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Recap: Differentially Private 
Machine Learning

• Private learning from a finite class is easy

• Private learning from an infinite class is hard (in 
general)

• Let’s restrict our attention to the Lipschitz losses
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Recap: Convex empirical risk 
minimization
• Posterior sampling (i.e., exponential mechanism)

• Output perturbation / Objective perturbation

• NoisyGD and NoisySGD
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Recap: NoisyGD summary
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Lipschitz +
convex

Lipschitz + Smooth +
convex

Smooth + Lipschitz +
convex + GLM

Output
Pert Same as left

ObjPert Not applicable

NoisyGD
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Lower order terms and dependence on β hidden.
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Stationary point convergence

p
n�dL2(f(✓1)� f⇤) log(1/�)

n✏
<latexit sha1_base64="6Bbxij8a/V4ikC+PidttCp6l1L8="></latexit><latexit sha1_base64="6Bbxij8a/V4ikC+PidttCp6l1L8="></latexit><latexit sha1_base64="6Bbxij8a/V4ikC+PidttCp6l1L8="></latexit><latexit sha1_base64="6Bbxij8a/V4ikC+PidttCp6l1L8="></latexit>



Recap: Comparing NoisyGD and
NoisySGD computationally
• Both optimal information-theoretically.

• If we ignore computation and add very large noise, but use
infinitesimal step-size

• Table to compare computation
• in terms of the number of incremental gradient calls to achieve
information theoretic limit up to a constant

5

Lipschitz + Smooth +
Convex

Lipschitz +
Convex

Lipschitz + Strongly
convex

NoisyGD

NoisySGD n2⇢3/4

d1/2
+

n2⇢

d
<latexit sha1_base64="4EGxpNSaWUAMyEwj1MsE2v7Bh2o=">AAACHXicbVDLSgMxFM3UV62vqks3wSIIQjszFnRZdOOygn1AOy2ZNNOGZjJDkhFKmB9x46+4caGICzfi35hpK2jrgcDhnHO5ucePGZXKtr+s3Mrq2vpGfrOwtb2zu1fcP2jKKBGYNHDEItH2kSSMctJQVDHSjgVBoc9Iyx9fZ37rnghJI36nJjHxQjTkNKAYKSP1i9VuIBDWvKfdtCtGUU+fV6ppqgc97VTcNIVnEP5E3CxgrLRfLNllewq4TJw5KYE56v3iR3cQ4SQkXGGGpOw4dqw8jYSimJG00E0kiREeoyHpGMpRSKSnp9el8MQoAxhEwjyu4FT9PaFRKOUk9E0yRGokF71M/M/rJCq49DTlcaIIx7NFQcKgimBWFRxQQbBiE0MQFtT8FeIRMl0oU2jBlOAsnrxMmm7ZMfy2WqpdzevIgyNwDE6BAy5ADdyAOmgADB7AE3gBr9aj9Wy9We+zaM6azxyCP7A+vwEZmKHo</latexit><latexit sha1_base64="4EGxpNSaWUAMyEwj1MsE2v7Bh2o=">AAACHXicbVDLSgMxFM3UV62vqks3wSIIQjszFnRZdOOygn1AOy2ZNNOGZjJDkhFKmB9x46+4caGICzfi35hpK2jrgcDhnHO5ucePGZXKtr+s3Mrq2vpGfrOwtb2zu1fcP2jKKBGYNHDEItH2kSSMctJQVDHSjgVBoc9Iyx9fZ37rnghJI36nJjHxQjTkNKAYKSP1i9VuIBDWvKfdtCtGUU+fV6ppqgc97VTcNIVnEP5E3CxgrLRfLNllewq4TJw5KYE56v3iR3cQ4SQkXGGGpOw4dqw8jYSimJG00E0kiREeoyHpGMpRSKSnp9el8MQoAxhEwjyu4FT9PaFRKOUk9E0yRGokF71M/M/rJCq49DTlcaIIx7NFQcKgimBWFRxQQbBiE0MQFtT8FeIRMl0oU2jBlOAsnrxMmm7ZMfy2WqpdzevIgyNwDE6BAy5ADdyAOmgADB7AE3gBr9aj9Wy9We+zaM6azxyCP7A+vwEZmKHo</latexit><latexit sha1_base64="4EGxpNSaWUAMyEwj1MsE2v7Bh2o=">AAACHXicbVDLSgMxFM3UV62vqks3wSIIQjszFnRZdOOygn1AOy2ZNNOGZjJDkhFKmB9x46+4caGICzfi35hpK2jrgcDhnHO5ucePGZXKtr+s3Mrq2vpGfrOwtb2zu1fcP2jKKBGYNHDEItH2kSSMctJQVDHSjgVBoc9Iyx9fZ37rnghJI36nJjHxQjTkNKAYKSP1i9VuIBDWvKfdtCtGUU+fV6ppqgc97VTcNIVnEP5E3CxgrLRfLNllewq4TJw5KYE56v3iR3cQ4SQkXGGGpOw4dqw8jYSimJG00E0kiREeoyHpGMpRSKSnp9el8MQoAxhEwjyu4FT9PaFRKOUk9E0yRGokF71M/M/rJCq49DTlcaIIx7NFQcKgimBWFRxQQbBiE0MQFtT8FeIRMl0oU2jBlOAsnrxMmm7ZMfy2WqpdzevIgyNwDE6BAy5ADdyAOmgADB7AE3gBr9aj9Wy9We+zaM6azxyCP7A+vwEZmKHo</latexit><latexit sha1_base64="4EGxpNSaWUAMyEwj1MsE2v7Bh2o=">AAACHXicbVDLSgMxFM3UV62vqks3wSIIQjszFnRZdOOygn1AOy2ZNNOGZjJDkhFKmB9x46+4caGICzfi35hpK2jrgcDhnHO5ucePGZXKtr+s3Mrq2vpGfrOwtb2zu1fcP2jKKBGYNHDEItH2kSSMctJQVDHSjgVBoc9Iyx9fZ37rnghJI36nJjHxQjTkNKAYKSP1i9VuIBDWvKfdtCtGUU+fV6ppqgc97VTcNIVnEP5E3CxgrLRfLNllewq4TJw5KYE56v3iR3cQ4SQkXGGGpOw4dqw8jYSimJG00E0kiREeoyHpGMpRSKSnp9el8MQoAxhEwjyu4FT9PaFRKOUk9E0yRGokF71M/M/rJCq49DTlcaIIx7NFQcKgimBWFRxQQbBiE0MQFtT8FeIRMl0oU2jBlOAsnrxMmm7ZMfy2WqpdzevIgyNwDE6BAy5ADdyAOmgADB7AE3gBr9aj9Wy9We+zaM6azxyCP7A+vwEZmKHo</latexit>

n2⇢3/4

d1/2
+

n2⇢

d
<latexit sha1_base64="4EGxpNSaWUAMyEwj1MsE2v7Bh2o=">AAACHXicbVDLSgMxFM3UV62vqks3wSIIQjszFnRZdOOygn1AOy2ZNNOGZjJDkhFKmB9x46+4caGICzfi35hpK2jrgcDhnHO5ucePGZXKtr+s3Mrq2vpGfrOwtb2zu1fcP2jKKBGYNHDEItH2kSSMctJQVDHSjgVBoc9Iyx9fZ37rnghJI36nJjHxQjTkNKAYKSP1i9VuIBDWvKfdtCtGUU+fV6ppqgc97VTcNIVnEP5E3CxgrLRfLNllewq4TJw5KYE56v3iR3cQ4SQkXGGGpOw4dqw8jYSimJG00E0kiREeoyHpGMpRSKSnp9el8MQoAxhEwjyu4FT9PaFRKOUk9E0yRGokF71M/M/rJCq49DTlcaIIx7NFQcKgimBWFRxQQbBiE0MQFtT8FeIRMl0oU2jBlOAsnrxMmm7ZMfy2WqpdzevIgyNwDE6BAy5ADdyAOmgADB7AE3gBr9aj9Wy9We+zaM6azxyCP7A+vwEZmKHo</latexit><latexit sha1_base64="4EGxpNSaWUAMyEwj1MsE2v7Bh2o=">AAACHXicbVDLSgMxFM3UV62vqks3wSIIQjszFnRZdOOygn1AOy2ZNNOGZjJDkhFKmB9x46+4caGICzfi35hpK2jrgcDhnHO5ucePGZXKtr+s3Mrq2vpGfrOwtb2zu1fcP2jKKBGYNHDEItH2kSSMctJQVDHSjgVBoc9Iyx9fZ37rnghJI36nJjHxQjTkNKAYKSP1i9VuIBDWvKfdtCtGUU+fV6ppqgc97VTcNIVnEP5E3CxgrLRfLNllewq4TJw5KYE56v3iR3cQ4SQkXGGGpOw4dqw8jYSimJG00E0kiREeoyHpGMpRSKSnp9el8MQoAxhEwjyu4FT9PaFRKOUk9E0yRGokF71M/M/rJCq49DTlcaIIx7NFQcKgimBWFRxQQbBiE0MQFtT8FeIRMl0oU2jBlOAsnrxMmm7ZMfy2WqpdzevIgyNwDE6BAy5ADdyAOmgADB7AE3gBr9aj9Wy9We+zaM6azxyCP7A+vwEZmKHo</latexit><latexit sha1_base64="4EGxpNSaWUAMyEwj1MsE2v7Bh2o=">AAACHXicbVDLSgMxFM3UV62vqks3wSIIQjszFnRZdOOygn1AOy2ZNNOGZjJDkhFKmB9x46+4caGICzfi35hpK2jrgcDhnHO5ucePGZXKtr+s3Mrq2vpGfrOwtb2zu1fcP2jKKBGYNHDEItH2kSSMctJQVDHSjgVBoc9Iyx9fZ37rnghJI36nJjHxQjTkNKAYKSP1i9VuIBDWvKfdtCtGUU+fV6ppqgc97VTcNIVnEP5E3CxgrLRfLNllewq4TJw5KYE56v3iR3cQ4SQkXGGGpOw4dqw8jYSimJG00E0kiREeoyHpGMpRSKSnp9el8MQoAxhEwjyu4FT9PaFRKOUk9E0yRGokF71M/M/rJCq49DTlcaIIx7NFQcKgimBWFRxQQbBiE0MQFtT8FeIRMl0oU2jBlOAsnrxMmm7ZMfy2WqpdzevIgyNwDE6BAy5ADdyAOmgADB7AE3gBr9aj9Wy9We+zaM6azxyCP7A+vwEZmKHo</latexit><latexit sha1_base64="4EGxpNSaWUAMyEwj1MsE2v7Bh2o=">AAACHXicbVDLSgMxFM3UV62vqks3wSIIQjszFnRZdOOygn1AOy2ZNNOGZjJDkhFKmB9x46+4caGICzfi35hpK2jrgcDhnHO5ucePGZXKtr+s3Mrq2vpGfrOwtb2zu1fcP2jKKBGYNHDEItH2kSSMctJQVDHSjgVBoc9Iyx9fZ37rnghJI36nJjHxQjTkNKAYKSP1i9VuIBDWvKfdtCtGUU+fV6ppqgc97VTcNIVnEP5E3CxgrLRfLNllewq4TJw5KYE56v3iR3cQ4SQkXGGGpOw4dqw8jYSimJG00E0kiREeoyHpGMpRSKSnp9el8MQoAxhEwjyu4FT9PaFRKOUk9E0yRGokF71M/M/rJCq49DTlcaIIx7NFQcKgimBWFRxQQbBiE0MQFtT8FeIRMl0oU2jBlOAsnrxMmm7ZMfy2WqpdzevIgyNwDE6BAy5ADdyAOmgADB7AE3gBr9aj9Wy9We+zaM6azxyCP7A+vwEZmKHo</latexit>

n3⇢

d
<latexit sha1_base64="HLituD8sTdlqAL6EPsePlsIeugw=">AAAB/HicbZDLSsNAFIYnXmu9Rbt0M1gEVyVRQZdFNy4r2As0sUwmk3boZCbMTIQQ4qu4caGIWx/EnW/jpM1CW38Y+PjPOZwzf5AwqrTjfFsrq2vrG5u1rfr2zu7evn1w2FMilZh0sWBCDgKkCKOcdDXVjAwSSVAcMNIPpjdlvf9IpKKC3+ssIX6MxpxGFCNtrJHd8CKJcM4fzqEnJ6LIw6I+sptOy5kJLoNbQRNU6ozsLy8UOI0J15ghpYauk2g/R1JTzEhR91JFEoSnaEyGBjmKifLz2fEFPDFOCCMhzeMaztzfEzmKlcriwHTGSE/UYq00/6sNUx1d+TnlSaoJx/NFUcqgFrBMAoZUEqxZZgBhSc2tEE+QSUObvMoQ3MUvL0PvrOUavrtotq+rOGrgCByDU+CCS9AGt6ADugCDDDyDV/BmPVkv1rv1MW9dsaqZBvgj6/MHR0mUgw==</latexit><latexit sha1_base64="HLituD8sTdlqAL6EPsePlsIeugw=">AAAB/HicbZDLSsNAFIYnXmu9Rbt0M1gEVyVRQZdFNy4r2As0sUwmk3boZCbMTIQQ4qu4caGIWx/EnW/jpM1CW38Y+PjPOZwzf5AwqrTjfFsrq2vrG5u1rfr2zu7evn1w2FMilZh0sWBCDgKkCKOcdDXVjAwSSVAcMNIPpjdlvf9IpKKC3+ssIX6MxpxGFCNtrJHd8CKJcM4fzqEnJ6LIw6I+sptOy5kJLoNbQRNU6ozsLy8UOI0J15ghpYauk2g/R1JTzEhR91JFEoSnaEyGBjmKifLz2fEFPDFOCCMhzeMaztzfEzmKlcriwHTGSE/UYq00/6sNUx1d+TnlSaoJx/NFUcqgFrBMAoZUEqxZZgBhSc2tEE+QSUObvMoQ3MUvL0PvrOUavrtotq+rOGrgCByDU+CCS9AGt6ADugCDDDyDV/BmPVkv1rv1MW9dsaqZBvgj6/MHR0mUgw==</latexit><latexit sha1_base64="HLituD8sTdlqAL6EPsePlsIeugw=">AAAB/HicbZDLSsNAFIYnXmu9Rbt0M1gEVyVRQZdFNy4r2As0sUwmk3boZCbMTIQQ4qu4caGIWx/EnW/jpM1CW38Y+PjPOZwzf5AwqrTjfFsrq2vrG5u1rfr2zu7evn1w2FMilZh0sWBCDgKkCKOcdDXVjAwSSVAcMNIPpjdlvf9IpKKC3+ssIX6MxpxGFCNtrJHd8CKJcM4fzqEnJ6LIw6I+sptOy5kJLoNbQRNU6ozsLy8UOI0J15ghpYauk2g/R1JTzEhR91JFEoSnaEyGBjmKifLz2fEFPDFOCCMhzeMaztzfEzmKlcriwHTGSE/UYq00/6sNUx1d+TnlSaoJx/NFUcqgFrBMAoZUEqxZZgBhSc2tEE+QSUObvMoQ3MUvL0PvrOUavrtotq+rOGrgCByDU+CCS9AGt6ADugCDDDyDV/BmPVkv1rv1MW9dsaqZBvgj6/MHR0mUgw==</latexit><latexit sha1_base64="HLituD8sTdlqAL6EPsePlsIeugw=">AAAB/HicbZDLSsNAFIYnXmu9Rbt0M1gEVyVRQZdFNy4r2As0sUwmk3boZCbMTIQQ4qu4caGIWx/EnW/jpM1CW38Y+PjPOZwzf5AwqrTjfFsrq2vrG5u1rfr2zu7evn1w2FMilZh0sWBCDgKkCKOcdDXVjAwSSVAcMNIPpjdlvf9IpKKC3+ssIX6MxpxGFCNtrJHd8CKJcM4fzqEnJ6LIw6I+sptOy5kJLoNbQRNU6ozsLy8UOI0J15ghpYauk2g/R1JTzEhR91JFEoSnaEyGBjmKifLz2fEFPDFOCCMhzeMaztzfEzmKlcriwHTGSE/UYq00/6sNUx1d+TnlSaoJx/NFUcqgFrBMAoZUEqxZZgBhSc2tEE+QSUObvMoQ3MUvL0PvrOUavrtotq+rOGrgCByDU+CCS9AGt6ADugCDDDyDV/BmPVkv1rv1MW9dsaqZBvgj6/MHR0mUgw==</latexit>

n3⇢

�
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Open problem: what is the optimal computational complexity?



Recap: Deep Learning with DP

• NoisySGD with per-example gradient clipping
• The only practical / popular algorithm
• Empirical research questions: What are tricks to improve 

NoisySGD?
• Theoretical open problem: what exactly is the effect of 

gradient clipping in training? How does it work?

• Assume access to some (unlabeled) public data
• Private Aggregation of Teacher Ensembles.
• PrivateKNN
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Very few public data points are 
needed in PATE… also it learns all VC-
classes in the realizable setting.

7
Liu, Zhu, Chaudhuri and W. (2020) “Revisiting model-agnostic private learning”. AISTATS and JMLR.
https://arxiv.org/pdf/2011.03186.pdf

Table 1: Summary of our results: excess risk bounds for PATE algorithms.

Algorithm
PATE (Gaussian Mech.)
Papernot et al. [2017]

PATE (SVT-based) PATE (Active Learning)
This paperBassily et al. [2018a] This paper

Realizable Õ
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d

(n✏)2/3
_

d
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⌘
Õ
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(n✏)2/3
_

q
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m
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Õ

⇣
d3/2

n✏ _
d
m

⌘
Õ

⇣
d3/2✓1/2

n✏ _
d
m

⌘

⌧ -TNC Õ

⇣�
d3/2

n✏

� 2⌧
4�⌧ _

d
m

⌘
same as agnostic Õ

⇣�
d3/2

n✏

� ⌧
2�⌧ _

d
m

⌘
Õ

⇣�
d3/2✓1/2

n✏

� ⌧
2�⌧ _

d
m

⌘

Agnostic
(vs h⇤)

⌦(Err(h⇤)) required.
13Err(h⇤)+

Õ

⇣
d3/5

n2/5✏2/5
_

q
d
m

⌘ ⌦(Err(h⇤)) required. ⌦(Err(h⇤)) required.

Agnostic
(vs hagg1 )

- -
Consistent under
weaker conditions.

-

• Results new to this paper are highlighted in blue.
• Teacher number hyperparameter K is chosen optimally. The number of public data points we privately label

is chosen optimally (subsampling the available public data to run PATE) to minimize the risk bound. � is
assumed to be in its typical range � < 1/poly(n) and ✏ < log(1/�). The TNC parameter ⌧ ranges between
(0, 1]. See Table 2 for a checklist of notations.

• Proofs of utility guarantees of PATE (Gaussian mechanism) can be found in Appendix A.

the realizable setting. We make no assumptions in agnostic setting, and a di↵erent center of
teacher gravity is considered. In addition, we introduce active learning [Hanneke, 2014] to
PATE and propose a new practical algorithm.

Summary of results. Our contributions are summarized as follows.

1. We show that PATE consistently learns any VC-classes under TNC with fast rates and
requires very few unlabeled public data points. When specializing to the realizable
case, we show that the sample complexity bound of the SVT-based PATE is Õ(d3/2/↵✏)
and Õ(d/↵) for the private and public datasets respectively. The best known results
[Bassily et al., 2018a] is Õ(d3/2/↵3/2

✏) (for private data) and Õ(d/↵2) (for public
data).

2. We analyze standard Gaussian mechanism-based PATE [Papernot et al., 2018a] under
TNC. In the realizable case, we obtained a sample complexity of Õ(d3/2/↵✏) and
Õ(d/↵) for the private and public datasets respectively, which matches the bound of
[Bassily et al., 2018a] with a simpler and more practical algorithm that uses fewer
public data points.

3. We show that PATE learning is inconsistent for agnostic learning in general and derive
new learning bounds that compete against a sequence of limiting majority voting
classifiers.

4. We propose a new active learning-based algorithm, PATE with Active Student Queries
(PATE-ASQ), to adaptively select which public data points to release. Under TNC,
we show that active learning with standard Gaussian mechanism is able to match the
same learning bounds of the SVT-based method for privacy aggregation (Algorithm 1),
except some additional dependence.
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This lecture

• Going beyond the worst case!

• Smoothed Sensitivity and the Median

• Concentrated DP of Smoothed Sensitivity-based 
algorithm

8



Reading materials

• Nissim, Raskhodnikova, Smith 2011 “Smooth 
Sensitivity and Sampling in Privacy Data Analysis”: 
https://cs-
people.bu.edu/ads22/pubs/NRS07/NRS07-full-
draft-v1.pdf

• Bun and Steinke 2019:  “Average cases averages” 
https://arxiv.org/abs/1906.02830
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Recap:  Private query release

• For example, linear queries

• Laplace mechanism / Gaussian mechanism

• Global sensitivity

10



An example when the global
sensitivity approach is very inefficient
• Median query:  

• Example:

11



Another example: linear regression

• The output perturbation mechanism, revisited

• The global sensitivity approach does not exploit the 
fact that the input dataset is well-conditioned

12



Local Sensitivity measures the 
stability of a query at a particular 
input dataset.

• Example:  median

• Example: linear regression

13

Lap(2/"n) for every y 2 X, from which we can compute the quantity a =
P

y2X ay · q(y), which
has expectation q(x) and standard deviation O(

p
|X|/"n). For answering multiple queries, we can

apply Cherno↵/Hoe↵ding and union bounds,4 yielding the following:

Theorem 2.9 (arbitrary counting queries via the Laplace histogram). For every set Q of counting
queries on data universe X, n 2 N, and " > 0, there is an "-di↵erentially private mechanism
M : Xn ! RQ such that on every dataset x 2 X

n, with high probability M(x) answers all the queries
to within error

O

 p
|X| · log |Q|

"n

!
.

Note that the dependence on k = |Q| has improved from
p
k obtained by advanced composition

or Theorem 2.7 to
p
log k, at the price of introducing a (rather large) dependence on |X|. Thus, for

a family Q of counting queries on data universe X, it is better to use the Laplace histogram when
|Q| ⌧ |X| and it is better to use advanced composition or Theorem 2.7 when |X| > |Q|.

Let’s summarize the best error bounds we have seen so far for the example families of counting
queries given in Section 1.3.

Table 2.1: Error bounds for specific query families on a data universe X of size D = 2d (e.g.
X = {0, 1}d or X = {1, 2, . . . , D}).
Query family Q |Q| (", 0)-dp ref (", �)-dp ref

Q
pt D O

�
d

"n

�
Prop. 2.8 O

�
d

"n

�
Prop. 2.8

Q
thr D Õ(

p
D)

"n
Thm. 2.9 Õ(

p
D)

"n
Thm. 2.9

Q
conj 3d Õ(

p
D)

"n
Thm. 2.9 Õ(

p
D)

"n
Thm. 2.9

Q
means d O

�
d

"n

�
Thm. 2.6 O

✓p
d log(1/�)·log log d

"n

◆
Thm. 2.7

Q
conj
t

for t ⌧ d O(dt) O
⇣

d
t

"n

⌘
Thm. 2.6 O

✓
d
t/2·

p
log(1/�)·log log d

"n

◆
Thm. 2.7

We will see substantial improvements to most of these bounds in later sections.

3 Alternatives to Global Sensitivity

In this section, we consider the question of whether we can do better than adding noise Lap(GSq /"),
where GSq denotes the Global Sensitivity of query q (cf. Theorem 1.3).

As a first attempt, let us define a notion of “Local Sensitivity” at x:

LSq(x) = max
�
q(x)� q(x0)| : x0 ⇠ x

 
.

4
A bit of care is needed since the Lap(2/"n) noise random variables are not bounded. This can be handled by

first arguing that with high probability, at most a 2
�⇥(t)

fraction of the noise random variables have magnitude in

the range [t/"n, 2t/"n). Then, conditioned on the magnitudes of the noise random variables (but not their signs),

we can group the random variables according to their magnitudes (up to a factor of 2) and apply Hoe↵ding to each

group separately.
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The issue of calibrating noise to 
local sensitivity
• Example of the median

• In conclusion: the magnitude of the noise may 
reveal sensitive information!

14



Diffix and “Sticky Noise”

15

From Creater of Diffix:
“anonymizing SQL interface [that] sits in front of your data and enables 
you to conduct ad hoc analytics — fully privacy preserving and GDPR-
compliant.”

Implementing a bunch of heuristics to protect against known attacks.
Decide how much noise to add by the specific dataset and how sensitive the question is.



Attack on Diffix

16

Also see this nice post: https://differentialprivacy.org/diffix-attack/

Link to the paper:
https://www.usenix.org/system/files/sec19fall_gadotti_prepub.pdf



“Data-dependent DP mechanism” aims at
more stably calibrating noise to local 
sensitivity (at least for query releases)
• A number of different approaches:
• Smooth sensitivity

• Propose-test-release

• Privately bounding the local-sensitivity

• Stability-based query release (Distance2Stability)

17



Smooth Sensitivity

• Illustration

18

Our mechanism releases accurate answers on interesting
inputs. For example, we prove that k-SED (k-means) clus-
ter centers are released accurately when the data is well-
separated, according to the definition proposed by Ostrovsky
et al. [15]. This definition implies that all near-optimal
clusterings of x induce similar partitions of the points of
x. [15] use this fact to show that well-separated data sets
are amenable to heuristics based on Lloyd’s algorithm. Our
techniques also allow one to learn and publish accurate pa-
rameters of a mixture of k spherical Gaussian distributions
when the data x consists of polynomially-many (in the di-
mension and k) i.i.d. samples from the distribution.

Previously, Blum et al. [3] showed that if there is an al-
gorithm for approximating f(x) using “noisy sum queries”,
then f(x) can be released accurately while preserving pri-
vacy. Their framework can also be interpreted as identifying
a “good” class of functions and inputs for which one can add
relatively little noise. Their approach requires a fairly in-
depth understanding of f , as one must be able to express f

in terms of a limited class of queries to the data.
Using their framework, Blum et al. [3] gave a private

version of a specific heuristic for k-SED clustering, called
Lloyd’s algorithm (or the k-means algorithm). They did
not, however, prove guarantees on how close the final out-
put of the algorithm is to the optimal cluster centers for x.
To our knowledge, our algorithms are the first to provide
such guarantees while preserving privacy.

2. INSTANCE-BASED ADDITIVE NOISE
Recall that in the interactive framework, the database

is stored on the trusted server. When the user needs to
obtain f(x), he sends a query f to the server and gets
f(x) + N(x)Z as a reply, where Z is a random variable
drawn from a noise distribution in Rd (fixed in advance and
known to the user) with standard deviation 1 in each co-
ordinate. The sample from the noise distribution is multi-
plied by the scaling factor N(x), which we refer to as the
noise magnitude. As explained in the Introduction, [10] gave
✏-indistinguishable protocols where the noise magnitude is
proportional to global sensitivity (and therefore independent
of database x). In this section, we explain how to safely re-
lease f(x) with potentially much smaller noise magnitude,
tailored to database x.

2.1 Smooth Bounds and Smooth Sensitivity
For a query function f , our goal is to release f(x) with

less noise when the local sensitivity of f at x is lower. This
would allow us to release functions with large global (worst
case) sensitivity, but typically small local sensitivity with
much greater accuracy than allowed in [10].

Example 1. Let fmed(x) = median(x1, . . . , xn) where xi

are real numbers from a bounded interval, say, D = [0, ⇤].
For simplicity, assume n is odd and the database entries
are sorted in the nondecreasing order: x1  · · ·  xn. Let
m = n+1

2 be the rank of the median element. Global sen-
sitivity of the median, GSfmed , is ⇤, since for x1 = · · · =
xm = 0 and xm+1 = · · · = xn = ⇤, fmed(x1, . . . , xn) = 0
and fmed(x1, . . . , xm�1, ⇤, xm+1, . . . , xn) = ⇤. In this case,
adding noise proportional to GSfmed completely destroys
the information. However, on typical inputs, fmed is not
very sensitive: LSfmed(x) = max(xm � xm�1, xm+1 � xm).

Ideally, we would like to release f(x) with noise magnitude

proportional to LSf (x). However, noise magnitude might
reveal information about the database. For example, in the
case of the median, if the noise magnitude is proportional
to LSfmed(x), then the probability of receiving a non-zero
answer when x1 = · · · = xm+1 = 0, xm+2 = · · · = xn = ⇤ is
zero whereas the probability of receiving a non-zero answer
when x1 = · · · = xm = 0, xm+1 = · · · = xn = ⇤ is non-
negligible. Thus, the protocol is not (✏, �)-indistinguishable
for any negligible �. }

The lesson from this example is that the noise magnitude
has to be an insensitive function. To decide on the noise
magnitude we will use a smooth upper bound on the local
sensitivity, namely, a function S that is an upper bound on
LSf at all points and such that ln(S(·)) has low sensitivity.
We say S is ✏-smooth if GSln(S(·))  ✏.

Definition 2.1 (A Smooth Bound). For � > 0, a
function S : D

n ! R+ is a �-smooth upper bound on the
local sensitivity of f if it satisfies the following requirements:

8x 2 D
n : S(x) � LSf (x) ;

8x, y 2 D
n
, d(x, y) = 1 : S(x)  e

�
S(y) .

An example of a function that satisfies Definition 2.1 is
the smooth sensitivity of f :

Definition 2.2 (Smooth sensitivity). For � > 0,
the �-smooth sensitivity of f is

S
⇤
f,�(x) = max

y2Dn

“
LSf (y) · e��d(x,y)

”
.

The smooth sensitivity S
⇤
f,� is the smallest function to

satisfy Definition 2.1:

Lemma 2.3. S
⇤
f,� is a �-smooth upper bound on LSf . In

addition, S
⇤
f,�(x)  S(x) for all x 2 D

n for every �-smooth
upper bound S on LSf .

Note that the constant function S(x) = GSf also meets the
requirements of Definition 2.1, though in general it is a very
conservative upper bound on LSf .

2.2 Calibrating Noise to Smooth Bounds
We now show that adding noise proportional to a smooth

upper bound on the local sensitivity yields a private out-
put perturbation mechanism. We add noise proportional to
Sf (x)/↵, where Sf is a �-smooth upper bound on the local
sensitivity of f , and ↵, � are parameters of the noise distri-
bution. For functions taking values in Rd, the smoothing
parameter � is / ✏/d or / ✏/

p
d, depending on the exact

choice of the noise distribution.
For a subset S of Rd, we write S + � for the set {z + � :

z 2 S}́, and e
� · S for the set {e� · z : z 2 S} . We also write

a ± b for the interval [a� b, a + b].

Definition 2.4 (Admissible Noise Distribution).
A probability distribution h on Rd is (↵, �)-admissible if, for
↵ = ↵(✏, �), � = �(✏, �), the following two conditions hold for
all k�k  ↵ and |�|  �, and for all subsets S ✓ Rd:

Sliding Property: Pr
Z⇠h

h
Z 2 S

i
 e

✏
2 · Pr

Z⇠h

h
Z 2 S + �

i
+ �

2

Dilation Property: Pr
Z⇠h

h
Z 2 S

i
 e

✏
2 · Pr

Z⇠h

h
Z 2 e

� · S
i

+ �
2



Smooth sensitivity satisfies a smoothing 
property, and it is the optimal bound
satisfying this property
• Two properties that one should satisfy to smooth 

out the local sensitivity

• Smooth sensitivity is the optimal bound
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Our mechanism releases accurate answers on interesting
inputs. For example, we prove that k-SED (k-means) clus-
ter centers are released accurately when the data is well-
separated, according to the definition proposed by Ostrovsky
et al. [15]. This definition implies that all near-optimal
clusterings of x induce similar partitions of the points of
x. [15] use this fact to show that well-separated data sets
are amenable to heuristics based on Lloyd’s algorithm. Our
techniques also allow one to learn and publish accurate pa-
rameters of a mixture of k spherical Gaussian distributions
when the data x consists of polynomially-many (in the di-
mension and k) i.i.d. samples from the distribution.

Previously, Blum et al. [3] showed that if there is an al-
gorithm for approximating f(x) using “noisy sum queries”,
then f(x) can be released accurately while preserving pri-
vacy. Their framework can also be interpreted as identifying
a “good” class of functions and inputs for which one can add
relatively little noise. Their approach requires a fairly in-
depth understanding of f , as one must be able to express f

in terms of a limited class of queries to the data.
Using their framework, Blum et al. [3] gave a private

version of a specific heuristic for k-SED clustering, called
Lloyd’s algorithm (or the k-means algorithm). They did
not, however, prove guarantees on how close the final out-
put of the algorithm is to the optimal cluster centers for x.
To our knowledge, our algorithms are the first to provide
such guarantees while preserving privacy.

2. INSTANCE-BASED ADDITIVE NOISE
Recall that in the interactive framework, the database

is stored on the trusted server. When the user needs to
obtain f(x), he sends a query f to the server and gets
f(x) + N(x)Z as a reply, where Z is a random variable
drawn from a noise distribution in Rd (fixed in advance and
known to the user) with standard deviation 1 in each co-
ordinate. The sample from the noise distribution is multi-
plied by the scaling factor N(x), which we refer to as the
noise magnitude. As explained in the Introduction, [10] gave
✏-indistinguishable protocols where the noise magnitude is
proportional to global sensitivity (and therefore independent
of database x). In this section, we explain how to safely re-
lease f(x) with potentially much smaller noise magnitude,
tailored to database x.

2.1 Smooth Bounds and Smooth Sensitivity
For a query function f , our goal is to release f(x) with

less noise when the local sensitivity of f at x is lower. This
would allow us to release functions with large global (worst
case) sensitivity, but typically small local sensitivity with
much greater accuracy than allowed in [10].

Example 1. Let fmed(x) = median(x1, . . . , xn) where xi

are real numbers from a bounded interval, say, D = [0, ⇤].
For simplicity, assume n is odd and the database entries
are sorted in the nondecreasing order: x1  · · ·  xn. Let
m = n+1

2 be the rank of the median element. Global sen-
sitivity of the median, GSfmed , is ⇤, since for x1 = · · · =
xm = 0 and xm+1 = · · · = xn = ⇤, fmed(x1, . . . , xn) = 0
and fmed(x1, . . . , xm�1, ⇤, xm+1, . . . , xn) = ⇤. In this case,
adding noise proportional to GSfmed completely destroys
the information. However, on typical inputs, fmed is not
very sensitive: LSfmed(x) = max(xm � xm�1, xm+1 � xm).

Ideally, we would like to release f(x) with noise magnitude

proportional to LSf (x). However, noise magnitude might
reveal information about the database. For example, in the
case of the median, if the noise magnitude is proportional
to LSfmed(x), then the probability of receiving a non-zero
answer when x1 = · · · = xm+1 = 0, xm+2 = · · · = xn = ⇤ is
zero whereas the probability of receiving a non-zero answer
when x1 = · · · = xm = 0, xm+1 = · · · = xn = ⇤ is non-
negligible. Thus, the protocol is not (✏, �)-indistinguishable
for any negligible �. }

The lesson from this example is that the noise magnitude
has to be an insensitive function. To decide on the noise
magnitude we will use a smooth upper bound on the local
sensitivity, namely, a function S that is an upper bound on
LSf at all points and such that ln(S(·)) has low sensitivity.
We say S is ✏-smooth if GSln(S(·))  ✏.

Definition 2.1 (A Smooth Bound). For � > 0, a
function S : D

n ! R+ is a �-smooth upper bound on the
local sensitivity of f if it satisfies the following requirements:

8x 2 D
n : S(x) � LSf (x) ;

8x, y 2 D
n
, d(x, y) = 1 : S(x)  e

�
S(y) .

An example of a function that satisfies Definition 2.1 is
the smooth sensitivity of f :

Definition 2.2 (Smooth sensitivity). For � > 0,
the �-smooth sensitivity of f is

S
⇤
f,�(x) = max

y2Dn

“
LSf (y) · e��d(x,y)

”
.

The smooth sensitivity S
⇤
f,� is the smallest function to

satisfy Definition 2.1:

Lemma 2.3. S
⇤
f,� is a �-smooth upper bound on LSf . In

addition, S
⇤
f,�(x)  S(x) for all x 2 D

n for every �-smooth
upper bound S on LSf .

Note that the constant function S(x) = GSf also meets the
requirements of Definition 2.1, though in general it is a very
conservative upper bound on LSf .

2.2 Calibrating Noise to Smooth Bounds
We now show that adding noise proportional to a smooth

upper bound on the local sensitivity yields a private out-
put perturbation mechanism. We add noise proportional to
Sf (x)/↵, where Sf is a �-smooth upper bound on the local
sensitivity of f , and ↵, � are parameters of the noise distri-
bution. For functions taking values in Rd, the smoothing
parameter � is / ✏/d or / ✏/

p
d, depending on the exact

choice of the noise distribution.
For a subset S of Rd, we write S + � for the set {z + � :

z 2 S}́, and e
� · S for the set {e� · z : z 2 S} . We also write

a ± b for the interval [a� b, a + b].

Definition 2.4 (Admissible Noise Distribution).
A probability distribution h on Rd is (↵, �)-admissible if, for
↵ = ↵(✏, �), � = �(✏, �), the following two conditions hold for
all k�k  ↵ and |�|  �, and for all subsets S ✓ Rd:

Sliding Property: Pr
Z⇠h

h
Z 2 S
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✏
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Z⇠h
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Our mechanism releases accurate answers on interesting
inputs. For example, we prove that k-SED (k-means) clus-
ter centers are released accurately when the data is well-
separated, according to the definition proposed by Ostrovsky
et al. [15]. This definition implies that all near-optimal
clusterings of x induce similar partitions of the points of
x. [15] use this fact to show that well-separated data sets
are amenable to heuristics based on Lloyd’s algorithm. Our
techniques also allow one to learn and publish accurate pa-
rameters of a mixture of k spherical Gaussian distributions
when the data x consists of polynomially-many (in the di-
mension and k) i.i.d. samples from the distribution.

Previously, Blum et al. [3] showed that if there is an al-
gorithm for approximating f(x) using “noisy sum queries”,
then f(x) can be released accurately while preserving pri-
vacy. Their framework can also be interpreted as identifying
a “good” class of functions and inputs for which one can add
relatively little noise. Their approach requires a fairly in-
depth understanding of f , as one must be able to express f

in terms of a limited class of queries to the data.
Using their framework, Blum et al. [3] gave a private

version of a specific heuristic for k-SED clustering, called
Lloyd’s algorithm (or the k-means algorithm). They did
not, however, prove guarantees on how close the final out-
put of the algorithm is to the optimal cluster centers for x.
To our knowledge, our algorithms are the first to provide
such guarantees while preserving privacy.

2. INSTANCE-BASED ADDITIVE NOISE
Recall that in the interactive framework, the database

is stored on the trusted server. When the user needs to
obtain f(x), he sends a query f to the server and gets
f(x) + N(x)Z as a reply, where Z is a random variable
drawn from a noise distribution in Rd (fixed in advance and
known to the user) with standard deviation 1 in each co-
ordinate. The sample from the noise distribution is multi-
plied by the scaling factor N(x), which we refer to as the
noise magnitude. As explained in the Introduction, [10] gave
✏-indistinguishable protocols where the noise magnitude is
proportional to global sensitivity (and therefore independent
of database x). In this section, we explain how to safely re-
lease f(x) with potentially much smaller noise magnitude,
tailored to database x.

2.1 Smooth Bounds and Smooth Sensitivity
For a query function f , our goal is to release f(x) with

less noise when the local sensitivity of f at x is lower. This
would allow us to release functions with large global (worst
case) sensitivity, but typically small local sensitivity with
much greater accuracy than allowed in [10].

Example 1. Let fmed(x) = median(x1, . . . , xn) where xi

are real numbers from a bounded interval, say, D = [0, ⇤].
For simplicity, assume n is odd and the database entries
are sorted in the nondecreasing order: x1  · · ·  xn. Let
m = n+1

2 be the rank of the median element. Global sen-
sitivity of the median, GSfmed , is ⇤, since for x1 = · · · =
xm = 0 and xm+1 = · · · = xn = ⇤, fmed(x1, . . . , xn) = 0
and fmed(x1, . . . , xm�1, ⇤, xm+1, . . . , xn) = ⇤. In this case,
adding noise proportional to GSfmed completely destroys
the information. However, on typical inputs, fmed is not
very sensitive: LSfmed(x) = max(xm � xm�1, xm+1 � xm).

Ideally, we would like to release f(x) with noise magnitude

proportional to LSf (x). However, noise magnitude might
reveal information about the database. For example, in the
case of the median, if the noise magnitude is proportional
to LSfmed(x), then the probability of receiving a non-zero
answer when x1 = · · · = xm+1 = 0, xm+2 = · · · = xn = ⇤ is
zero whereas the probability of receiving a non-zero answer
when x1 = · · · = xm = 0, xm+1 = · · · = xn = ⇤ is non-
negligible. Thus, the protocol is not (✏, �)-indistinguishable
for any negligible �. }

The lesson from this example is that the noise magnitude
has to be an insensitive function. To decide on the noise
magnitude we will use a smooth upper bound on the local
sensitivity, namely, a function S that is an upper bound on
LSf at all points and such that ln(S(·)) has low sensitivity.
We say S is ✏-smooth if GSln(S(·))  ✏.

Definition 2.1 (A Smooth Bound). For � > 0, a
function S : D

n ! R+ is a �-smooth upper bound on the
local sensitivity of f if it satisfies the following requirements:

8x 2 D
n : S(x) � LSf (x) ;

8x, y 2 D
n
, d(x, y) = 1 : S(x)  e
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S(y) .

An example of a function that satisfies Definition 2.1 is
the smooth sensitivity of f :

Definition 2.2 (Smooth sensitivity). For � > 0,
the �-smooth sensitivity of f is

S
⇤
f,�(x) = max

y2Dn

“
LSf (y) · e��d(x,y)

”
.

The smooth sensitivity S
⇤
f,� is the smallest function to

satisfy Definition 2.1:

Lemma 2.3. S
⇤
f,� is a �-smooth upper bound on LSf . In

addition, S
⇤
f,�(x)  S(x) for all x 2 D

n for every �-smooth
upper bound S on LSf .

Note that the constant function S(x) = GSf also meets the
requirements of Definition 2.1, though in general it is a very
conservative upper bound on LSf .

2.2 Calibrating Noise to Smooth Bounds
We now show that adding noise proportional to a smooth

upper bound on the local sensitivity yields a private out-
put perturbation mechanism. We add noise proportional to
Sf (x)/↵, where Sf is a �-smooth upper bound on the local
sensitivity of f , and ↵, � are parameters of the noise distri-
bution. For functions taking values in Rd, the smoothing
parameter � is / ✏/d or / ✏/
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d, depending on the exact

choice of the noise distribution.
For a subset S of Rd, we write S + � for the set {z + � :

z 2 S}́, and e
� · S for the set {e� · z : z 2 S} . We also write

a ± b for the interval [a� b, a + b].

Definition 2.4 (Admissible Noise Distribution).
A probability distribution h on Rd is (↵, �)-admissible if, for
↵ = ↵(✏, �), � = �(✏, �), the following two conditions hold for
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What noise to add?

• Then satisfies (𝜀,𝛿)-DP.
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The definition requires the noise distribution to not change
much under translation (sliding) and scaling (dilation). A
distribution satisfying the two properties can be used to add
noise proportional to S(x):

Lemma 2.5. Let h be an (↵, �)-admissible noise probabil-
ity density function, and let Z be a fresh random variable
sampled according to h. For a function f : D

n ! Rd,
let S : D

n ! R be a �-smooth upper bound on the lo-
cal sensitivity of f . Then the database access mechanism
A(x) = f(x) + S(x)

↵ · Z is (✏, �)-indistinguishable.

On two neighbor databases x and y, the output distribution
A(y) is a shifted and scaled version of A(x). The sliding and
dilation properties ensure that Pr[A(x) 2 S] and Pr[A(y) 2
S] are close for all sets S of outputs.

Example 2. Let h(z) / 1/(1 + |z|�) for � > 1. These
h(x) are (✏/4�, ✏/�)-admissible, and yield � = 0. This is a
collection of heavy tail distributions, asymptotically decreas-
ing / 1/|z|� . For � > 3 they have well-defined expectations
and variances. In dimension d > 1, one can use a product
of these distributions; the result is (✏/4�, ✏/d�)- admissible.

A simple observation gives an intuition to why � = 0 im-
plies an inverse polynomial decrease. Consider a distribution
h(z) that behaves asymptotically as e

�f(z) for some f . By
the dilation property, e

�f(z)
/e
�f(e�z) = e

�f(z)+f(e�z)
< e

✏

for some fixed ✏ or, equivalently, f(e�
z) � f(z) < ✏, for all

z 2 R. If ✏/� is bounded above, the constraint implies that
f(z) > c ln(|z|) for some fixed c. Hence h(z) = ⌦(1/z

c). }

To allow noise distributions that are not heavy tail (such
as Gaussian and Laplace), we take � > 0, and require the
sliding and dilation properties to hold with high probability.

Example 3. The Laplace distribution, h(z) = 1
2 ·e

�|z|, is
(↵, �)-admissible with ↵ = ✏/2, � = ✏/2 ln(1/�). In dimen-
sion d > 1, one can use the product of Laplace distributions,
with � = ⌦(✏/

p
d ln(1/�)).

The Gaussian distribution, h(z) = 1
2⇡ · e

�z2/2, is (↵, �)-
admissible with ↵ = ✏/

p
ln(1/�), � = ✏/2 ln(1/�). In dimen-

sion d > 1, we get � = ⌦(✏/
p

d ln(1/�)). }

3. COMPUTING SMOOTH SENSITIVITY
In this section we show how to compute smooth sensitivity

S
⇤
f,✏(x), proposed in Definition 2.2, for two specific functions,

median and the cost of the minimum spanning tree.
First we give some generic observations on computing

smooth sensitivity. We start by defining a function that
describes how much the sensitivity can change when up to
k entries of x are modified. This function has to be well
understood in order to compute the smooth sensitivity of f .

Definition 3.1. The sensitivity of f at distance k is

A
(k)(x) = max

y2Dn: d(x,y)k
LSf (y) .

Now smooth sensitivity can be expressed in terms of A
(k):

S
⇤
f,✏(x) = max

k=0,1,...,n
e
�k✏

„
max

y: d(x,y)=k
LSf (y)

«

= max
k=0,1,...,n

e
�k✏

A
(k)(x) .

Thus, to compute the smooth sensitivity of f at x, it suffices
to understand A

(k)(x).
For functions for which we cannot compute S

? efficiently,
we might be able to give an efficient approximation algo-
rithm. We stress that not every approximation to S

⇤ is
appropriate in our framework: some approximations to S

⇤

might leak information. The function computed by an ap-
proximation algorithm is acceptable only if it is a smooth up-
per bound on S

⇤. The next claim provides a general method
for giving smooth upper bounds on local sensitivity.

Claim 3.2. Let S̃f,✏(x) = maxk=0,...,n(Uk(x)·e�✏k) where
(1) LS(x)  U0(x) and (2) for x, y such that d(x, y) = 1,
Uk(x)  Uk+1(y). For a given value k0(n), let Ŝf,✏(x) =
max(GSf ·e�✏k0 , maxk=0,...,k0�1 e

�✏k·A(k)(x)). Then S̃f,✏(x)
and Ŝf,✏(x) are ✏-smooth upper bounds on local sensitivity.

3.1 Median
Let fmed be as in Example 1 and assume the database

elements are in nondecreasing order. Recall that GSfmed =
⇤, and LSfmed = max(xm�xm�1, xm+1�xm) for m = n+1

2 .
For notational convenience, define xi = 0 for i  0 and
xi = ⇤ for i > n.

Claim 3.3. The smooth sensitivity of the median is

S
⇤
fmed,✏(x) = max

k=0,...,n
(e�k✏ · max

t=0,...,k+1
(xm+t � xm+t�k�1)).

It can be computed in time O(n2).

Proof. By changing up to k entries in x1, . . . , xn to 0
or ⇤, one can shift the median anywhere in the interval
[xm�k, xm+k]. The local sensitivity at distance k is maxi-
mized when the new median is an end point of a large empty
interval. This is achieved when entries xm�k+t, . . . , xm�1+t

for some t = 0, . . . , k + 1 are modified as follows: xi with
i < m are set to 0 and xi with i � m are set to ⇤. Thus,

A
(k)(x) = max

y: d(x,y)=k
LS(y) = max

0tk+1
(xm+t � xm+t�k�1) .

As A
(k) is computable in time O(k), we get that S

⇤
fmed

(x) =

maxk e
�✏k

A
(k)(x) is computable in time O(n2).

For example, consider the instance where xi = (⇤i)/n

for all i 2 [n]. In this case, A
(k)(x) = (k + 1)⇤/n, and

e
�✏

A
(k)(x) is maximized when k = 1/✏. Then S

⇤  ⇤/(✏n),
and consequently, the magnitude of the noise we add is
⇤/(✏2n). For comparison, the noise magnitude for fmed in
the global sensitivity framework of [10] is ⇤/✏, high enough
to destroy all information.

Claim 3.2 leads to approximation algorithms for S
⇤
fmed,✏:

Claim 3.4. There is a smooth upper bound on LSfmed

that is a factor 2 approximation to S
⇤
fmed,✏ and is computable

in time O(n). There is smooth upper bound on LSfmed that
approximates S

⇤
fmed,✏ within error ⇤

poly(n) and is computable

in time O( log2 n
✏2

).

3.2 The Cost of a Minimum Spanning Tree
Let G = (V, E) be an undirected connected graph with

edge weights w(e) 2 [0, ⇤] for all e 2 E, where each edge
weight is reported to the database by an individual. Let
fMST(G) be the MST cost in G. Global sensitivity, GSfMST ,
is ⇤ because for the complete graph with all weights equal

2. If �  ✏

2 ln( 2� )
and � 2 (0, 1), the algorithm x 7! f(x) + 2S(x)

✏
· ⌘, where ⌘ ⇠ Lap(1), is (✏, �)-

differentially private.

For functions taking values in Rd, the situation is more complicated since the smoothing parameter �
will depend on d as well as ✏ and �. Moreover, there are many natural choices of metrics with respect to
which one may measure sensitivity. We discuss the `1 (Lemma 2.9) and `2 metrics below (Lemma 2.10).

2.2.1 Admissible Noise Distributions

We start by abstracting out a requirement on admissible noise distributions in Definition 2.5. In Lemma 2.6,
we prove that adding admissible noise and releasing the result is differentially private. Then we give several
examples of admissible noise distributions, including Laplace and Gaussian, and work out their parameters.

Notation. For a subset S of Rd, we write S + � for the set {z + � | z 2 S},́ and e
� · S for the set

{e� · z | z 2 S} . We also write a± b for the interval [a� b, a+ b].

Definition 2.5 (Admissible Noise Distribution). A probability distribution on Rd, given by a density func-
tion h, is (↵,�)-admissible (with respect to `1) if, for ↵ = ↵(✏, �),� = �(✏, �), the following two conditions
hold for all � 2 Rd and � 2 R satisfying k�k1  ↵ and |�|  �, and for all measurable subsets S ✓ Rd:

Sliding Property: Pr
Z⇠h

h
Z 2 S

i
 e

✏
2 · Pr

Z⇠h

h
Z 2 S +�

i
+ �

2 .

Dilation Property: Pr
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h
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i
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2 .

Figure 1: Sliding and dilation for the Laplace distribution with p.d.f. h(z) = 1
2e

�|z|, plotted as a solid line. The dotted lines plot
the densities h(z + 0.3) (left) and e0.3h(e0.3z) (right).

The definition requires the noise distribution to not change much under translation (sliding) and scaling
(dilation). See Fig. 1 for an example. A distribution satisfying the two properties can be used to add noise
proportional to a smooth upper bound on local sensitivity:

Lemma 2.6. Let h be an (↵,�)-admissible noise probability density function, and let Z be a fresh random
variable sampled according to h. For a function f : Dn ! Rd, let S : Dn ! R be a �-smooth upper bound
on the local sensitivity of f . Then algorithm A(x) = f(x) + S(x)

↵
· Z is (✏, �)-differentially private.

For two neighbor databases x and y, the output distribution A(y) is a shifted and scaled version of A(x).
The sliding and dilation properties ensure that Pr[A(x) 2 S] and Pr[A(y) 2 S] are close for all sets S of
outputs.

Proof of Lemma 2.6: For all neighboring x, y 2 D
n and all sets S , we need to show that

Pr[A(x) 2 S]  e
✏ · Pr[A(y) 2 S] + �.

8
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Example:  Cauchy-Noise, Laplace-
noise,  Gaussian noise
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If we consider the d-wise product of h, then dilation by e
� can increase each of the components of the

product density by e
�(��1), for a total increase of at most ed�(��1). It suffices to take �  ✏

2d(�+1) . In the
case of translation by a vector � = (�1, ...�d) 2 Rd, the i-th component gets increased by a factor of e�i� ,
so the overall increase is at most ek�k1� . It therefore suffices to take k�k1  ✏

2(�+1) .

A simple observation gives an intuition to why � = 0 implies an inverse polynomial decrease. Con-
sider a distribution h(z) that behaves asymptotically as e

�f(z) for some f . By the dilation property,
e
�f(z)

/e
�f(e�z) = e

�f(z)+f(e�z)
< e

✏ for some fixed ✏ or, equivalently, f(e�z)�f(z) < ✏, for all z 2 R. If
✏/� is bounded above, the constraint implies that f(z) > c ln(|z|) for some fixed c. Hence h(z) = ⌦(1/zc).
To allow noise distributions with exponentially decreasing tails (such as Gaussian and Laplace), we must
therefore take � > 0.

To prove sliding, it suffices to prove that the log-ratio ln(h(z+�)
h(z) (respectively, ln( e

d�
h(e�z)
h(z) )) is bounded

above by ✏

2 with probability at least 1� �

2 . For both Gaussian and Laplace variables, the log-ratio is tied to
the probability that the noise variable has large norm (i.e. lies far out on the tail). In high dimension, this
probability is somewhat messy to state, so we first introduce some notation.

Definition 2.8. Given a real-valued random variable Y and a number � 2 (0, 1), let ⇢�(Y ) be the (1� �)-
quantile of Y , that is, the least solution to Pr(Y  ⇢�) � 1� �.

Lemma 2.9. For ✏, � 2 (0, 1), the d-dimensional Laplace distribution, h(z) = 1
2d

· e�kzk1 , is (↵,�)-
admissible with ↵ = ✏

2 , and � = ✏

2⇢�/2(kZk1) , where Z ⇠ h. In particular, it suffices to use ↵ = ✏

2 and
� = ✏

4(d+ln(2/�)) . For d = 1, it suffices to use � = ✏

2 ln(2/�) .

Proof. The sliding property for Laplace was proven in [15]. For the dilation property, consider � > 0. In
this case, h(e�z) < h(z), so the log-ratio ln( e

d�
h(e�z)
h(z) ) is at most d�  ✏

2⇢�0 (kZk1) (where �
0 def
= �

2 ). The
median of the distribution kZk1 is at most d and �

0
< 1/2, so ⇢�0(kZk1) > d. Thus �d is at most ✏

2 .
Next, we prove the dilation property for � < 0. The ratio h(e�z)

h(z) is exp(|z|(1� e
�)). Since 1� e

�  |�|,

we get that ln( e
�
h(e�z)
h(z) ) is at most |z|�. Consider the event G = {z : |z|  ⇢�}. Under this event, the log-

ratio above is at most ✏/2. The probability of G under density h is 1� �. Thus, probability of a given set S
under h is at most Prh[S\G]+Prh[Ḡ]  e

✏/2 Prh0 [S\G]+ �

2  e
✏/2 Prh0 [S]+ �

2 , where h0(z) = e
�
h(e�z)

is the density of the dilated distribution.
The norm kZk1 is a sum of d indpendent exponential random variables. By Fact A.1, the quantile ⇢�0 is

at most 2d+ 2 ln(1/�0), so it suffices to take � = ✏

4(d+ln(2/�)) <
✏

2⇢�0 (kZk1) .

Here, we work out the details for the case of Gaussian noise. This type of noise is useful since it allows
us to tailor the noise level to a function’s sensitivity in the `2 (Euclidean) norm. This will be useful when
we consider k-means clustering in high dimensions, for example, where the Euclidean metric is natural.
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1

(2⇡)d/2
· e�

1
2kzk

2
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, and � = ✏

2⇢�/2(kZk22)
,

where Z = (Z1, ..., Zd) ⇠ h.
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5
p
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and � = ✏

4(d+ln(2/�)) .

Proof. The sliding property was proven implicitly by Blum, Dwork, McSherry and Nissim [4]. Consider
a shift � 2 Rd, with k�k2  ↵. Since Gaussian noise is spherically symmetric, we can consider � =
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✏/2 Prh0 [S\G]+ �

2  e
✏/2 Prh0 [S]+ �

2 , where h0(z) = e
�
h(e�z)

is the density of the dilated distribution.
The norm kZk1 is a sum of d indpendent exponential random variables. By Fact A.1, the quantile ⇢�0 is

at most 2d+ 2 ln(1/�0), so it suffices to take � = ✏

4(d+ln(2/�)) <
✏

2⇢�0 (kZk1) .

Here, we work out the details for the case of Gaussian noise. This type of noise is useful since it allows
us to tailor the noise level to a function’s sensitivity in the `2 (Euclidean) norm. This will be useful when
we consider k-means clustering in high dimensions, for example, where the Euclidean metric is natural.

Lemma 2.10 (Gaussian Distribution). For ✏, � 2 (0, 1), the d-dimensional Gaussian distribution, h(z) =
1

(2⇡)d/2
· e�

1
2kzk

2
2 , is (↵,�)-admissible for the Euclidean metric with ↵ = ✏

5⇢�/2(Z1)
, and � = ✏

2⇢�/2(kZk22)
,

where Z = (Z1, ..., Zd) ⇠ h.
In particular, it suffices to take ↵ = ✏
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Denote S(x)
↵

by N(x). Observe that A(x) 2 S if and only if Z 2 S1, where S1 = S�f(x)
N(x) . Let S2 =

S1 +
f(y)�f(x)

N(x) = S�f(y)
N(x) and S3 = S2 · N(x)

N(y) =
S�f(y)
N(y) . Then

Pr[A(x) 2 S] = Pr
z⇠h

[z 2 S1]

 Pr
z⇠h

[z 2 S2] · e✏/2 +
�

2

 Pr
z⇠h

[z 2 S3] · e✏ +
�

2
· e✏/2 + �

2
= Pr

z⇠h

[A(y) 2 S] · e✏ + �.

The first inequality holds since h satisfies the Sliding Property of Definition 2.5 and since

kf(y)� f(x)k
N(x)

= ↵ · kf(y)� f(x)k
S(x)

 ↵ · kf(y)� f(x)k
LSf (x)

 ↵.

The second inequality holds since h satisfies the Dilation Property of Definition 2.5 and since S(x) is �-
smooth, which implies that

���ln N(x)
N(y)

��� =
���ln S(x)

S(y)

���  | ln e±� |  �.

2.2.2 Examples of Admissible Noise Distributions

We discuss three families of admissible distributions on the real line; in higher dimensions, we use products
of these distributions (that is, we add independent noise in each coordinate). The first family is a general-
ization of the Cauchy distribution, which has density proportional to 1

1+z2
. It yields “pure” ✏-differential

privacy (that is, with � = 0). We subsequently consider the Laplace and Gaussian distributions, which lead
to mechanisms with � > 0 (but tighter concentration and sometimes smaller noise).

Throughout the following proofs, we will use the following idea: to show that a dsitribution with density
h satisfies a property like dilation, it suffices to show that the logarithm of the ratio ln(h(z+�)

h(z) ) is bounded
with high probability over z drawn according to the distribution given by h. Simialrly, for dilation we
analyze ln( e

�
h(e�z)
h(z) ).

Lemma 2.7. For any � > 1, the distribution with density h(z) / 1
1+|z|� is ( ✏

2(�+1) ,
✏

2(�+1))-admissible (with
� = 0). Moreover, the d-dimensional product of independent copies of h is ( ✏

2(�+1) ,
✏

2d(�+1))- admissible.

Proof. We first consider a dilation by a factor of e�, where |�| < ✏

2� . To show the dilation property, it is

sufficient to show that the logarithm of the ratio of the densities, ln( e
�
h(e�z)
h(z) ) = ln( e

�(1+(�|z|)�)
1+|z|� ), is at most

✏
0 def
= ✏/2. For � � 0, we can bound (1+(e�|z|)�)

1+|z|� above by (e�|z|)�
|z|� = e

�� , so we get ln( e
�
h(e�z)
h(z) ) < �(�+1).

This is at most ✏0 since � <
✏

2(�+1) . A symmetric argument works for � < 0.

To prove the sliding property, write the logarithm of the ratio of the densities as ln(h(z+�)
h(z) ) as a differ-

ence �(|z|)� �(|z +�|), where �(z) = ln(1 + z
�). By the mean value theorem, there exists a point ⇣ > 0

such that |�(|z +�|)� �(|z|)|  �|�0(⇣)|. The magnitude of the derivative �
0 is bounded by �: for any ⇣,

�
0(⇣) = �⇣

��1

1+⇣�
= �

⇣+⇣�(��1) , and one of the terms ⇣ and ⇣
�(��1) is at least 1 (recall � � 1 > 0). Combining

these bounds, we get | ln(h(z+�)
h(z) )|  ��. Since � < ✏/2(� + 1), the logarithm of the densities’ ratio is at

most ✏0 = ✏/2, as desired.
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Our mechanism releases accurate answers on interesting
inputs. For example, we prove that k-SED (k-means) clus-
ter centers are released accurately when the data is well-
separated, according to the definition proposed by Ostrovsky
et al. [15]. This definition implies that all near-optimal
clusterings of x induce similar partitions of the points of
x. [15] use this fact to show that well-separated data sets
are amenable to heuristics based on Lloyd’s algorithm. Our
techniques also allow one to learn and publish accurate pa-
rameters of a mixture of k spherical Gaussian distributions
when the data x consists of polynomially-many (in the di-
mension and k) i.i.d. samples from the distribution.

Previously, Blum et al. [3] showed that if there is an al-
gorithm for approximating f(x) using “noisy sum queries”,
then f(x) can be released accurately while preserving pri-
vacy. Their framework can also be interpreted as identifying
a “good” class of functions and inputs for which one can add
relatively little noise. Their approach requires a fairly in-
depth understanding of f , as one must be able to express f

in terms of a limited class of queries to the data.
Using their framework, Blum et al. [3] gave a private

version of a specific heuristic for k-SED clustering, called
Lloyd’s algorithm (or the k-means algorithm). They did
not, however, prove guarantees on how close the final out-
put of the algorithm is to the optimal cluster centers for x.
To our knowledge, our algorithms are the first to provide
such guarantees while preserving privacy.

2. INSTANCE-BASED ADDITIVE NOISE
Recall that in the interactive framework, the database

is stored on the trusted server. When the user needs to
obtain f(x), he sends a query f to the server and gets
f(x) + N(x)Z as a reply, where Z is a random variable
drawn from a noise distribution in Rd (fixed in advance and
known to the user) with standard deviation 1 in each co-
ordinate. The sample from the noise distribution is multi-
plied by the scaling factor N(x), which we refer to as the
noise magnitude. As explained in the Introduction, [10] gave
✏-indistinguishable protocols where the noise magnitude is
proportional to global sensitivity (and therefore independent
of database x). In this section, we explain how to safely re-
lease f(x) with potentially much smaller noise magnitude,
tailored to database x.

2.1 Smooth Bounds and Smooth Sensitivity
For a query function f , our goal is to release f(x) with

less noise when the local sensitivity of f at x is lower. This
would allow us to release functions with large global (worst
case) sensitivity, but typically small local sensitivity with
much greater accuracy than allowed in [10].

Example 1. Let fmed(x) = median(x1, . . . , xn) where xi

are real numbers from a bounded interval, say, D = [0, ⇤].
For simplicity, assume n is odd and the database entries
are sorted in the nondecreasing order: x1  · · ·  xn. Let
m = n+1

2 be the rank of the median element. Global sen-
sitivity of the median, GSfmed , is ⇤, since for x1 = · · · =
xm = 0 and xm+1 = · · · = xn = ⇤, fmed(x1, . . . , xn) = 0
and fmed(x1, . . . , xm�1, ⇤, xm+1, . . . , xn) = ⇤. In this case,
adding noise proportional to GSfmed completely destroys
the information. However, on typical inputs, fmed is not
very sensitive: LSfmed(x) = max(xm � xm�1, xm+1 � xm).

Ideally, we would like to release f(x) with noise magnitude

proportional to LSf (x). However, noise magnitude might
reveal information about the database. For example, in the
case of the median, if the noise magnitude is proportional
to LSfmed(x), then the probability of receiving a non-zero
answer when x1 = · · · = xm+1 = 0, xm+2 = · · · = xn = ⇤ is
zero whereas the probability of receiving a non-zero answer
when x1 = · · · = xm = 0, xm+1 = · · · = xn = ⇤ is non-
negligible. Thus, the protocol is not (✏, �)-indistinguishable
for any negligible �. }

The lesson from this example is that the noise magnitude
has to be an insensitive function. To decide on the noise
magnitude we will use a smooth upper bound on the local
sensitivity, namely, a function S that is an upper bound on
LSf at all points and such that ln(S(·)) has low sensitivity.
We say S is ✏-smooth if GSln(S(·))  ✏.

Definition 2.1 (A Smooth Bound). For � > 0, a
function S : D

n ! R+ is a �-smooth upper bound on the
local sensitivity of f if it satisfies the following requirements:

8x 2 D
n : S(x) � LSf (x) ;

8x, y 2 D
n
, d(x, y) = 1 : S(x)  e

�
S(y) .

An example of a function that satisfies Definition 2.1 is
the smooth sensitivity of f :

Definition 2.2 (Smooth sensitivity). For � > 0,
the �-smooth sensitivity of f is

S
⇤
f,�(x) = max

y2Dn

“
LSf (y) · e��d(x,y)

”
.

The smooth sensitivity S
⇤
f,� is the smallest function to

satisfy Definition 2.1:

Lemma 2.3. S
⇤
f,� is a �-smooth upper bound on LSf . In

addition, S
⇤
f,�(x)  S(x) for all x 2 D

n for every �-smooth
upper bound S on LSf .

Note that the constant function S(x) = GSf also meets the
requirements of Definition 2.1, though in general it is a very
conservative upper bound on LSf .

2.2 Calibrating Noise to Smooth Bounds
We now show that adding noise proportional to a smooth

upper bound on the local sensitivity yields a private out-
put perturbation mechanism. We add noise proportional to
Sf (x)/↵, where Sf is a �-smooth upper bound on the local
sensitivity of f , and ↵, � are parameters of the noise distri-
bution. For functions taking values in Rd, the smoothing
parameter � is / ✏/d or / ✏/

p
d, depending on the exact

choice of the noise distribution.
For a subset S of Rd, we write S + � for the set {z + � :

z 2 S}́, and e
� · S for the set {e� · z : z 2 S} . We also write

a ± b for the interval [a� b, a + b].

Definition 2.4 (Admissible Noise Distribution).
A probability distribution h on Rd is (↵, �)-admissible if, for
↵ = ↵(✏, �), � = �(✏, �), the following two conditions hold for
all k�k  ↵ and |�|  �, and for all subsets S ✓ Rd:

Sliding Property: Pr
Z⇠h

h
Z 2 S

i
 e

✏
2 · Pr

Z⇠h

h
Z 2 S + �

i
+ �

2

Dilation Property: Pr
Z⇠h

h
Z 2 S

i
 e

✏
2 · Pr

Z⇠h

h
Z 2 e

� · S
i

+ �
2

(↵, 0, ..., 0) without loss of generality. Then the ratio h(z+�)
h(z) reduces to the ratio of a one-dimensional

Gaussian density evaluated at points z1 and z1 + ↵. This ratio is exp(|z1|2 � |z1 + ↵|2), which is at most
exp(2↵|z1|+ ↵

2).
It therefore suffices to prove that 2↵|z1| + ↵

2  ✏/2 with probability at least �. Let G be the event
|z1| < ⇢�0(z1). Conditioned on G, 2↵|z1| + ↵

2  2✏
5 + ✏

2

25  ✏/2, as desired. (The last inequality uses the
assumption that ✏ < 1, and ⇢�0(|Z1|) > 1.) The probability of G is �

0 = �/2, which bounds the additive
term in the sliding property. Because |z1| is is normal with mean 0 and variance 1, we have ⇢�0

p
2 ln(2/�),

by a standard tail bound (Fact A.2). So it suffices to take ↵ = ✏

5
p

2 ln(2/�)
.

For dilation by a factor of � > 0, the density h(e�z) is less than h(z) for all z, so ln( e
d�

h(e�z)
h(z) )  d� <

✏/2 (since the median of kZk22 is at least d).
For � < 0, note that ln(h(e

�
z)

h(z) ) = exp(12kzk
2
2(1� e

2�))  kzk22 · |�|. By the definition, the norm kzk22
exceeds ⇢�0(kZk22) = ✏

2|�| with probability at most �0 = �/2. Under this condition, kzk22 · |�|  ✏

2 , which
implies the dilation condition.

Finally, we can bound ⇢�0(kZk22) by 2d+ 4 ln(1/�0), to show that � = ✏

4(d+ln(2/�)) is sufficient.

3 Computing Smooth Sensitivity

In this section we show how to compute smooth sensitivity S
⇤
f,✏
(x), as in Definition 2.2, for several specific

functions: median, minimum, the cost of a minimum spanning tree and the number of triangles in a graph.
We also construct a function for which the smooth sensitivity is hard to compute or even approximate.

First we give some generic observations on computing smooth sensitivity. We start by defining a function
that describes how much the sensitivity can change when up to k entries of x are modified. This function
has to be well understood in order to compute the smooth sensitivity of f .

Definition 3.1. The sensitivity of f at distance k is

A
(k)(x) = max

y2Dn: d(x,y)k

LSf (y) .

Now smooth sensitivity can be expressed in terms of A(k):

S
⇤
f,✏(x) = max

k=0,1,...,n
e
�k✏

✓
max

y: d(x,y)=k

LSf (y)

◆

= max
k=0,1,...,n

e
�k✏

A
(k)(x) .

Thus, to compute the smooth sensitivity of f at x, it suffices to understand A
(k)(x).

For functions for which we cannot compute S
? efficiently, we might be able to give an efficient approx-

imation algorithm. We stress that not every approximation to S
⇤ is appropriate in our framework: some

approximations to S
⇤ might leak information. The function computed by an approximation algorithm is ac-

ceptable only if it is a smooth upper bound on LSf (x). The next claims provide methods for giving smooth
upper bounds on local sensitivity.

Claim 3.2. For a given value k0(n), let

Ŝf,✏(x) = max(GSf · e�✏k0 , max
k=0,...,k0�1

e
�✏k ·A(k)(x)).

Then S̃f,✏(x) is an ✏-smooth upper bound on local sensitivity.
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Proof. Consider two neighboring inputs x and y.

Claim 3.3. Let S̃f,✏(x) = maxk=0,...,n(Uk(x) · e�✏k) where Uk satisfies

1. LSf (x)  U0(x), and

2. Uk(x)  Uk+1(y) for all x, y such that d(x, y) = 1.

Then S̃f,✏(x) is an ✏-smooth upper bound on local sensitivity.

Proof. We need to show that equations (1) and (2) of Definition 2.1 hold for S̃f,✏(x). Equation (1) holds as

LSf (x)  U0(x)  S̃f,✏(x).

Equation (2) holds as

S̃f,✏(x) = max
k=0,...,n

e
�✏k · Uk(x)  e

✏ · max
k=1,...,n

e
�✏k · Uk(y)  e

✏ · S̃f,✏(y).

3.1 Smooth Sensitivity of the Median

Recall that fmed(x1, ..., xn) was defined to be the median of values in D = [0,⇤]. For simplicity, assume n

is odd, and the database elements are in nondecreasing order: 0  x1  · · ·  xn  ⇤. In Example 1 we
observed that GSfmed

= ⇤, and LSfmed
= max(xm � xm�1, xm+1 � xm) for m = n+1

2 . For notational
convenience, define xi = 0 for i  0 and xi = ⇤ for i > n.

Proposition 3.4. The smooth sensitivity of the median is

S
⇤
fmed,✏

(x) = max
k=0,...,n

(e�k✏ · max
t=0,...,k+1

(xm+t � xm+t�k�1)).

It can be computed in time O(n log n).

Before we prove the proposition, we illustrate the result with an example. Consider an instance where
the points xi are restricted to the interval [0, 1] (that is, ⇤ = 1) and the points are evenly spaced the interval
(that is, xi = i

n
for i = 1, ..., n). In this case, S⇤(x) = maxk e�✏k · k+1

n
. The maximum occurs at k = 1/✏.

We get S⇤  1
✏n

and so the magnitude of the noise we add is 1
✏2n

. For comparison, the noise magnitude for
fmed in the global sensitivity framework of [15] is 1/✏; adding noise of that magnitude essentially wipes out
all information about the median since the extreme values, 0 and 1 are hard to distinguish.

Proof. By changing up to k entries in x1, . . . , xn to 0 or ⇤, one can shift the median anywhere in the interval
[xm�k, xm+k]. The local sensitivity at distance k is maximized when the new median is an end point of a
large empty interval. This is achieved when entries xm�k+t, . . . , xm�1+t for some t = 0, . . . , k + 1 are
modified as follows: xi with i < m are set to 0 and xi with i � m are set to ⇤. Thus,

A
(k)(x) = max

y: d(x,y)k

LS(y) = max
0tk+1

(xm+t � xm+t�k�1) .

As A(k) is computable in time O(k), we get that S⇤
fmed

(x) = maxk e�✏k
A

(k)(x) is computable in time
O(n2). However, one in fact give an O(n log n)-time algorithm for computing S

⇤
fmed

(x). The algorithm we
give here is due to Sergey Orshanskiy.
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Equation (2) holds as
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3.1 Smooth Sensitivity of the Median

Recall that fmed(x1, ..., xn) was defined to be the median of values in D = [0,⇤]. For simplicity, assume n

is odd, and the database elements are in nondecreasing order: 0  x1  · · ·  xn  ⇤. In Example 1 we
observed that GSfmed

= ⇤, and LSfmed
= max(xm � xm�1, xm+1 � xm) for m = n+1

2 . For notational
convenience, define xi = 0 for i  0 and xi = ⇤ for i > n.

Proposition 3.4. The smooth sensitivity of the median is

S
⇤
fmed,✏

(x) = max
k=0,...,n

(e�k✏ · max
t=0,...,k+1

(xm+t � xm+t�k�1)).

It can be computed in time O(n log n).

Before we prove the proposition, we illustrate the result with an example. Consider an instance where
the points xi are restricted to the interval [0, 1] (that is, ⇤ = 1) and the points are evenly spaced the interval
(that is, xi = i

n
for i = 1, ..., n). In this case, S⇤(x) = maxk e�✏k · k+1

n
. The maximum occurs at k = 1/✏.

We get S⇤  1
✏n

and so the magnitude of the noise we add is 1
✏2n

. For comparison, the noise magnitude for
fmed in the global sensitivity framework of [15] is 1/✏; adding noise of that magnitude essentially wipes out
all information about the median since the extreme values, 0 and 1 are hard to distinguish.

Proof. By changing up to k entries in x1, . . . , xn to 0 or ⇤, one can shift the median anywhere in the interval
[xm�k, xm+k]. The local sensitivity at distance k is maximized when the new median is an end point of a
large empty interval. This is achieved when entries xm�k+t, . . . , xm�1+t for some t = 0, . . . , k + 1 are
modified as follows: xi with i < m are set to 0 and xi with i � m are set to ⇤. Thus,
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(k)(x) = max

y: d(x,y)k

LS(y) = max
0tk+1

(xm+t � xm+t�k�1) .

As A(k) is computable in time O(k), we get that S⇤
fmed

(x) = maxk e�✏k
A

(k)(x) is computable in time
O(n2). However, one in fact give an O(n log n)-time algorithm for computing S

⇤
fmed

(x). The algorithm we
give here is due to Sergey Orshanskiy.
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(↵, 0, ..., 0) without loss of generality. Then the ratio h(z+�)
h(z) reduces to the ratio of a one-dimensional

Gaussian density evaluated at points z1 and z1 + ↵. This ratio is exp(|z1|2 � |z1 + ↵|2), which is at most
exp(2↵|z1|+ ↵

2).
It therefore suffices to prove that 2↵|z1| + ↵

2  ✏/2 with probability at least �. Let G be the event
|z1| < ⇢�0(z1). Conditioned on G, 2↵|z1| + ↵

2  2✏
5 + ✏

2

25  ✏/2, as desired. (The last inequality uses the
assumption that ✏ < 1, and ⇢�0(|Z1|) > 1.) The probability of G is �

0 = �/2, which bounds the additive
term in the sliding property. Because |z1| is is normal with mean 0 and variance 1, we have ⇢�0

p
2 ln(2/�),

by a standard tail bound (Fact A.2). So it suffices to take ↵ = ✏

5
p

2 ln(2/�)
.

For dilation by a factor of � > 0, the density h(e�z) is less than h(z) for all z, so ln( e
d�

h(e�z)
h(z) )  d� <

✏/2 (since the median of kZk22 is at least d).
For � < 0, note that ln(h(e

�
z)

h(z) ) = exp(12kzk
2
2(1� e

2�))  kzk22 · |�|. By the definition, the norm kzk22
exceeds ⇢�0(kZk22) = ✏

2|�| with probability at most �0 = �/2. Under this condition, kzk22 · |�|  ✏

2 , which
implies the dilation condition.

Finally, we can bound ⇢�0(kZk22) by 2d+ 4 ln(1/�0), to show that � = ✏

4(d+ln(2/�)) is sufficient.

3 Computing Smooth Sensitivity

In this section we show how to compute smooth sensitivity S
⇤
f,✏
(x), as in Definition 2.2, for several specific

functions: median, minimum, the cost of a minimum spanning tree and the number of triangles in a graph.
We also construct a function for which the smooth sensitivity is hard to compute or even approximate.

First we give some generic observations on computing smooth sensitivity. We start by defining a function
that describes how much the sensitivity can change when up to k entries of x are modified. This function
has to be well understood in order to compute the smooth sensitivity of f .

Definition 3.1. The sensitivity of f at distance k is

A
(k)(x) = max

y2Dn: d(x,y)k

LSf (y) .

Now smooth sensitivity can be expressed in terms of A(k):

S
⇤
f,✏(x) = max

k=0,1,...,n
e
�k✏

✓
max

y: d(x,y)=k

LSf (y)

◆

= max
k=0,1,...,n

e
�k✏

A
(k)(x) .

Thus, to compute the smooth sensitivity of f at x, it suffices to understand A
(k)(x).

For functions for which we cannot compute S
? efficiently, we might be able to give an efficient approx-

imation algorithm. We stress that not every approximation to S
⇤ is appropriate in our framework: some

approximations to S
⇤ might leak information. The function computed by an approximation algorithm is ac-

ceptable only if it is a smooth upper bound on LSf (x). The next claims provide methods for giving smooth
upper bounds on local sensitivity.

Claim 3.2. For a given value k0(n), let

Ŝf,✏(x) = max(GSf · e�✏k0 , max
k=0,...,k0�1

e
�✏k ·A(k)(x)).

Then S̃f,✏(x) is an ✏-smooth upper bound on local sensitivity.
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Checkpoint:  smooth sensitivity

• We cannot calibrate noise to local sensitivity
• Because noise-level itself may be sensitive

• Idea: construct smooth upper bound of local 
sensitivity

• Noise that satisfies stability under “translation” and 
“scaling” are admissible
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Concentrated DP analysis of 
Smoothed Sensitivity
• Adding log-normal noise

• X drawn from Laplace and Y from a standard 
Normal.
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Bun and Steinke (2019): “Average case averages”: https://arxiv.org/pdf/1906.02830.pdf

differential privacy. In particular, the notion of concentrated differential privacy (CDP) [15, 5] has a
simple and tight composition theorem for analyzing how privacy degrades over many releases while
accommodating most of the key algorithms in the differential privacy literature, including addition of
Gaussian noise calibrated to global sensitivity.
Definition 2 (Concentrated Differential Privacy (CDP) [15, 5]). A randomized algorithm

M : Xn ! Y is
1
2"

2
-concentrated differentially private (

1
2"

2
-CDP) if, for all neighboring

datasets x, y 2 Xn
and all ↵ 2 (1,1), D↵ (M(x)kM(y))  1

2"
2
↵, where D↵ (PkQ) =

1
↵�1 log E

X P

h
(P (X)/Q(X))↵�1

i
denotes the Rényi divergence of order ↵.

Another variant, Rényi Differential Privacy (RDP) [26], is closely related to CDP. Specifically, 1
2"

2-
CDP is equivalent to the conjunction of an infinite family of RDP guarantees, namely (↵, 1

2"
2 ·↵)-RDP

for every ↵ 2 (1,1). In particular, any CDP algorithm (such as those we present) is also an RDP
algorithm.

It is natural to ask whether concentrated differential privacy admits distributions that can be scaled to
smooth sensitivity while offering better privacy-accuracy tradeoffs than Cauchy, Laplace, or Gaussian.

1.2 Our Contributions: Smooth Sensitivity and CDP

As concentrated differential privacy is a relaxation of pure differential privacy, Cauchy noise and its
generalizations automatically guarantee CDP. However, admissible distributions for CDP could have
much lighter tails. (The full version [6] contains a lower bound showing that quasi-polynomial tails are
necessary, whereas pure DP tails must be polynomial.) Nevertheless, it is not clear what distribution
to conjecture would have these properties. In this work, we identify three such distributions with
quasi-polynomial tails and show that they provide CDP when scaled to smooth sensitivity. Detailed
statements and proofs appear in the full version [6].

Laplace Log-Normal: The first such distribution we identify, and term the “Laplace log-Normal”
LLN(�), is the distribution of the random variable Z = X · e�Y where X is a standard Laplace, Y
is a standard Gaussian, and � > 0 is a shape parameter. This distribution has mean zero, variance
2e2�

2

, and satisfies the quasi-polynomial tail bound P [|Z| > z]  e
� log2(z)/3�2

for large z. The
following result shows that scaling Laplace log-Normal noise to smooth sensitivity gives CDP.
Proposition 3. Let f : Xn ! R and let Z  LLN(�) for some � > 0. Then, for all s, t > 0, the

algorithm M(x) = f(x) + 1
s · Stf (x) · Z guarantees

1
2"

2
-CDP for " = t/� + e

3�2/2
s.

Intuitively, additive scaling of Z = X · e�Y is handled by X (i.e., D↵ (ZkZ + s)  ↵s
2
e
3�2

/2),
while multiplicative dilations are handled by Y after taking logarithms (i.e., D↵ (ZketZ) 
D↵ (�Y kt+ �Y ) = ↵t

2
/2�2). Group privacy handles additive-multiplicative combinations.

Uniform Log-Normal: Second, ULN(�), is the distribution of Z = U · e�Y where U is uniformly
distributed over [�1, 1], Y is a standard Gaussian, and � > 0 is a shape parameter. It has mean zero
and variance 1

3e
2�2

, and also has the tail bound P [|Z| > z]  e
� log2(z)/2�2

for all z � 1.

Proposition 4. Let f : Xn ! R and let Z  ULN(�) with � �
p
2. Then, for all s, t > 0, the

algorithm M(x) = f(x) + 1
s · Stf (x) · Z guarantees

1
2"

2
-CDP for " = t/� + e

3�2/2 ·
p

2/⇡�2 · s.

Arsinh-Normal: Our final new distribution is the “arsinh-normal” which is the distribution of
Z = 1

� sinh(�Y ) where Y is a standard Gaussian and sinh(y) = (ey�e�y)/2 denotes the hyperbolic

sine function. This distribution has mean zero, variance e2�
2
�1

2�2 , and quasi-polynomial tails. We show
that it gives CDP, albeit with a worse dependence on the smoothing parameter t.
Proposition 5. Let f : Xn ! R and let Z = sinh(Y ) where Y is a standard Gaussian. Then, for all

s, t 2 (0, 1), the algorithm M(x) = f(x) + 1
s · Stf (x) · Z guarantees

1
2"

2
-CDP for " = 2

p
t+ 1.2s.

We conjecture that the privacy analysis of the arsinh-Normal distribution can be improved to match
(or better) the guarantees of our other two distributions.
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Summary of the noises that are 
known to work
• Cauchy distribution
• Student t-distribution

• Laplace-log-normal
• Uniform-log-normal
• Arcsinh-normal

• Gaussian
• Laplace
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Sketch of the proof for the 
Laplace-Log-Normal
• Let’s say for all neighboring datasets

• Algorithm: 

• We have that
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Now we can bound the derivative of the log density:

d

dz
log f(z) =

f
0(z)

f(z)

=
� e2�

2

2 E
Y N (0,1)

h
exp

⇣
�ze2�2

e
�Y

⌘i

e�2/2

2 E
Y N (0,1)

[exp (�ze�2
e�Y )]

= �e 3
2�

2

E
Y N (0,1)

h
exp

⇣
�ze�2

e
�Y

⌘
· exp

⇣
�z(e�2 � 1)e�

2
e
�Y

⌘i

E
Y N (0,1)

[exp (�ze�2
e�Y )]

2 [�e 3
2�

2
, 0],

since 0 < exp
⇣
�z(e�2 � 1)e�

2
e
�Y

⌘
 1. Thus | log(f(z)) � log(f(z + s))|  s · e 3

2�
2
for all

s, z 2 R. Consequently, D1 (ZkZ + s)  e
3
2�

2 · s for all s 2 R. Note that D↵ (ZkZ + s) 
D1 (ZkZ + s) [BS16].

By Proposition 10, D↵ (XkX + s)  1
2e

3�2 · s2 for all s 2 R and all ↵ 2 (1,1).

Proof of Theorem 18. We use Lemma 11 to combine Lemmas 19 and 20. Specifically, to
bound D↵ (ZketZ + s) = D↵ (Z � sketZ), we use D↵ (Z � skZ) = D↵ (ZkZ + s) and D↵ (ZketZ).
To bound D↵ (etZ + skZ) = D↵ (etZkZ � s), we use D↵ (etZkZ) = D↵ (Zke�tZ) and D↵ (ZkZ � s).

3.1.1 Optimizing Parameters

Let f, g : X n ! R and s, t, � > 0. Suppose, for all neighbouring x, x
0 2 X n, we have

|f(x)� f(x0)|  g(x) and e
�t
g(x)  g(x0)  e

t
g(x).

Define a randomized algorithm M : X n ! R by

M(x) = f(x) +
g(x)

s
· Z for Z  LLN(�).

Then, by Theorem 18, M is 1
2"

2-CDP for

" =
t

�
+ e

3
2�

2 · s.

Namely, we have

D↵ (M(x)kM(x0)) = D↵

✓
Z

����
f(x0)� f(x)

g(x)
· s+ g(x0)

g(x)
· Z

◆
.

We also have

E
⇥
(M(x)� f(x))2

⇤
=

g(x)2

s2
2e2�

2
.
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Technical tools  

• Group privacy for CDP:

• Decompose what we want to bound

29

We will make specific use of the following more precise statement of the conversion from
pure to concentrated di↵erential privacy.
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2"

2
↵ for all ↵ 2 (1,1).

We also make use of the following group privacy property of concentrated di↵erential
privacy.
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p
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p
b)2  2↵ · (a+ b).
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D� (PkR) + D� (RkQ)

 �

� � 1
a� + b�
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↵�

� � ↵
a+ b�

= ↵ ·
✓

u

u� 1
a+ bu

◆
,

where the final equalities use the fact that � = ↵ · ��1
��↵ and the substitution � = u↵. We set

u = 1 +
p

a/b to minimize:

D↵ (PkQ)  ↵ ·
✓

u

u� 1
a+ bu

◆

= ↵ ·
 
1 +

p
a/bp

a/b
a+ b(1 +

p
a/b)

!

= ↵ ·
⇣
a+ b+ 2

p
ab

⌘

= ↵ ·
⇣p

a+
p
b

⌘2

 ↵ ·
⇣p

a+
p
b

⌘2
+ ↵ ·

⇣p
a�

p
b

⌘2

= ↵ · (2a+ 2b) .

8

Now we can bound the derivative of the log density:

d

dz
log f(z) =

f
0(z)

f(z)

=
� e2�

2

2 E
Y N (0,1)

h
exp

⇣
�ze2�2

e
�Y

⌘i

e�2/2

2 E
Y N (0,1)

[exp (�ze�2
e�Y )]

= �e 3
2�

2

E
Y N (0,1)

h
exp

⇣
�ze�2

e
�Y

⌘
· exp

⇣
�z(e�2 � 1)e�

2
e
�Y

⌘i

E
Y N (0,1)

[exp (�ze�2
e�Y )]

2 [�e 3
2�

2
, 0],

since 0 < exp
⇣
�z(e�2 � 1)e�

2
e
�Y

⌘
 1. Thus | log(f(z)) � log(f(z + s))|  s · e 3

2�
2
for all

s, z 2 R. Consequently, D1 (ZkZ + s)  e
3
2�

2 · s for all s 2 R. Note that D↵ (ZkZ + s) 
D1 (ZkZ + s) [BS16].

By Proposition 10, D↵ (XkX + s)  1
2e

3�2 · s2 for all s 2 R and all ↵ 2 (1,1).

Proof of Theorem 18. We use Lemma 11 to combine Lemmas 19 and 20. Specifically, to
bound D↵ (ZketZ + s) = D↵ (Z � sketZ), we use D↵ (Z � skZ) = D↵ (ZkZ + s) and D↵ (ZketZ).
To bound D↵ (etZ + skZ) = D↵ (etZkZ � s), we use D↵ (etZkZ) = D↵ (Zke�tZ) and D↵ (ZkZ � s).

3.1.1 Optimizing Parameters

Let f, g : X n ! R and s, t, � > 0. Suppose, for all neighbouring x, x
0 2 X n, we have

|f(x)� f(x0)|  g(x) and e
�t
g(x)  g(x0)  e

t
g(x).

Define a randomized algorithm M : X n ! R by

M(x) = f(x) +
g(x)

s
· Z for Z  LLN(�).

Then, by Theorem 18, M is 1
2"

2-CDP for

" =
t

�
+ e

3
2�

2 · s.

Namely, we have

D↵ (M(x)kM(x0)) = D↵

✓
Z

����
f(x0)� f(x)

g(x)
· s+ g(x0)

g(x)
· Z

◆
.

We also have

E
⇥
(M(x)� f(x))2

⇤
=

g(x)2

s2
2e2�

2
.

12

Now we can bound the derivative of the log density:

d

dz
log f(z) =

f
0(z)

f(z)

=
� e2�

2

2 E
Y N (0,1)

h
exp

⇣
�ze2�2

e
�Y

⌘i

e�2/2

2 E
Y N (0,1)

[exp (�ze�2
e�Y )]

= �e 3
2�

2

E
Y N (0,1)

h
exp

⇣
�ze�2

e
�Y

⌘
· exp

⇣
�z(e�2 � 1)e�

2
e
�Y

⌘i

E
Y N (0,1)

[exp (�ze�2
e�Y )]

2 [�e 3
2�

2
, 0],

since 0 < exp
⇣
�z(e�2 � 1)e�

2
e
�Y

⌘
 1. Thus | log(f(z)) � log(f(z + s))|  s · e 3

2�
2
for all

s, z 2 R. Consequently, D1 (ZkZ + s)  e
3
2�

2 · s for all s 2 R. Note that D↵ (ZkZ + s) 
D1 (ZkZ + s) [BS16].

By Proposition 10, D↵ (XkX + s)  1
2e

3�2 · s2 for all s 2 R and all ↵ 2 (1,1).

Proof of Theorem 18. We use Lemma 11 to combine Lemmas 19 and 20. Specifically, to
bound D↵ (ZketZ + s) = D↵ (Z � sketZ), we use D↵ (Z � skZ) = D↵ (ZkZ + s) and D↵ (ZketZ).
To bound D↵ (etZ + skZ) = D↵ (etZkZ � s), we use D↵ (etZkZ) = D↵ (Zke�tZ) and D↵ (ZkZ � s).

3.1.1 Optimizing Parameters

Let f, g : X n ! R and s, t, � > 0. Suppose, for all neighbouring x, x
0 2 X n, we have

|f(x)� f(x0)|  g(x) and e
�t
g(x)  g(x0)  e

t
g(x).

Define a randomized algorithm M : X n ! R by

M(x) = f(x) +
g(x)

s
· Z for Z  LLN(�).

Then, by Theorem 18, M is 1
2"

2-CDP for

" =
t

�
+ e

3
2�

2 · s.

Namely, we have

D↵ (M(x)kM(x0)) = D↵

✓
Z

����
f(x0)� f(x)

g(x)
· s+ g(x0)

g(x)
· Z

◆
.

We also have

E
⇥
(M(x)� f(x))2

⇤
=

g(x)2

s2
2e2�

2
.

12



Bounding the two parts 
separately

• Proof:

• Proof:
30

Lemma 20. Let Z  LLN(�) for � > 0. Let s 2 R and ↵ 2 (1,1). Then

D↵ (ZkZ + s)  min

⇢
1

2
e
3�2

s
2
↵, e

3
2�

2
s

�
.

Proof. Let Z  LLN(�) for some � > 0. First we compute the probability density function
of Z: Let z > 0. (Note that Z is symmetric about the origin, so f(�z) = f(z).)

f(z) =
d

dz
E

Y N (0,1)


P

X Lap(1)

⇥
X · e�Y  z

⇤�

= E
Y N (0,1)


d

dz
P

X Lap(1)

⇥
X  z · e��Y

⇤�

= E
Y N (0,1)


1

2
e
�|z·e��Y | · e��Y

�

=

Z

R

1p
2⇡

e
�y2/2 · 1

2
e
�|z·e��y| · e��ydy

=
1

2
p
2⇡

Z

R
e
�y2/2��y

e
�ze��y

dy

=
1

2
p
2⇡

Z

R
e
�(y��)2/2��(y��)

e
�ze��(y��)

dy

=
1

2
p
2⇡

Z

R
e
�y2/2+�2/2

e
�ze�2

e��y
dy

=
e
�2/2

2
E

Y N (0,1)

h
exp

⇣
�ze�2

e
�Y

⌘i
.

Next we compute the derivative of the density:

f
0(z) =

d

dz

e
�2/2

2
E

Y N (0,1)

h
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⇣
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e
�Y

⌘i

=
e
�2/2

2
E

Y N (0,1)


d

dz
exp

⇣
�ze�2

e
�Y

⌘�

=
e
�2/2

2
E

Y N (0,1)

h
exp

⇣
�ze�2

e
�Y

⌘
· (�1)e�2

e
�Y

i

= �e�2 · e
�2/2

2
p
2⇡

Z

R
exp

✓
�y

2

2
+ �y � ze

�2
e
�y

◆
dy

= �e�2 · e
�2/2

2
p
2⇡

Z

R
exp

✓
�(y + �)2

2
+ �(y + �)� ze

�2
e
�(y+�)

◆
dy

= �e�2 · e
�2/2

2
p
2⇡

Z

R
exp

✓
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2

2
+

�
2

2
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2�2
e
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dy

= �e
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Y N (0,1)

h
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2.3 Subgaussian Distributions

We study the class of subgaussian distributions.

Definition 16. A distribution D on R is �-subgaussian if

9µ 2 R 8t 2 R E
X D

⇥
e
t(X�µ)⇤  e

t2�2/2
.

We say that a distribution is subgaussian if it is �-subgaussian for some finite �.

Note that N(µ, �2), a Gaussian with variance �
2, is �-subgaussian. Furthermore, any

distribution supported on the interval [a, b] is b�a
2 -subgaussian.

If D is �-subgaussian and has mean zero, then E
X D

[X2]  �
2 and, for all � > 0,

P
X D

[X � �] = E
X D

[I[X � � � 0]]  E
X D

⇥
e
t(X��)⇤ = e

t2�2/2�t� = e
��2/2�2

,

where the final equality follows from setting t = �/�
2.

3 Smooth Sensitivity Noise Distributions

3.1 Laplace Log-Normal

Definition 17. Let X and Y be independent random variables with X a standard Laplace

(density e
�|x|

/2) and Y a standard Gaussian (density e
�y2/2

/
p
2⇡). Let � > 0 and Z =

X · e�Y . The distribution of Z is denoted LLN(�).

Note that LLN(�) is a symmetric distribution. It has mean 0 and variance 2e2�
2
. More

generally, for all p > 0,
E

Z LLN(�)
[|Z|p] = �(p+ 1) · e�2p2/2

,

where � is the gamma function satisfying �(p+ 1) = p! if p is an integer.

Theorem 18. Let Z  LLN(�) and s, t 2 R. Then, for all ↵ 2 (1,1),

D↵ (ZketZ + s)
D↵ (etZ + skZ)

�
 ↵

2
·
✓
|t|
|�| + e

3
2�

2 · |s|
◆2

 ↵ ·
✓
t
2

�2
+ e

3�2
s
2

◆
.

Lemma 19. Let Z  LLN(�) for � > 0. Let t 2 R and ↵ 2 (1,1). Then

D↵

�
Z
��etZ

�
 ↵t

2

2�2
.

Proof. Let X be a standard Laplace random variable and Y an independent standard Gaus-
sian random variable. Let Z = Xe

�Y ⇠ LLN(�). By the quasi-convexity and postprocessing
properties of Rényi divergence [BS16, Lem. 2.2], we have

D↵

�
Z
��etZ

�
= D↵

�
Xe

�Y
��Xe

�Y+t
�
 sup

x
D↵

�
xe

�Y
��xe�Y+t

�
 D↵ (�Y k�Y + t) .

Finally, we can calculate that D↵ (�Y k�Y + t) = ↵t2

2�2 [BS16, Lem. 2.4].
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Improvement from running
smoothed sensitivity is substantial!

31

Figure 3: Excesss variance of the private
trimmed mean with smooth sensitivity. Data is
[N(0, 1)1001][�50,1050]. Average of 106 runs.

Figure 4: Excesss variance of the private
trimmed mean with smooth sensitivity. Data is
[N(0, 1)5001][�50,1050]. Average of 106 runs.

Proposition 13. Let D be a symmetric O(�)-subgaussian distribution on R with mean µ and variance

�
2
. Let a+O(� log n) < µ < b�O(� log n). Let n,m 2 Z satisfy n > 3m � 0. Then

E
X Dn

h�
trimm

�
[X][a,b]

�
� µ

�2i
=

�
2

n

⇣
1 +O

⇣
m

n

⌘⌘
.

We remark that if D is not subgaussian, but rather subexponential, then a similar bound can be proved.
Next we turn to analyzing the smooth sensitivity of the trimmed mean with truncated inputs.

Lemma 14. Let D be a �-subgaussian distribution on R. Let a < 0 < b. Then

E
X Dn

⇣
St
trimm([·][a,b])

(X)
⌘2

�
 8�2 log n+ e

�2mt(b� a)2

(n� 2m)2
.

Proof. By Proposition 11,

St
trimm([·][a,b])

(x) =
1

n� 2m
n

max
k=0

e
�kt k+1

max
`=0

x(n�m+1+k�`) � x(m+1�`)


max{x(n) � x(1), e

�mt · (b� a)}
n� 2m

,

where the inequality follows from the fact that x(n�m+1+k�`) � x(m+1�`)  x(n) � x(1) when
k < m and x(n�m+1+k�`) � x(m+1�`)  b� a when k � m. Thus

E
X Dn

⇣
St
trimm([·][a,b])

(X)
⌘2

�
 1

(n� 2m)2
E

X Dn

⇥
(X(n) �X(1))

2 + e
�2mt(b� a)2

⇤

 8�2 log(2n) + e
�2mt(b� a)2

(n� 2m)2
,

where the final inequality follows from properties of subgaussians [16, Lem. 4.5] and the fact that
(x� y)2  4max{x2

, y
2} for all x, y 2 R.

Combining Proposition 13 and Lemma 14 with the distributions from Section 1.2 yields Theorem 6.

Truncation of Outputs: Rather than truncating the inputs to the trimmed mean, we can truncate
the output. This is useful for heavier-tailed distributions and is also simpler to analyze: If Y is a
random variable and µ 2 [a, b], then E

⇥
([Y ][a,b] � µ)2

⇤
 E

⇥
(Y � µ)2

⇤
. Truncation of outputs also

controls smooth sensitivity. An analysis analogous to that above yields Theorem 8.
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Figure 1: Variance of trimmed mean for various
distributions as the trimming fraction is varied.
The plot depicts n = 1001 averaged of 106 runs.

Figure 2: Excesss variance of the private
trimmed mean with smooth sensitivity. Data is
[N(0, 1)201][�50,1050]. Average of 106 runs.

is that the trimming automatically adjusts to the data distribution, whereas the prior approaches lack
this versatility and rely on relatively brittle distributional assumptions.

Shortly after this work, Avella-Medina and Brunel [2] used the smooth sensitivity framework (and the
propose-test-release framework) for median estimation. Of course, the mean and median are closely
related. However, there is a subtle – but important – difference: Whereas the standard deviation
provides the appropriate scale for the accuracy of an estimate of the mean, the reciprocal of the
probability density around the median provides the appropriate scale for an estimate of the median
[31]. Indeed, the standard deviation of the empirical mean and the empirical median scale with these
quantities respectively. Accordingly, while our results state accuracy bounds in terms of the variance
of the unknown distribution, their results state accuracy bounds in terms of the probability density in
the neighbourhood of the median. Neither type of bound dominates the other, as it is easy to find
distributions more favourable to each analysis. However, while their analysis and bounds are very
different from ours, their algorithm is not; their algorithm is a special case of our algorithm. Thus we
view their work as providing further independent validation of the utility of our approach.

Further Applications Mean estimation is an extremely fundamental task that arises as a subroutine
of more complex tasks. For example, private optimization and machine learning often rely on
estimating gradients [3, 1]. This is a (multivariate) mean estimation task and our methods may yield
improvements here. Mean estimation also naturally arises in hypothesis testing [33, 18, 7, 9, 10, 8].

The smooth sensitivity framework has also been applied to other problems. Examples include learning
decision forests [17], principal component analysis [20], analysis of outliers [28], and analysis of
graphical data [23, 25, 34, 30]. Our new distributions can immediately be applied to these problems.

After estimating the mean (or location parameter) of a distribution, the next question is to estimate its
scale (e.g. variance). For this, our methods can be applied to robust location estimators [31].

2 Trimmed Mean

For the problem of mean estimation, we use the trimmed mean as our estimator.
Definition 9 (Trimmed Mean). For n,m 2 Z with n > 2m � 0, define trimm : Rn ! R by

trimm(x) =
x(m+1) + x(m+2) + · · ·+ x(n�m)

n� 2m
,

where x(1)  x(2)  · · ·  x(n) denote the order statistics of x.

Intuitively, the trimmed mean interpolates between the mean (m = 0) and the median (m = n�1
2 ).

Error of the Trimmed Mean: Before we consider privatising the trimmed mean, we look at the
error introduced by the trimming itself. We focus on mean squared error relative to the mean. That is,
E

X Dn

h
(trimm(X)� µ)2

i
, where µ = E

X D
[X] is the mean of the distribution D.
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Bun and Steinke (2019): “Average case averages”: https://arxiv.org/pdf/1906.02830.pdf



Next lecture

• Propose-Test-Release

• Stability-based query release

• Application to PATE
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