Lecture 14 Data-Dependent DP Algorithm design

Yu-Xiang Wang

COMPUTER SCIENCE
UC SANTA BARBARA
Computing. Relnvented.

Recap: Differentially Private Machine Learning

- Private learning from a finite class is easy

- Private learning from an infinite class is hard (in general)

- Let's restrict our attention to the Lipschitz losses

Recap: Convex empirical risk minimization

- Posterior sampling (i.e., exponential mechanism)
- Output perturbation / Objective perturbation
- NoisyGD and NoisySGD

Recap: NoisyGD summary

	Lipschitz + convex	Lipschitz + Smooth + convex	Smooth + Lipschitz + convex + GLM						
Output Pert	$\frac{d^{1 / 4} L\left\\|\theta^{*}\right\\| \log \left(\frac{1}{\delta}\right)^{1 / 4}}{n^{1 / 2} \epsilon^{1 / 2}}$	$\frac{d^{1 / 3} \beta^{1 / 3} L^{2 / 3}\left\\|\theta^{*}\right\\|^{4 / 3} \log \left(\frac{1}{\delta}\right)^{1 / 3}}{n^{2 / 3 /} \epsilon^{2 / 3}}$	Same as left						
ObjPert	Not applicable	$\frac{d L\left\\|\theta^{*}\right\\| \sqrt{\log \left(\frac{1}{\delta}\right)}}{n \epsilon}$	$\frac{\sqrt{d} L\left\\|\theta^{*}\right\\| \sqrt{\log \left(\frac{1}{\delta}\right)}}{n \epsilon}$						
NoisyGD	$\frac{\sqrt{d} L\left\\|\theta^{*}\right\\| \sqrt{\log \left(\frac{1}{\delta}\right)}}{n \epsilon}$	$\frac{\sqrt{d} L\left\\|\theta^{*}\right\\| \sqrt{\log \left(\frac{1}{\delta}\right)}}{n \epsilon}$	$\frac{\sqrt{d} L\left\\|\theta^{*}\right\\| \sqrt{\log \left(\frac{1}{\delta}\right)}}{n \epsilon}$						

	Lipschitz + Strongly convex	Lipschitz + Smooth + Nonconvex
NoisyGD	$\frac{d L^{2} \log (1 / \delta)}{n \lambda \epsilon^{2}}$	$\frac{\sqrt{n \beta d L^{2}\left(f\left(\theta_{1}\right)-f^{*}\right) \log (1 / \delta)}}{n \epsilon}$
Stationary point convergence		

Recap: Comparing NoisyGD and NoisySGD computationally

- Both optimal information-theoretically.
- If we ignore computation and add very large noise, but use infinitesimal step-size
- Table to compare computation
- in terms of the number of incremental gradient calls to achieve information theoretic limit up to a constant

	Lipschitz + Smooth + Convex	Lipschitz + Convex	Lipschitz + Strongly convex		
NoisyGD	$\frac{n^{2} \beta\left\\|x_{1}-x^{*}\right\\| \sqrt{\rho}}{\sqrt{d} L}$	$\frac{n^{3} \rho}{d}$	$\frac{n^{3} \rho}{\lambda}$		
NoisySGD	$\frac{n^{3 / 2} \beta^{1 / 2}\left\\|x_{1}-x^{*}\right\\| \rho^{1 / 2}}{d^{1 / 4} L^{1 / 2}}+\frac{n^{2} \rho}{d}$	$\frac{n^{2} \rho^{3 / 4}}{d^{1 / 2}}+\frac{n^{2} \rho}{d}$	$\frac{n^{2} \rho^{3 / 4}}{d^{1 / 2}}+\frac{n^{2} \rho}{d}$		

Open problem: what is the optimal computational complexity?

Recap: Deep Learning with DP

- NoisySGD with per-example gradient clipping
- The only practical / popular algorithm
- Empirical research questions: What are tricks to improve NoisySGD?
- Theoretical open problem: what exactly is the effect of gradient clipping in training? How does it work?
- Assume access to some (unlabeled) public data
- Private Aggregation of Teacher Ensembles.
- PrivateKNN

Very few public data points are needed in PATE... also it learns all VCclasses in the realizable setting.

Table 1: Summary of our results: excess risk bounds for PATE algorithms.

Algorithm	PATE (Gaussian Mech.) Papernot et al. [2017]	PATE (SVT-based) Bassily et al. [2018a]	This paper	PATE (Active Learning)
This paper				

Liu, Zhu, Chaudhuri and W. (2020) "Revisiting model-agnostic private learning". AISTATS and JMLR. https://arxiv.org/pdf/2011.03186.pdf

This lecture

- Going beyond the worst case!
- Smoothed Sensitivity and the Median
- Concentrated DP of Smoothed Sensitivity-based algorithm

Reading materials

- Nissim, Raskhodnikova, Smith 2011 "Smooth Sensitivity and Sampling in Privacy Data Analysis": https://cs-people.bu.edu/ads22/pubs/NRS07/NRS07-full-draft-v1.pdf
- Bun and Steinke 2019: "Average cases averages" https://arxiv.org/abs/1906.02830

Recap: Private query release

- For example, linear queries n is phatic, reploceon

$$
f(x)=\frac{1}{n} \sum_{i=1}^{n} \phi\left(x_{i}\right)
$$

- Laplace mechanism / Gaussian mechanism

$$
\begin{aligned}
& A(x)=f(x)+\left\{\begin{array}{l}
\operatorname{cop}_{p}\left(\frac{\Delta(f)}{\varepsilon}\right) \in \varepsilon-D p \\
\operatorname{Crausin}\left(0,-\sigma^{2}\right) \in \frac{\Delta_{2}^{2}(f)}{2 G^{2}}-\operatorname{cop}
\end{array}\right. \\
& \text { obal sensitivity }
\end{aligned}
$$

- Global sensitivity

$$
\begin{aligned}
& \Delta_{1}(f) \geqslant d(x, x) \leqslant 1\left\|f(x)-f\left(x^{\prime}\right)\right\|_{1} \\
& \partial_{2}(f) \geqslant-\| f(x)-f\left(x^{\prime} \|_{2}\right.
\end{aligned}
$$

An example when the global sensitivity approach is very inefficient

Another example: linear regression

$$
\min _{\theta} \sum_{i=1}^{n}\left(x_{r}^{1} \theta-y_{r}\right)^{2}=\|\times \theta-\vec{y}\|_{p}^{2}+\lambda\|\theta\|^{2}
$$

- The output perturbation mechanism, revisited

Mas is unhooked
$2 x_{i}\left(x_{i}^{\top} \theta_{i} y_{i}\right)$

- The global sensitivity approach does not exploit the fact that the input dataset is well-conditioned

Local Sensitivity measures the stability of a query at a particular input dataset.

$$
\operatorname{LS}_{q}(x)=\max _{\nless}\left\{q(x)-q\left(x^{\prime}\right) \left\lvert\,: \frac{x^{\prime} \sim x}{d(x, x))_{i}}\right.\right\} .
$$

- Example: median

- Example: linear regressión

The issue of calibrating noise to local sensitivity

- Example of the median

$$
\begin{aligned}
& \operatorname{Lap}\left(\frac{L s}{\varepsilon}\right) \\
& L_{S_{f_{\text {mad }}}(x)}=0 \\
& f_{\operatorname{man}}(x)=0 \\
& \tan _{\text {m }}(x)=0 \\
& L_{S_{\text {f ned }}}(x)=?
\end{aligned}
$$

- In conclusion: the magnitude of the noise may reveal sensitive information!

Diffix and "Sticky Noise"

Implementing a bunch of heuristics to protect against known attacks.
Decide how much noise to add by the specific dataset and how sensitive the question is.

From Creater of Diffix:
"anonymizing SQL interface [that] sits in front of your data and enables you to conduct ad hoc analytics - fully privacy preserving and GDPRcompliant."

Attack on Diffix

When the Signal is in the Noise:
 Exploiting Diffix's Sticky Noise

Andrea Gadotti*a, Florimond Houssiau ${ }^{* \mathrm{a}}$, Luc Rocher ${ }^{* \mathrm{a}, \mathrm{b}}$, Benjamin Livshits ${ }^{\mathrm{a}}$, and Yves-Alexandre de Montjoye ${ }^{\dagger a}$
${ }^{\text {a }}$ Department of Computing and Data Science Institute, Imperial College London
${ }^{\mathrm{b}}$ ICTEAM, Université catholique de Louvain

Link to the paper:
https://www.usenix.org/system/files/sec19fall gadotti prepub.pdf

Also see this nice post: https://differentialprivacy.org/diffix-attack/

"Data-dependent DP mechanism" aims at more stably calibrating noise to local sensitivity (at least for query releases)

- A number of different approaches:
- Smooth sensitivity
- Propose-test-release
- Privately bounding the local-sensitivity
- Stability-based query release (Distance2Stability)

Smooth Sensitivity $S^{x}(y)=\left(L_{f}(x) \cdot e^{-\rho_{\text {伴 }}}\right.$
Definition 2.2 (Smooth Sensitivity). For $\beta>0$, the β-smooth sensitivity of f is

$$
S_{f, \beta}^{*}(x)=\max _{y \in D^{n}}\left(L S_{f}(y) \cdot\left(e^{-\beta d(x, y)}\right) .\right.
$$

Smooth sensitivity satisfies a smoothing property, and it is the optimal bound satisfying this property

- Two properties that one should satisfy to smooth out the local sensitivity

$$
\begin{aligned}
\forall x \in D^{n}: & \underline{S(x) \geq L S_{f}(x)} \\
\forall x, y \in D^{n}, d(x, y)=1: & \underline{S(x) \leq e^{\beta} S(y)} \text { Es } S_{\text {mot }} \text { - proper }
\end{aligned}
$$

- Smooth sensitivity is the optimal bound

Lemma 2.3. $S_{f, \beta}^{*}$ is a β-smooth upper bound on $L S_{f}$. In addition, $S_{f, \beta}^{*}(x) \leq S(x)$ for all $x \in D^{n}$ for every β-smooth upper bound S on $L S_{f}$.

$$
\begin{aligned}
S^{*}(y) & \geqslant L\left(x^{\prime}\right) e^{-\beta d(y, x)} \\
& \equiv x^{\prime} \cdot e^{-\beta d(x, x)-\beta} \\
& =e^{-\beta \cdot L} \cdot L\left(x^{\prime}\right) \cdot e^{-\beta d(s x)}
\end{aligned}=e^{-\beta} S^{-\beta}(x) d .
$$

What noise to add?

Notation. For a subset \mathcal{S} of \mathbb{R}^{d}, we write $\mathcal{S}+\Delta$ for the set $\{z+\Delta \mid z \in \mathcal{S}\}$; and $e^{\lambda} \cdot \mathcal{S}$ for the set $\left\{e^{\lambda} \cdot z \mid z \in \mathcal{S}\right\}$. We also write $a \pm b$ for the interval $[a-b, a+b]$.
Definition 2.5 (Admissible Noise Distribution). A probability distribution on \mathbb{R}^{d}, given by a density function h, is (α, β)-admissible (with respect to ℓ_{1}) if, for $\alpha=\alpha(\epsilon, \delta), \beta=\beta(\epsilon, \delta)$, the following two conditions hold for all $\Delta \in \mathbb{R}^{d}$ and $\lambda \in \mathbb{R}$ satisfying $\|\Delta\|_{1} \leq \alpha$ and $|\lambda| \leq \beta$, and for all measurable subsets $\mathcal{S} \subseteq \mathbb{R}^{d}$:

$$
\begin{array}{lc}
\text { Sliding Property: } & \frac{\operatorname{Pr}}{Z \sim h}[Z \in \mathcal{S}] \leq e^{\frac{\epsilon}{2}} \cdot \operatorname{Pr}_{Z \sim h}[Z \in \mathcal{S}+\Delta]+\frac{\delta}{2} . \\
\text { Dilation Property: } & \underset{Z \sim h}{\operatorname{Pr}}[Z \in \mathcal{S}] \leq e^{\frac{\epsilon}{2}} \cdot \operatorname{Pr}_{Z \sim h}\left[Z \in e^{\lambda} \cdot \mathcal{S}\right]+\frac{\delta}{2} .
\end{array}
$$

Figure 1: Sliding and dilation for the Laplace distribution with p.d.f. $h(z)=\frac{1}{2} e^{-|z|}$, plotted as a solid line. The dotted lines plot the densities $h(z+0.3)$ (left) and $e^{0.3} h\left(e^{0.3} z\right)$ (right).

- Then $\mathcal{A}(x)=f(x)+\frac{S(x)}{\alpha} \cdot Z \quad$ satisfies ($\left.\varepsilon, \delta\right)$-DP.

Privacy analysis \square $P(A(x)-S) \leq e^{\varepsilon} P(A(x) \in S)+g^{\prime}$

$$
\begin{aligned}
& P(A(x) \in S)=P\left(f(x)+\frac{S(x)}{\alpha} \cdot z \in S\right)=P\left(\left.z \in \frac{\sigma \| S-1(x)}{S(x)} \right\rvert\,\right. \\
& \left.B=\frac{a\left(f^{\prime}(x)-f_{\left(\frac{\pi}{1}\right)}^{S(x)}\right.}{\Delta} \leqslant e^{\frac{\varepsilon}{2}} p\left(z \in \frac{\alpha(S-f(y)))}{\frac{S(x)}{T}}\right)+\frac{\delta}{2}+f(y)\right)-f(y) \\
& \||\Delta|_{1}=\frac{\alpha\|f(x)-F|x|\|_{1} \mid}{s(x)} \leqslant \frac{a L s(x)}{s(x)} \leqslant \alpha \\
& ==^{\prime \frac{\varepsilon}{2}}\left(\mathbb { P } \left(z \in \frac{s\left(x^{\prime}\right)}{s(x)} \cdot \underline{\left.\left.\underline{\left(\frac{\left(s f\left(x^{\prime}\right)\right.}{s\left(x^{\prime}\right)}\right.}\right)\right)+\frac{\delta}{2}}\right.\right. \\
& e^{\lambda}=\frac{S\left(x^{\prime}\right)}{\Delta x \mid} \leqslant e^{\beta} \leqslant e^{\frac{\varepsilon}{2}}\left(\lambda \left\lvert\, \leqslant \beta \quad e^{\frac{\varepsilon}{2}} \mathbb{P}\left(z c-\frac{s\left(-f x^{\prime}\right)}{s\left(x_{1}\right)}\right)+\frac{\delta}{2}\right.\right)+\frac{\delta}{2} \\
& \begin{aligned}
|\lambda| \leqslant \beta & =e^{\frac{\varepsilon}{2}}\left(e^{\frac{\varepsilon}{2}} P\left(f\left(x^{\prime}\right) \in S\right)+\frac{\delta}{2}\right)+\frac{\delta}{2} \\
& =e^{\varepsilon} p\left(f(x)(-s)+\left(\alpha_{1} \frac{\delta}{2}+1\right) \delta(D)\right.
\end{aligned} \\
& =e^{\varepsilon} P\left(f(x)(-s)+\left(e^{\frac{\varepsilon}{2}}+1\right) \delta / 2\right.
\end{aligned}
$$

Example: Cauchy-Noise, Laplacenoise, Gaussian noise

Lemma 2.7. For any $\gamma>1$, the distribution with density $h(z) \propto \frac{1}{1+|z|^{\gamma}}$ is $\left(\frac{\epsilon}{2(\gamma+1)}, \frac{\epsilon}{2(\gamma+1)}\right)$-admissible (with $\delta=0$). Moreover, the d-dimensional product of independent copies of h is $\left(\frac{\epsilon}{2(\gamma+1)}, \frac{\epsilon}{2 d(\gamma+1)}\right)$ - admissible.

Lemma 2.9. For $\epsilon, \delta \in(0,1)$, the d-dimensional Laplace distribution, $h(z)=\frac{1}{2^{d}} \cdot e^{-\|z\|_{1}}$, is (α, β) admissible with $\alpha=\frac{\epsilon}{2}$, and $\beta=\frac{\epsilon}{2 \rho_{\delta / 2}\left(\|Z\|_{1}\right)}$, where $Z \sim h$. In particular, it suffices to use $\alpha=\frac{\epsilon}{2}$ and $\beta=\frac{\epsilon}{4(d+\ln (2 / \delta))}$. For $d=1$, it suffices to use $\beta=\frac{\epsilon}{2 \ln (2 / \delta)}$.

Lemma 2.10 (Gaussian Distribution). For $\epsilon, \delta \in(0,1)$, the d-dimensional Gaussian distribution, $h(z)=$ $\frac{1}{(2 \pi)^{d / 2}} \cdot e^{-\frac{1}{2}\|z\|_{2}^{2}}$, is (α, β)-admissible for the Euclidean metric with $\alpha=\frac{\epsilon}{5 \rho_{\delta / 2}\left(Z_{1}\right)}$, and $\beta=\frac{\epsilon}{2 \rho_{\delta / 2}\left(\|Z\|_{2}^{2}\right)}$, where $Z=\left(Z_{1}, \ldots, Z_{d}\right) \sim h$.

In particular, it suffices to take $\alpha=\frac{\epsilon}{5 \sqrt{2 \ln (2 / \delta)}}$ and $\beta=\frac{\epsilon}{4(d+\ln (2 / \delta))}$.

How to compute smooth sensitivity (or an upper bound of it?)

$$
\begin{aligned}
& \text { DEFINITION 2.2 (SMOOTH SENSITIVITY). For } \beta>0 \text {, } \\
& \text { the } \beta \text {-smooth sensitivity of } f \text { is } \\
& \qquad S_{f, \beta}^{*}(x)=\max _{y \in D^{n}}\left(L S_{f}(y) \cdot e^{-\beta d(x, y)}\right) .
\end{aligned}
$$

- An easier way to solve this optimization

Example: smooth sensitivity of median

- Recall:

$$
0 \leq x_{1} \leq \cdots \leq x_{n} \leq \Lambda
$$

- Now: $\quad S_{f, \epsilon}^{*}(x)=\max _{\frac{k=0,1, \ldots, n}{} e^{-k \epsilon}(\underbrace{\max _{y: d}(x, y)=k} L S_{f}(y)})$

$$
\max _{y: d(x, y) \leq k} L S(y)=\max _{0 \leq t \leq k+1}\left(x_{m+t}-x_{m+t-k-1}\right) .
$$

Checkpoint: smooth sensitivity

- We cannot calibrate noise to local sensitivity
- Because noise-level itself may be sensitive
- Idea: construct smooth upper bound of local sensitivity
- Noise that satisfies stability under "translation" and "scaling" are admissible

Concentrated DP analysis of Smoothed Sensitivity

- Adding log-normal noise

$$
Z=X \cdot e^{\sigma Y_{4}}
$$

- X drawn from Laplace and Y from a standard Normal.

$$
\begin{aligned}
& \text { Proposition 3. Let } f: \mathcal{X}^{n} \rightarrow \mathbb{R} \text { and let } Z \leftarrow \operatorname{LLN}(\sigma) \text { for some } \sigma>0 \text {. Then, for all } s, t>0 \text {, the } \\
& \text { algorithm } M(x)=f(x)+\frac{1}{s} \cdot \mathrm{~S}_{f}^{t}(x) \cdot Z \text { guarantees } \frac{1}{2} \varepsilon^{2} \text {-CDP for } \varepsilon=t / \sigma+e^{3 \sigma^{2} / 2} s \text {. }
\end{aligned}
$$

Summary of the noises that are known to work

- Cauchy distribution
- Student t-distribution

- Laplace-log-normal
- Uniform-log-normal
- Arcsinh-normal
- Gaussian
- Laplace

Sketch of the proof for the Laplace-Log-Normal

- Let's say for all neighboring datasets

$$
\left|f(x)-f\left(x^{\prime}\right)\right| \leq g(x) \quad \text { and } \quad e^{-t} g(x) \leq g\left(x^{\prime}\right) \leq e^{t} g(x)
$$

- Algorithm: $\quad M(x)=f(x)+\frac{g(x)}{s} \cdot Z \quad$ for $\quad Z \leftarrow \operatorname{LLN}(\sigma)$.
- We have that $\mathrm{D}_{\alpha}\left(M(x) \| M\left(x^{\prime}\right)\right)=\mathrm{D}_{\alpha}\left(Z \| \frac{f\left(x^{\prime}\right)-f(x)}{g(x)} \cdot s+\frac{g\left(x^{\prime}\right)}{g(x)} \cdot Z\right)$.

Technical tools

- Group privacy for CDP:

Lemma 11. Let P, Q, R be probability distributions. Suppose $\mathrm{D}_{\alpha}(P \| R) \leq a \cdot \alpha$ and $\mathrm{D}_{\alpha}(R \| Q) \leq$ $b \cdot \alpha$ for all $\alpha \in(1, \infty)$. Then, for all $\alpha \in(1, \infty)$,

$$
\mathrm{D}_{\alpha}(P \| Q) \leq \alpha \cdot(\sqrt{a}+\sqrt{b})^{2} \leq 2 \alpha \cdot(a+b)
$$

- Decompose what we want to bound

$$
\mathrm{D}_{\alpha}\left(Z \| e^{t} Z+s\right)
$$

$\mathrm{D}_{\alpha}\left(e^{t} Z+s \| Z\right)$

Bounding the two parts separately

Lemma 19. Let $Z \leftarrow \operatorname{LLN}(\sigma)$ for $\sigma>0$. Let $t \in \mathbb{R}$ and $\alpha \in(1, \infty)$. Then

$$
\mathrm{D}_{\alpha}\left(Z \| e^{t} Z\right) \leq \frac{\alpha t^{2}}{2 \sigma^{2}}
$$

- Proof:

$$
\mathrm{D}_{\alpha}\left(Z \| e^{t} Z\right)=\mathrm{D}_{\alpha}\left(X e^{\sigma Y} \| X e^{\sigma Y+t}\right) \leq \sup _{x} \mathrm{D}_{\alpha}\left(x e^{\sigma Y} \| x e^{\sigma Y+t}\right) \leq \mathrm{D}_{\alpha}(\sigma Y \| \sigma Y+t)
$$

Lemma 20. Let $Z \leftarrow \operatorname{LLN}(\sigma)$ for $\sigma>0$. Let $s \in \mathbb{R}$ and $\alpha \in(1, \infty)$. Then

$$
\mathrm{D}_{\alpha}(Z \| Z+s) \leq \min \left\{\frac{1}{2} e^{3 \sigma^{2}} s^{2} \alpha, e^{\frac{3}{2} \sigma^{2}} s\right\} .
$$

- Proof:

Improvement from running smoothed sensitivity is substantial!

$$
\operatorname{trim}_{m}(x)=\frac{x_{(m+1)}+x_{(m+2)}+\cdots+x_{(n-m)}}{n-2 m}
$$

Bun and Steinke (2019): "Average case averages": $\underline{\text { https://arxiv.org/pdf/1906.02830.pdf }}$

Next lecture

- Propose-Test-Release
- Stability-based query release
- Application to PATE

