Lecture 14 Data-Dependent DP Algorithm design

Yu-Xiang Wang

Recap: Differentially Private Machine Learning

Private learning from a finite class is easy

Private learning from an infinite class is hard (in general)

• Let's restrict our attention to the Lipschitz losses

Recap: Convex empirical risk minimization

Posterior sampling (i.e., exponential mechanism)

Output perturbation / Objective perturbation

NoisyGD and NoisySGD

Recap: NoisyGD summary

	Lipschitz + convex	Lipschitz + Smooth + convex	Smooth + Lipschitz + convex + GLM
Output Pert	$\frac{d^{1/4}L\ \theta^*\ \log(\frac{1}{\delta})^{1/4}}{n^{1/2}\epsilon^{1/2}}$	$\frac{d^{1/3}\beta^{1/3}L^{2/3}\ \theta^*\ ^{4/3}\log(\frac{1}{\delta})^{1/3}}{n^{2/3}\epsilon^{2/3}}$	Same as left
ObjPert	Not applicable	$rac{dL\ heta^*\ \sqrt{\log(rac{1}{\delta})}}{n\epsilon}$ Lower order terms and de	$rac{\sqrt{d}L\ heta^*\ \sqrt{\log(rac{1}{\delta})}}{n\epsilon}$ pendence on eta hidden.
NoisyGD	$\frac{\sqrt{d}L\ \theta^*\ \sqrt{\log(\frac{1}{\delta})}}{n\epsilon}$	$\frac{\sqrt{d}L\ \theta^*\ \sqrt{\log(\frac{1}{\delta})}}{n\epsilon}$	$\frac{\sqrt{d}L\ \theta^*\ \sqrt{\log(\frac{1}{\delta})}}{n\epsilon}$

	Lipschitz + Strongly convex	Lipschitz + Smooth + Nonconvex
NoisyGD	$\frac{dL^2\log(1/\delta)}{n\lambda\epsilon^2}$	$rac{\sqrt{neta dL^2(f(heta_1)-f^*)\log(1/\delta)}}{n\epsilon}$ Stationary point convergence

Recap: Comparing NoisyGD and NoisySGD computationally

- Both optimal information-theoretically.
 - If we ignore computation and add very large noise, but use infinitesimal step-size
- Table to compare computation
 - in terms of the number of incremental gradient calls to achieve information theoretic limit up to a constant

	Lipschitz + Smooth + Convex	Lipschitz + Convex	Lipschitz + Strongly convex
NoisyGD	$\frac{n^2\beta \ x_1 - x^*\ \sqrt{\rho}}{\sqrt{d}L}$	$\frac{n^3 \rho}{d}$	$rac{n^3 ho}{\lambda}$
NoisySGD	$\frac{n^{3/2}\beta^{1/2}\ x_1 - x^*\ \rho^{1/2}}{d^{1/4}L^{1/2}} + \frac{n^2\rho}{d}$	$\frac{n^2 \rho^{3/4}}{d^{1/2}} + \frac{n^2 \rho}{d}$	$\frac{n^2 \rho^{3/4}}{d^{1/2}} + \frac{n^2 \rho}{d}$

Recap: Deep Learning with DP

- NoisySGD with per-example gradient clipping
 - The only practical / popular algorithm
 - Empirical research questions: What are tricks to improve NoisySGD?
 - Theoretical open problem: what exactly is the effect of gradient clipping in training? How does it work?
- Assume access to some (unlabeled) public data
 - Private Aggregation of Teacher Ensembles.
 - PrivateKNN

Very few public data points are needed in PATE... also it learns all VC-classes in the realizable setting.

Table 1: Summary of our results: excess risk bounds for PATE algorithms.

Algorithm	PATE (Gaussian Mech.) Papernot et al. [2017]	PATE (S' Bassily et al. [2018a]	VT-based) This paper	PATE (Active Learning) This paper
Realizable	$ ilde{O}\Big(rac{d}{(n\epsilon)^{2/3}}eerac{d}{m}\Big)$	$\tilde{O}\left(\frac{d}{(n\epsilon)^{2/3}}\vee\sqrt{\frac{d}{m}}\right)$	$ ilde{O}\Big(rac{d^{3/2}}{n\epsilon}eerac{d}{m}\Big)$	$\tilde{O}\left(rac{d^{3/2} heta^{1/2}}{n\epsilon}eerac{d}{m} ight)$
$ au ext{-TNC}$	$\tilde{O}\left(\left(\frac{d^{3/2}}{n\epsilon}\right)^{\frac{2\tau}{4-\tau}}\vee\frac{d}{m}\right)$	same as agnostic	$\tilde{O}\Big(\left(rac{d^{3/2}}{n\epsilon} ight)^{rac{ au}{2- au}} ee rac{d}{m} \Big)$	$\tilde{O}\left(\left(\frac{d^{3/2}\theta^{1/2}}{n\epsilon}\right)^{\frac{\tau}{2-\tau}}\vee\frac{d}{m}\right)$
Agnostic (vs h^*)	$\Omega(\mathtt{Err}(h^*))$ required.	$\begin{array}{c} 13 \mathrm{Err}(h^*) + \\ \tilde{O}\left(\frac{d^{3/5}}{n^{2/5}\epsilon^{2/5}} \vee \sqrt{\frac{d}{m}}\right) \end{array}$	$\Omega(\mathtt{Err}(h^*))$ required.	$\Omega(\mathtt{Err}(h^*))$ required.
Agnostic (vs h_{∞}^{agg})	-	-	Consistent under weaker conditions.	-

This lecture

Going beyond the worst case!

Smoothed Sensitivity and the Median

Concentrated DP of Smoothed Sensitivity-based algorithm

Reading materials

 Nissim, Raskhodnikova, Smith 2011 "Smooth Sensitivity and Sampling in Privacy Data Analysis": https://cs-people.bu.edu/ads22/pubs/NRS07/NRS07-full-draft-v1.pdf

 Bun and Steinke 2019: "Average cases averages" https://arxiv.org/abs/1906.02830

Recap: Private query release

• For example, linear queries

Laplace mechanism / Gaussian mechanism

Global sensitivity

An example when the global sensitivity approach is very inefficient

Median query:

• Example:

Another example: linear regression

The output perturbation mechanism, revisited

 The global sensitivity approach does not exploit the fact that the input dataset is well-conditioned Local Sensitivity measures the stability of a query at a particular input dataset.

$$LS_q(x) = \max \{q(x) - q(x') | : x' \sim x\}.$$

• Example: median

• Example: linear regression

The issue of calibrating noise to local sensitivity

Example of the median

 In conclusion: the magnitude of the noise may reveal sensitive information!

Diffix and "Sticky Noise"

Implementing a bunch of heuristics to protect against known attacks.

Decide how much noise to add by the specific dataset and how sensitive the question is.

From Creater of Diffix:

"anonymizing SQL interface [that] sits in front of your data and enables you to conduct ad hoc analytics — fully privacy preserving and GDPR-compliant."

Attack on Diffix

When the Signal is in the Noise: Exploiting Diffix's Sticky Noise

Andrea Gadotti*a, Florimond Houssiau*a, Luc Rocher*a, Benjamin Livshitsa, and Yves-Alexandre de Montjoye†a

^aDepartment of Computing and Data Science Institute, Imperial College London ^bICTEAM, Université catholique de Louvain

Link to the paper:

https://www.usenix.org/system/files/sec19fall_gadotti_prepub.pdf

Also see this nice post: https://differentialprivacy.org/diffix-attack/

"Data-dependent DP mechanism" aims at more stably calibrating noise to local sensitivity (at least for query releases)

- A number of different approaches:
 - Smooth sensitivity
 - Propose-test-release
 - Privately bounding the local-sensitivity
 - Stability-based query release (Distance2Stability)

Smooth Sensitivity

Definition 2.2 (Smooth sensitivity). For $\beta > 0$, the β -smooth sensitivity of f is

$$S_{f,\beta}^*(x) = \max_{y \in D^n} \left(LS_f(y) \cdot e^{-\beta d(x,y)} \right).$$

Illustration

Smooth sensitivity satisfies a smoothing property, and it is the optimal bound satisfying this property

 Two properties that one should satisfy to smooth out the local sensitivity

$$\forall x \in D^n : \qquad S(x) \ge LS_f(x) ;$$

$$\forall x, y \in D^n, d(x, y) = 1 : \qquad S(x) \le e^{\beta} S(y) .$$

Smooth sensitivity is the optimal bound

LEMMA 2.3. $S_{f,\beta}^*$ is a β -smooth upper bound on LS_f . In addition, $S_{f,\beta}^*(x) \leq S(x)$ for all $x \in D^n$ for every β -smooth upper bound S on LS_f .

What noise to add?

Notation. For a subset S of \mathbb{R}^d , we write $S + \Delta$ for the set $\{z + \Delta \mid z \in S\}$, and $e^{\lambda} \cdot S$ for the set $\{e^{\lambda} \cdot z \mid z \in S\}$. We also write $a \pm b$ for the interval [a - b, a + b].

Definition 2.5 (Admissible Noise Distribution). A probability distribution on \mathbb{R}^d , given by a density function h, is (α, β) -admissible (with respect to ℓ_1) if, for $\alpha = \alpha(\epsilon, \delta)$, $\beta = \beta(\epsilon, \delta)$, the following two conditions hold for all $\Delta \in \mathbb{R}^d$ and $\lambda \in \mathbb{R}$ satisfying $\|\Delta\|_1 \leq \alpha$ and $|\lambda| \leq \beta$, and for all measurable subsets $S \subseteq \mathbb{R}^d$:

$$\begin{array}{ll} \textit{Sliding Property:} & \Pr_{Z \sim h} \left[Z \in \mathcal{S} \right] \leq e^{\frac{\epsilon}{2}} \cdot \Pr_{Z \sim h} \left[Z \in \mathcal{S} + \Delta \right] + \frac{\delta}{2} \,. \\ \\ \textit{Dilation Property:} & \Pr_{Z \sim h} \left[Z \in \mathcal{S} \right] \leq e^{\frac{\epsilon}{2}} \cdot \Pr_{Z \sim h} \left[Z \in e^{\lambda} \cdot \mathcal{S} \right] + \frac{\delta}{2} \,. \end{array}$$

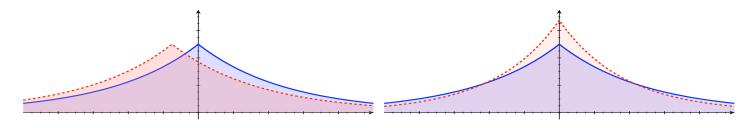


Figure 1: Sliding and dilation for the Laplace distribution with p.d.f. $h(z) = \frac{1}{2}e^{-|z|}$, plotted as a solid line. The dotted lines plot the densities h(z+0.3) (left) and $e^{0.3}h(e^{0.3}z)$ (right).

• Then $A(x) = f(x) + \frac{S(x)}{\alpha} \cdot Z$ satisfies (ε, δ) -DP.

Privacy analysis

Example: Cauchy-Noise, Laplacenoise, Gaussian noise

Lemma 2.7. For any $\gamma > 1$, the distribution with density $h(z) \propto \frac{1}{1+|z|^{\gamma}}$ is $(\frac{\epsilon}{2(\gamma+1)}, \frac{\epsilon}{2(\gamma+1)})$ -admissible (with $\delta = 0$). Moreover, the d-dimensional product of independent copies of h is $(\frac{\epsilon}{2(\gamma+1)}, \frac{\epsilon}{2d(\gamma+1)})$ - admissible.

Lemma 2.9. For $\epsilon, \delta \in (0,1)$, the d-dimensional Laplace distribution, $h(z) = \frac{1}{2^d} \cdot e^{-\|z\|_1}$, is (α, β) -admissible with $\alpha = \frac{\epsilon}{2}$, and $\beta = \frac{\epsilon}{2\rho_{\delta/2}(\|Z\|_1)}$, where $Z \sim h$. In particular, it suffices to use $\alpha = \frac{\epsilon}{2}$ and $\beta = \frac{\epsilon}{4(d+\ln(2/\delta))}$. For d=1, it suffices to use $\beta = \frac{\epsilon}{2\ln(2/\delta)}$.

Lemma 2.10 (Gaussian Distribution). For $\epsilon, \delta \in (0,1)$, the d-dimensional Gaussian distribution, $h(z) = \frac{1}{(2\pi)^{d/2}} \cdot e^{-\frac{1}{2}\|z\|_2^2}$, is (α, β) -admissible for the Euclidean metric with $\alpha = \frac{\epsilon}{5\rho_{\delta/2}(Z_1)}$, and $\beta = \frac{\epsilon}{2\rho_{\delta/2}(\|Z\|_2^2)}$, where $Z = (Z_1, ..., Z_d) \sim h$.

In particular, it suffices to take $\alpha = \frac{\epsilon}{5\sqrt{2\ln(2/\delta)}}$ and $\beta = \frac{\epsilon}{4(d+\ln(2/\delta))}$.

How to compute smooth sensitivity (or an upper bound of it?)

Definition 2.2 (Smooth sensitivity). For $\beta > 0$, the β -smooth sensitivity of f is $S_{f,\beta}^*(x) = \max_{y \in D^n} \left(LS_f(y) \cdot e^{-\beta d(x,y)} \right).$

An easier way to solve this optimization

$$S_{f,\epsilon}^*(x) = \max_{k=0,1,\dots,n} e^{-k\epsilon} \left(\max_{y: d(x,y)=k} LS_f(y) \right)$$

Example: smooth sensitivity of median

• Recall: $0 \le x_1 \le \cdots \le x_n \le \Lambda$.

$$GS_{f_{med}} = \Lambda$$
 $LS_{f_{med}} = \max(x_m - x_{m-1}, x_{m+1} - x_m) \text{ for } m = \frac{n+1}{2}$

• Now:
$$S_{f,\epsilon}^*(x) = \max_{k=0,1,\dots,n} e^{-k\epsilon} \left(\max_{y: d(x,y)=k} LS_f(y) \right)$$

$$\max_{y: d(x,y) \le k} LS(y) = \max_{0 \le t \le k+1} (x_{m+t} - x_{m+t-k-1}).$$

Checkpoint: smooth sensitivity

- We cannot calibrate noise to local sensitivity
 - Because noise-level itself may be sensitive
- Idea: construct smooth upper bound of local sensitivity

 Noise that satisfies stability under "translation" and "scaling" are admissible

Concentrated DP analysis of Smoothed Sensitivity

Adding log-normal noise

$$Z = X \cdot e^{\sigma Y}$$

 X drawn from Laplace and Y from a standard Normal.

Proposition 3. Let $f: \mathcal{X}^n \to \mathbb{R}$ and let $Z \leftarrow \mathsf{LLN}(\sigma)$ for some $\sigma > 0$. Then, for all s, t > 0, the algorithm $M(x) = f(x) + \frac{1}{s} \cdot \mathsf{S}_f^t(x) \cdot Z$ guarantees $\frac{1}{2}\varepsilon^2$ -CDP for $\varepsilon = t/\sigma + e^{3\sigma^2/2}s$.

Summary of the noises that are known to work

- Cauchy distribution
- Student t-distribution

- Laplace-log-normal
- Uniform-log-normal
- Arcsinh-normal
- Gaussian
- Laplace

Sketch of the proof for the Laplace-Log-Normal

Let's say for all neighboring datasets

$$|f(x) - f(x')| \le g(x)$$
 and $e^{-t}g(x) \le g(x') \le e^{t}g(x)$.

- Algorithm: $M(x) = f(x) + \frac{g(x)}{s} \cdot Z$ for $Z \leftarrow \text{LLN}(\sigma)$.
- We have that $D_{\alpha}(M(x)||M(x')) = D_{\alpha}\left(Z\left\|\frac{f(x') f(x)}{g(x)} \cdot s + \frac{g(x')}{g(x)} \cdot Z\right).$

Technical tools

Group privacy for CDP:

Lemma 11. Let P, Q, R be probability distributions. Suppose $D_{\alpha}(P||R) \leq a \cdot \alpha$ and $D_{\alpha}(R||Q) \leq b \cdot \alpha$ for all $\alpha \in (1, \infty)$. Then, for all $\alpha \in (1, \infty)$, $D_{\alpha}(P||Q) \leq \alpha \cdot (\sqrt{a} + \sqrt{b})^{2} \leq 2\alpha \cdot (a + b).$

Decompose what we want to bound

$$D_{\alpha}\left(Z||e^{t}Z+s\right)$$

$$D_{\alpha}\left(e^{t}Z+s||Z\right)$$

Bounding the two parts separately

Lemma 19. Let $Z \leftarrow \mathsf{LLN}(\sigma)$ for $\sigma > 0$. Let $t \in \mathbb{R}$ and $\alpha \in (1, \infty)$. Then

$$D_{\alpha}\left(Z||e^{t}Z\right) \leq \frac{\alpha t^{2}}{2\sigma^{2}}.$$

Proof:

$$D_{\alpha}\left(Z \| e^{t} Z\right) = D_{\alpha}\left(X e^{\sigma Y} \| X e^{\sigma Y + t}\right) \leq \sup_{x} D_{\alpha}\left(x e^{\sigma Y} \| x e^{\sigma Y + t}\right) \leq D_{\alpha}\left(\sigma Y \| \sigma Y + t\right).$$

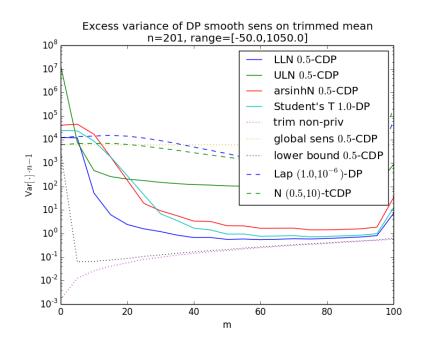
Lemma 20. Let $Z \leftarrow \mathsf{LLN}(\sigma)$ for $\sigma > 0$. Let $s \in \mathbb{R}$ and $\alpha \in (1, \infty)$. Then

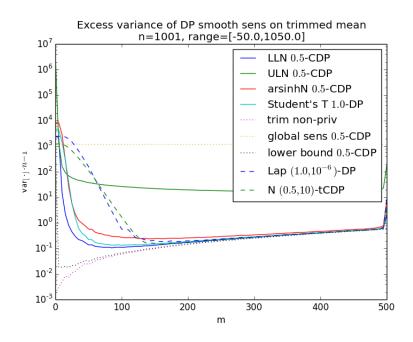
$$D_{\alpha}(Z||Z+s) \le \min\left\{\frac{1}{2}e^{3\sigma^2}s^2\alpha, e^{\frac{3}{2}\sigma^2}s\right\}.$$

Proof:

Improvement from running smoothed sensitivity is substantial!

$$trim_m(x) = \frac{x_{(m+1)} + x_{(m+2)} + \dots + x_{(n-m)}}{n - 2m},$$





Bun and Steinke (2019): "Average case averages": https://arxiv.org/pdf/1906.02830.pdf

Next lecture

Propose-Test-Release

• Stability-based query release

Application to PATE