Lecture 11 Noisy Gradient Descent

Yu-Xiang Wang

Recap: Last lecture

Convex empirical risk minimization

Output perturbation

Objective perturbation

Recap: Convex ERM and optimality conditions

- Data $(x_1,y_1),...,(x_n,y_n)\in\mathcal{X}\times\mathcal{Y}=\mathcal{Z}$
- Convex ERM: $\min_{\theta \in \Theta \subset \mathbb{R}^d} \sum_{i=1}^n \ell(\theta, (x_i, y_i))$
- Optimality condition: gradient = 0

Assumptions: Lipschitzness, Smoothness

Recap: Output perturbation

Stability of the output via regularization

- Privacy: from Gaussian mechanism
- Utility:
 - Last time: under smoothness (has a small error ⊗)
 - Let's do it again.

Recap: Utility of Output perturbation

Smooth losses

Lipschitz losses

Recap: Objective perturbation

• Algorithm
$$\hat{\theta}^P = \operatorname*{argmin}_{\theta \in \Theta} L(\theta; D) + r(\theta) + \frac{\lambda}{2} ||\theta||_2^2 + b^T \theta,$$

- Privacy analysis
 - For GLM

For General smooth learning problems

This lecture

Utility analysis of objective perturbation

Noisy Gradient Descent

Privacy amplification by sampling and NoisySGD

Readings

- Chaudhuri et al. / Kifer et al. (continuing)
- Bassily et al. (2014) Private empirical risk minimization: Efficient algorithms and tight error bounds. In *FOCS*. https://arxiv.org/abs/1405.7085
 - For the NoisySGD algorithm
 - For NoisyGD just refer to this lecture note.

Utility analysis of objective perturbation

Checkpoint: Compare the excess empirical risk of Output/Objective Perturbation

	Lipschitz losses	Smooth losses	Smooth / Lipschitz GLM
Output Pert	$\frac{d^{1/4}L\ \theta^*\ \log(\frac{1}{\delta})^{1/4}}{n^{1/2}\epsilon^{1/2}}$	$\frac{d^{1/3}\beta^{1/3}L^{2/3}\ \theta^*\ ^{4/3}\log(\frac{1}{\delta})^{1/3}}{n^{2/3}\epsilon^{2/3}}$	Same as left
ObjPert	Not applicable	$rac{dL\ heta^*\ \sqrt{\log(rac{1}{\delta})}}{n\epsilon}$ Lower order terms and dep	$rac{\sqrt{d}L\ heta^*\ \sqrt{\log(rac{1}{\delta})}}{n\epsilon}$ pendence on eta hidden.

- Normalized by 1/n to be consistent with prior tables.
- Non-private excess risk is on the order of $\sqrt{d/n}$
- Could be O(d/n)

What are not quite satisfactory?

- Require the loss to be twice differentiable
 - Convex losses need not be even differentiable
- We did not handle the constrained convex ERM

 They do not handle non-convex ERM problems, e.g., those that arise when optimizing deep neural networks

Gradient Descent

• Unconstrained, differentiable optimization problem

$$\min_{x} f(x)$$

• The algorithm:

Gradient descent: choose initial point $x^{(0)} \in \mathbb{R}^n$, repeat:

$$x^{(k)} = x^{(k-1)} - t_k \cdot \nabla f(x^{(k-1)}), \quad k = 1, 2, 3, \dots$$

Stop at some point

Gradient descent in convex problems vs nonconvex problems

Extensions of Gradient Descent

Non-differentiable case: Subgradient descent

Constrained case: Projected gradient descent

- Non-smooth penalty function: Proximal gradient descent
- Nonconvex cases: We give up theoretical guarantees but in practice it works (remarkably well)

Stochastic gradient descent

Update rule:

$$\theta_{t+1} = \theta_t - \eta_t g_t$$

• Assumptions:

The convergence of GD and SGD

GD in Smooth / convex problems

GD in general convex problems

SGD in general convex problems

- SGD in strongly convex problems
- Projected version

Convergence of stochastic gradient descent (in the smooth / nonconvex case)

Descent Lemma

Convergence of stochastic gradient descent (in the smooth / nonconvex case)

Descent Lemma

Noisy Gradient Descent Mechanism for Convex ERM

• The algorithm:

- Privacy analysis:
 - A composition of T Gaussian mechanisms

Privacy Amplification by Sampling

Subsampling Lemma: If M obeys (£, δ)-DP, then M \circ Subsample obeys that (£', δ ')-DP with $\delta'=\gamma\delta$

$$\epsilon' = \log(1 + \gamma(e^{\epsilon} - 1)) = O(\gamma \epsilon)$$

Random subset sampling vs Poisson sampling

The Noisy Stochastic Gradient Descent Mechanism (NoisySGD)

- Privacy analysis:
 - A composition of T subsampled gaussian mechanism.

The Noisy Stochastic Gradient Descent Mechanism (NoisySGD)

- Utility analysis:
 - A composition of T subsampled gaussian mechanism.

Next lecture

Differentially private deep learning

Knowledge transfer model of private learning