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Recap: Last lecture

* Convex empirical risk minimization
e Output perturbation

* Objective perturbation



Recap: Convex ERM and
optimality conditions

*Data  (z1,11),..., (@n,yn) EX XY =Z
* Convex ERM:

* Optimality condition: gradient =0

* Assumptions: Lipschitzness, Smoothness



Recap: Output perturbation

e Stability of the output via regularization

* Privacy: from Gaussian mechanism
 Utility:

* Last time: under smoothness (has a small error ®)
* Let’s do it again.



Recap: Utility of Output perturbation

e Smooth losses

* Lipschitz losses



Recap: Objective perturbation
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* Privacy analysis
* For GLM

* For General smooth learning problems



This lecture

e Utility analysis of objective perturbation

* Noisy Gradient Descent

* Privacy amplification by sampling and NoisySGD



Readings
e Chaudhuri et al. / Kifer et al. (continuing)

* Bassily et al. (2014) Private empirical risk
minimization: Efficient algorithms and tight error
bounds. In FOCS. https://arxiv.org/abs/1405.7085

* For the NoisySGD algorithm
* For NoisyGD just refer to this lecture note.


https://arxiv.org/abs/1405.7085

Utility analysis of objective
perturbation



Checkpoint: Compare the excess
empirical risk of Output/Objective
Perturbation

Output d1/4L||9*||log % 1/4 d1/351/3L2/3||9*||4/3 log(%)l/?’ Same as |eft
Pert nl/2¢1/2 n2/3¢2/3
. . dL||6* || /log(5) VdL||6*[|/log(5)
ObjPert Not applicable - —
€

Lower order terms and dependence on 3 hidden.

* Normalized by 1/n to be consistent with prior tables.
* Non-private excess risk is on the order of \/d/n
* Couldbe O(d/n)
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What are not quite satisfactory?

* Require the loss to be twice differentiable
 Convex losses need not be even differentiable

e We did not handle the constrained convex ERM

* They do not handle non-convex ERM problems, e.g.,
those that arise when optimizing deep neural
networks



Gradient Descent

* Unconstrained, differentiable optimization problem

min f(x)
* The algorithm:

Gradient descent: choose initial point (9 € R, repeat:
pF) = k=) _ ¢ . Vf(at(k_l)), k=1,2,3,...

Stop at some point



Gradient descent in convex

problems vs nonconvex problems
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Extensions of Gradient Descent

* Non-differentiable case: Subgradient descent
e Constrained case: Projected gradient descent

* Non-smooth penalty function: Proximal gradient
descent

* Nonconvex cases: We give up theoretical
guarantees but in practice it works (remarkably well)



Stochastic gradient descent

* Update rule: S 7
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The convergence of GD and SGD

* GD in Smooth / convex problems
* GD in general convex problems
* SGD in general convex problems

* SGD in strongly convex problems

* Projected version



Convergence of stochastic gradient
descent (in the smooth / honconvex

case)
* Descent Lemma



Convergence of stochastic gradient
descent (in the smooth / honconvex

case)
* Descent Lemma



Noisy Gradient Descent
Mechanism for Convex ERM

* The algorithm:

* Privacy analysis:
* A composition of T Gaussian mechanisms



Privacy Amplification by Sampling
e

M o Sample : Data — Output

Subsampling Lemma: If M obeys (€,5)-DP, then M o Subsample
obeys that (€,6’)-DP with 5’ — fy5

e’ = log(1 + (e — 1)) = O(ye)
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Random subset sampling vs
Poisson sampling




The Noisy Stochastic Gradient
Descent Mechanism (NoisySGD)

* Privacy analysis:
* A composition of T subsampled gaussian mechanism.



The Noisy Stochastic Gradient
Descent Mechanism (NoisySGD)

 Utility analysis:
* A composition of T subsampled gaussian mechanism.



Next lecture

* Differentially private deep learning

* Knowledge transfer model of private learning



