occurs even when se-
crets are very rare (one in a million) and when models are
small (the number of parameters are a fraction of the cor-
pus size). While common techniques for regularization
(like weight decay, dropout, or early-stopping) may im-
prove generalization, they do not inhibit memorization.
Further, we leverage our exposure metric to provide ad-
ditional evidence for prior results [26, 28, 32, 45, 57].

Building on the above, we develop the first mech-
anisms for efficiently extracting secrets from deep-
learning models, given only black-box access. To
demonstrate their practicality we apply them to real-
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learned any secrets, and whether the model may possibly
share those secrets, whether directly or indirectly.

In the machine-learning domain, such unintended
sharing of secrets is a real-world concern of pressing im-
portance. Machine learning is seeing rapid adoption and
it is increasingly common for models to be trained on
data very likely to contain secrets, such as people’s per-
sonal messages, location histories, or medical informa-
tion [4, 37, 49]. We must worry about sharing of se-
crets, since the currently popular deep-learning methods
are prone to both memorizing details about their training
data and inadvertently revealing aspects of those details
in their behavior [44, 57]. Most worryingly, secrets may
be shared widely: models are commonly made available
to third parties, or even the public, through black-box
prediction services on the network, or as white-box pre-
trained models [8, 24].

Contributions. We introduce the entropy-based met-
ric exposure for measuring a models memorization of a
given secret, and show how this metric can be efficiently
estimated using numerical methods. We focus our study
specifically on deep-learning generative sequence mod-
els trained on text data (as used in, e.g., language models
and translation) where the secrets may be, for example,
social-security or credit card numbers. We empirically
establish that secrets are memorized early and quickly
during training, with models often fully memorizing
them in fewer than a dozen epochs, long before train-
ing completes. Furthermore, for a given training data
corpus we show that memorization occurs even when se-
crets are very rare (one in a million) and when models are
small (the number of parameters are a fraction of the cor-
pus size). While common techniques for regularization
(like weight decay, dropout, or early-stopping) may im-
prove generalization, they do not inhibit memorization.
Further, we leverage our exposure metric to provide ad-
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How do these attacks work?

• Membership inference attack:
• Train a ML model to predict whether individuals are used for training.
• Often obvious from the confidence of the ML-predictions alone.

• Unintended memorization attack:
• Prompt a language model:  Alice’s SSN is ????-??-7452
• Ask the language model to fill-in the question marks.

Remark: Modern DP learning models memorizes the entire dataset using their billions of 
parameters. They can be thought of as an implicit transformation of the data into an efficient 
data-structure. In fact, memorization might be the very reason why deep models work well. 
See (Feldman, 2019) https://arxiv.org/abs/1906.05271

13



Conclusions so far:  Privacy is challenging!

• Revealing dataset (even if with PII removed) is a bad idea
• Data-linkage attack, netflix prize

• Revealing aggregate statistics of the dataset have privacy risks
• Differencing attack: With side information, even if reporting just one, may reveal

information about individuals
• An even stronger attack later: even without side-information, even with noise in the 

statistics. 

• Machine learning models encodes information of individuals in a dataset
and will spit them out when given an appropriate prompt
• Membership inference attack
• Unintended memorization
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A bit of history of privacy protection techniques:
various attempts for privacy protection
• Since 1970s: Statistical disclosure control (Duncan et al.; Hundepool et al)
• e.g., Data swapping (Dalenius, Reiss, 1982) was implemented in the Census

• 2002 – 2007: K-anonymity, I-divergence, t-closeness (Sweeney et. al., 
Machanavajjhala et. al., Li et. al., 2002 - 2007 )
• These attempts have been shown to be fragile against side-information and

composition. See a recent revisit of this problem (and the references therein): 
https://aloni.net/wp-content/uploads/2021/05/Quasi-IDs-are-the-Problem-working-paper.pdf

• 2006+:  Differential privacy [Dwork, McSherry, Nissim, Smith, 2006++] 
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This course is about differential privacy

• A formal mathematical definition of privacy that provides rigorous 
guarantees and provably effective protections against privacy risks.

• Makes no assumption on the adversary
• Arbitrary side info, arbitrary computational power.

• Interpretable, quantifiable, composable formalism

• The de-facto standard in privacy --- the only one still being actively 
researched on.
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Meet the 2017 Gödel Prize winners: Dwork, 
McSherry, Nissim & Smith

17

Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006, March). Calibrating noise to sensitivity in private 
data analysis. In Theory of Cryptography Conference (pp. 265-284). Springer, Berlin, Heidelberg.



Differential privacy is transitioning from a 
theoretical construct into a practical technology!
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Topics that I will cover in this class
1. Privacy risks, privacy attacks and motivations of differential privacy. 

2. The definition of differential privacy and its various interpretations. 

3. Understanding the promise of DP: what does it protects and what not? 

4. Fundamental building blocks of DP algorithms. 

5. Modern methods in DP: Renyi DP, Privacy profiles, tradeoff functions 

6. How to use autodp for privacy accounting and privacy calibration.

7. Differentially private (linear) machine learning

8. Differentially private deep learning under various models 

9. Data-adaptive differentially private algorithms. 
19



By the end of the course, you will be able to

• determine when  DP is applicable and whether it will allow for 
sufficient utility for an application.

• design and implement DP algorithms correctly (prove DP guarantees).

• gain familiarity / proficiency in the various elements of theoretical 
research in CS  / ML.
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Prerequisites

• The course might be tough for you if you do not have working knowledge
in:
• Probability theory and statistics
• Linear algebra, basic calculus
• Basic data structures and algorithms
• writing mathematical proofs
• writing simple code (in Python / Numpy)

• Advanced knowledge that will help (but not required):
• Linear / Convex optimization
• Concentration inequalities
• Statistical machine learning
• Experience doing theoretical research
• Experience working with a real dataset
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Evaluation
• Lecture attendance: 5%
• Scribing: 10%
• Homework: 45%. 
• Project: 40% (Up to 3 students per team)

• A typical project: Differential Privacy + X
• Example:

• Reading an existing paper on a particular aspect of DP, reproduce the proof.
• Empirical evaluation of differentially private methods:

• k-means clustering, boosting
• reinforcement learning, active learning
• Statistical inference

• Applying methods we learned to a real dataset
• Privately training a model for detection of Flu from wearable device data
• Differentially private release of COVID time series data
• Conducting research studies with electronic patient record data
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Project milestones

1. Proposal: 5%

2. Midterm report: 10%

3. Final report: 10%

4. Project presentation: 15%

I will share a list of project ideas on Piazza soon.  
Also, special projects available (e.g., applying DP to a high-impact application). 
Please reach out to me for about these opportunities. 23



Tentative schedule of the course

Part II: Machine learning
with DP

Part I: Differential
Privacy Basics

Part III: Beyond the
worst case

Part IV: Advanced topics
/ Project Consultation

24



Remainder of today’s lecture

• A concrete data-reconstruction attack

• Randomized response
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A simple mathematical model to consider

• We have a dataset of n individuals

• One secret bit of information per person

• (Normalized) linear query / statistical query:
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We say an algorithm is blatantly non-private if one
can reconstruct 90% of the dataset (secret bit
vector) using its output.

• In particular we will consider algorithms that answer a collection of
linear queries about the dataset approximately.
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Reconstruction Attack --- find a dataset that is
consistent with the observations!
• We have k linear queries

• An algorithm returns answers that are α-accurate

• The reconstruction attack:

28



Any algorithm that answers all 2n linear queries
with constant error implies blatant non-privacy!

• Proof:

29



Any algorithm that answers O(n) linear queries
with 𝑂 !

"
error implies blatant non-privacy.

• Recall the attack is

• Observations

Theorem 5.6 (reconstruction from few queries with small error [30]). There exists c > 0 and
q1, . . . , qn 2 {0, 1}n such that any mechanism that answers the normalized inner-product queries
specified by q1, . . . , qn to within error at most c/

p
n is blatantly non-private.

In fact, the theorem holds for a random set of queries, as follows from combining the following
lemma (setting k = s = n) with Theorem 5.5:

Lemma 5.7 (discrepancy of a random matrix). For all integers k � s � 0, with high probability,
a k ⇥ s matrix Q with uniform and independent entries from {0, 1} has partial discrepancy at least

⌦
⇣
min

np
s · (1 + log(k/s)), s

o⌘
.

Up to the hidden constant, this is the largest possible discrepancy for a k ⇥ s matrix. Indeed,
a random coloring achieves discrepancy at most O(

p
s · log k) (by a Cherno↵ bound and union

bound). The celebrated “six standard deviations su�ce” result of Spencer [96] improves the log k
to log(k/s).

Proof sketch. Pick the rows q1, . . . , qk 2 {0, 1}s uniformly at random. Fix z 2 {0,+1,�1}s with
kzk1 > s/10. Then for each j, hqj , zi is a di↵erence of two Binomial distributions, at least one
of which is the sum of more than s/20 independent, unbiased {0, 1} random variables (since z
has more than s/20 coordinates that are all 1 or all -1). By anticoncentration of the binomial
distribution (cf. [75, Prop. 7.3.2]), we have for every t � 0:

Pr
qj

⇥
|hqj , zi| � min{t

p
s, s/20}

⇤
� max

n
1�O(t),⌦

⇣
e�O(t2)

⌘o
.

Thus, for each z we have

Pr
⇥
8j 2 [k], |hqj , zi| < min{t

p
s, s/20}

⇤
 min

n
O(t), 1� ⌦

⇣
e�O(t2)

⌘ok

.

By a union bound, we have:

Pr
⇥
9z 2 {�1, 0,+1}s : kzk1 > s/10 and 8j 2 [k], |hqj , zi| < min{t

p
s, s/20}

⇤

< 3s ·min
n
O(t), 1� ⌦

⇣
e�O(t2)

⌘ok

.

We now choose t to ensure that this probability is small. For every k � s, taking t to be a small
enough constant su�ces to ensure that 3s · O(t)k ⌧ 1. However, once k/s is su�ciently large, we
can take a larger value of t (corresponding to higher discrepancy) if we use the other term in the
min. Specifically, we can take t = c

p
log(ck/s)) for a su�ciently small constant c, and obtain:

3s ·
⇣
1� ⌦

⇣
e�O(t2)

⌘⌘k

 3s ·
⇣
1� ⌦

⇣ s

ck

⌘⌘k

= 3s · e�⌦(s/c) ⌧ 1.

In all cases, we can take t = ⌦
⇣p

1 + log(k/s)
⌘
, as needed for the lemma.

The reconstruction attacks we gave in the proof of the above theorems take time more than 2n,
because they require searching for a vector x0 2 {0, 1}n such that

8j
����yj �

hqj , x0i
n

����  ↵. (4)
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x0 = arg min
x̃2{0,1}n

max
i2[n]

����yi �
1

n
qTi x̃

����
<latexit sha1_base64="+6Qk99z6GHUJeTMrNdfj6MCX/jk=">AAACTHicbZBNbxMxEIa9KZQ2fAU4crGIEByg2kVIcEGq4MKxSE1bKd6uvM5sMqrtXexZlMjdH9gLB278Ci4cQBUSThoJaBnJ0uP3nfHHWzYaPaXp16S3ce365o2t7f7NW7fv3B3cu3/g69YpGKla1+6olB40WhgRkoajxoE0pYbD8uTd0j/8BM5jbfdp0UBu5NRihUpSlIqBmj/hb7iQbioM2iIIQj2BMO8EWhHSZ5nojm3HhZHzImAUxzaPWw0VnS4K5M+5qJxUIeuC7T4WeLzP/xzhcDqjU14MhulOuip+FbI1DNm69orBFzGpVWvAktLS+3GWNpQH6QiVhq4vWg+NVCdyCuOIVhrweViF0fHHUZnwqnZxWeIr9e+JII33C1PGTiNp5i97S/F/3ril6nUe0DYtgVUXF1Wt5lTzZbJ8gg4U6UUEqRzGt3I1kzEcivn3YwjZ5S9fhYMXO1nkDy+Hu2/XcWyxh+wRe8oy9ortsvdsj42YYmfsG/vBfiafk+/JefLrorWXrGcesH+qt/kby0C0/w==</latexit><latexit sha1_base64="+6Qk99z6GHUJeTMrNdfj6MCX/jk="></latexit><latexit sha1_base64="+6Qk99z6GHUJeTMrNdfj6MCX/jk="></latexit><latexit sha1_base64="+6Qk99z6GHUJeTMrNdfj6MCX/jk="></latexit>
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Proof idea / sketch

31



Proof idea / sketch (continuing)
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Quick checkpoint

• “Any algorithms that answers too many questions too accurately will
result in a blatant reconstruction of the dataset.”
• No side information needed.
• No restriction on the dataset.
• Fixed “design”, highly generic design (iid samples)

• The attacks are not computationally efficient, but …
• efficient attacks exist, via a Linear Programming relaxation

x0 = arg min
x̃2[0,1]n

max
i2[k]

����yi �
1

n
qTi x̃

����
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What can we still do?

Target accuracy k = O(2^n) linear
queries

k = O(n) linear
queries k << n linear queries

α = O(1)
(any non-trivial error) Blatantly non-private ? ?

α = O(1/sqrt(n))
(statistical error)

Blatantly non-private Blatantly non-private ?

α = o(1/sqrt(n))
(<< statistical error) Blatantly non-private Blatantly non-private ?

Two things to think about:
- Avoiding “Blatant-non-private” is a relatively weak privacy guarantee.
- Can we achieve the lower bound while satisfying a much stronger notion of privacy guarantee?
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Randomized Response (Warner, 1965)

• Who likes Justin Bieber?
• Space of the answer:  {0,1}

• Intuitively each individual has a degree of plausible deniability.

1. Each individual tosses an independent coin with probability p > 0.5
2. If “head”, keep your answer.
3. Otherwise, flip your answer.

Warner, S. L. (1965). Randomized response: A survey technique for eliminating evasive 
answer bias. Journal of the American Statistical Association, 60(309), 63-69.
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Observations

• 1. We returns a synthetic dataset with an expected L1-error  n(1-p)
• Not blatantly non-private if p << 0.9?
• Is it possible to post-process it to reduce the error?

• 2. We can unbiasedly estimate any fixed set of (normalized) linear 
queries with error:   O(log(|Q|)/(2p-1)sqrt(n))
• When |Q| = 2^n, the bound is trivial
• When |Q| = O(n), the bound matches what we expect up to log n.
• When p =  o(1) and p >> 1/( sqrt(n) log |Q|) è strong privacy + non-trivial 

error
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Next Lecture

• Differential Privacy

• Properties of Differential Privacy

• Basic mechanisms of DP
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