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Logistics

• Please submit your HW2.

• The coding part should be pretty easy given my
template.
• Let me know if you run into troubles.

• HW3 will be light-weighted so you have time to
work on your project.
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Recap: Beyond worst-case noise in
DP query release

• Global sensitivity

• Local sensitivity

• Smooth sensitivity
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Lap(2/"n) for every y 2 X, from which we can compute the quantity a =
P

y2X ay · q(y), which
has expectation q(x) and standard deviation O(

p
|X|/"n). For answering multiple queries, we can

apply Cherno↵/Hoe↵ding and union bounds,4 yielding the following:

Theorem 2.9 (arbitrary counting queries via the Laplace histogram). For every set Q of counting
queries on data universe X, n 2 N, and " > 0, there is an "-di↵erentially private mechanism
M : Xn ! RQ such that on every dataset x 2 X

n, with high probability M(x) answers all the queries
to within error

O

 p
|X| · log |Q|

"n

!
.

Note that the dependence on k = |Q| has improved from
p
k obtained by advanced composition

or Theorem 2.7 to
p
log k, at the price of introducing a (rather large) dependence on |X|. Thus, for

a family Q of counting queries on data universe X, it is better to use the Laplace histogram when
|Q| ⌧ |X| and it is better to use advanced composition or Theorem 2.7 when |X| > |Q|.

Let’s summarize the best error bounds we have seen so far for the example families of counting
queries given in Section 1.3.

Table 2.1: Error bounds for specific query families on a data universe X of size D = 2d (e.g.
X = {0, 1}d or X = {1, 2, . . . , D}).
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We will see substantial improvements to most of these bounds in later sections.

3 Alternatives to Global Sensitivity

In this section, we consider the question of whether we can do better than adding noise Lap(GSq /"),
where GSq denotes the Global Sensitivity of query q (cf. Theorem 1.3).

As a first attempt, let us define a notion of “Local Sensitivity” at x:

LSq(x) = max
�
q(x)� q(x0)| : x0 ⇠ x

 
.

4
A bit of care is needed since the Lap(2/"n) noise random variables are not bounded. This can be handled by

first arguing that with high probability, at most a 2
�⇥(t)

fraction of the noise random variables have magnitude in

the range [t/"n, 2t/"n). Then, conditioned on the magnitudes of the noise random variables (but not their signs),

we can group the random variables according to their magnitudes (up to a factor of 2) and apply Hoe↵ding to each

group separately.
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Recap: Admissible noise

• Then satisfies (𝜀,𝛿)-DP.

4

The definition requires the noise distribution to not change
much under translation (sliding) and scaling (dilation). A
distribution satisfying the two properties can be used to add
noise proportional to S(x):

Lemma 2.5. Let h be an (↵, �)-admissible noise probabil-
ity density function, and let Z be a fresh random variable
sampled according to h. For a function f : D

n ! Rd,
let S : D

n ! R be a �-smooth upper bound on the lo-
cal sensitivity of f . Then the database access mechanism
A(x) = f(x) + S(x)

↵ · Z is (✏, �)-indistinguishable.

On two neighbor databases x and y, the output distribution
A(y) is a shifted and scaled version of A(x). The sliding and
dilation properties ensure that Pr[A(x) 2 S] and Pr[A(y) 2
S] are close for all sets S of outputs.

Example 2. Let h(z) / 1/(1 + |z|�) for � > 1. These
h(x) are (✏/4�, ✏/�)-admissible, and yield � = 0. This is a
collection of heavy tail distributions, asymptotically decreas-
ing / 1/|z|� . For � > 3 they have well-defined expectations
and variances. In dimension d > 1, one can use a product
of these distributions; the result is (✏/4�, ✏/d�)- admissible.

A simple observation gives an intuition to why � = 0 im-
plies an inverse polynomial decrease. Consider a distribution
h(z) that behaves asymptotically as e

�f(z) for some f . By
the dilation property, e

�f(z)
/e
�f(e�z) = e

�f(z)+f(e�z)
< e

✏

for some fixed ✏ or, equivalently, f(e�
z) � f(z) < ✏, for all

z 2 R. If ✏/� is bounded above, the constraint implies that
f(z) > c ln(|z|) for some fixed c. Hence h(z) = ⌦(1/z

c). }

To allow noise distributions that are not heavy tail (such
as Gaussian and Laplace), we take � > 0, and require the
sliding and dilation properties to hold with high probability.

Example 3. The Laplace distribution, h(z) = 1
2 ·e

�|z|, is
(↵, �)-admissible with ↵ = ✏/2, � = ✏/2 ln(1/�). In dimen-
sion d > 1, one can use the product of Laplace distributions,
with � = ⌦(✏/

p
d ln(1/�)).

The Gaussian distribution, h(z) = 1
2⇡ · e

�z2/2, is (↵, �)-
admissible with ↵ = ✏/

p
ln(1/�), � = ✏/2 ln(1/�). In dimen-

sion d > 1, we get � = ⌦(✏/
p

d ln(1/�)). }

3. COMPUTING SMOOTH SENSITIVITY
In this section we show how to compute smooth sensitivity

S
⇤
f,✏(x), proposed in Definition 2.2, for two specific functions,

median and the cost of the minimum spanning tree.
First we give some generic observations on computing

smooth sensitivity. We start by defining a function that
describes how much the sensitivity can change when up to
k entries of x are modified. This function has to be well
understood in order to compute the smooth sensitivity of f .

Definition 3.1. The sensitivity of f at distance k is

A
(k)(x) = max

y2Dn: d(x,y)k
LSf (y) .

Now smooth sensitivity can be expressed in terms of A
(k):

S
⇤
f,✏(x) = max

k=0,1,...,n
e
�k✏

„
max

y: d(x,y)=k
LSf (y)

«

= max
k=0,1,...,n

e
�k✏

A
(k)(x) .

Thus, to compute the smooth sensitivity of f at x, it suffices
to understand A

(k)(x).
For functions for which we cannot compute S

? efficiently,
we might be able to give an efficient approximation algo-
rithm. We stress that not every approximation to S

⇤ is
appropriate in our framework: some approximations to S

⇤

might leak information. The function computed by an ap-
proximation algorithm is acceptable only if it is a smooth up-
per bound on S

⇤. The next claim provides a general method
for giving smooth upper bounds on local sensitivity.

Claim 3.2. Let S̃f,✏(x) = maxk=0,...,n(Uk(x)·e�✏k) where
(1) LS(x)  U0(x) and (2) for x, y such that d(x, y) = 1,
Uk(x)  Uk+1(y). For a given value k0(n), let Ŝf,✏(x) =
max(GSf ·e�✏k0 , maxk=0,...,k0�1 e

�✏k·A(k)(x)). Then S̃f,✏(x)
and Ŝf,✏(x) are ✏-smooth upper bounds on local sensitivity.

3.1 Median
Let fmed be as in Example 1 and assume the database

elements are in nondecreasing order. Recall that GSfmed =
⇤, and LSfmed = max(xm�xm�1, xm+1�xm) for m = n+1

2 .
For notational convenience, define xi = 0 for i  0 and
xi = ⇤ for i > n.

Claim 3.3. The smooth sensitivity of the median is

S
⇤
fmed,✏(x) = max

k=0,...,n
(e�k✏ · max

t=0,...,k+1
(xm+t � xm+t�k�1)).

It can be computed in time O(n2).

Proof. By changing up to k entries in x1, . . . , xn to 0
or ⇤, one can shift the median anywhere in the interval
[xm�k, xm+k]. The local sensitivity at distance k is maxi-
mized when the new median is an end point of a large empty
interval. This is achieved when entries xm�k+t, . . . , xm�1+t

for some t = 0, . . . , k + 1 are modified as follows: xi with
i < m are set to 0 and xi with i � m are set to ⇤. Thus,

A
(k)(x) = max

y: d(x,y)=k
LS(y) = max

0tk+1
(xm+t � xm+t�k�1) .

As A
(k) is computable in time O(k), we get that S

⇤
fmed

(x) =

maxk e
�✏k

A
(k)(x) is computable in time O(n2).

For example, consider the instance where xi = (⇤i)/n

for all i 2 [n]. In this case, A
(k)(x) = (k + 1)⇤/n, and

e
�✏

A
(k)(x) is maximized when k = 1/✏. Then S

⇤  ⇤/(✏n),
and consequently, the magnitude of the noise we add is
⇤/(✏2n). For comparison, the noise magnitude for fmed in
the global sensitivity framework of [10] is ⇤/✏, high enough
to destroy all information.

Claim 3.2 leads to approximation algorithms for S
⇤
fmed,✏:

Claim 3.4. There is a smooth upper bound on LSfmed

that is a factor 2 approximation to S
⇤
fmed,✏ and is computable

in time O(n). There is smooth upper bound on LSfmed that
approximates S

⇤
fmed,✏ within error ⇤

poly(n) and is computable

in time O( log2 n
✏2

).

3.2 The Cost of a Minimum Spanning Tree
Let G = (V, E) be an undirected connected graph with

edge weights w(e) 2 [0, ⇤] for all e 2 E, where each edge
weight is reported to the database by an individual. Let
fMST(G) be the MST cost in G. Global sensitivity, GSfMST ,
is ⇤ because for the complete graph with all weights equal

2. If �  ✏

2 ln( 2� )
and � 2 (0, 1), the algorithm x 7! f(x) + 2S(x)

✏
· ⌘, where ⌘ ⇠ Lap(1), is (✏, �)-

differentially private.

For functions taking values in Rd, the situation is more complicated since the smoothing parameter �
will depend on d as well as ✏ and �. Moreover, there are many natural choices of metrics with respect to
which one may measure sensitivity. We discuss the `1 (Lemma 2.9) and `2 metrics below (Lemma 2.10).

2.2.1 Admissible Noise Distributions

We start by abstracting out a requirement on admissible noise distributions in Definition 2.5. In Lemma 2.6,
we prove that adding admissible noise and releasing the result is differentially private. Then we give several
examples of admissible noise distributions, including Laplace and Gaussian, and work out their parameters.

Notation. For a subset S of Rd, we write S + � for the set {z + � | z 2 S},́ and e
� · S for the set

{e� · z | z 2 S} . We also write a± b for the interval [a� b, a+ b].

Definition 2.5 (Admissible Noise Distribution). A probability distribution on Rd, given by a density func-
tion h, is (↵,�)-admissible (with respect to `1) if, for ↵ = ↵(✏, �),� = �(✏, �), the following two conditions
hold for all � 2 Rd and � 2 R satisfying k�k1  ↵ and |�|  �, and for all measurable subsets S ✓ Rd:

Sliding Property: Pr
Z⇠h

h
Z 2 S

i
 e

✏
2 · Pr

Z⇠h

h
Z 2 S +�

i
+ �

2 .

Dilation Property: Pr
Z⇠h

h
Z 2 S

i
 e

✏
2 · Pr

Z⇠h

h
Z 2 e

� · S
i
+ �

2 .

Figure 1: Sliding and dilation for the Laplace distribution with p.d.f. h(z) = 1
2e

�|z|, plotted as a solid line. The dotted lines plot
the densities h(z + 0.3) (left) and e0.3h(e0.3z) (right).

The definition requires the noise distribution to not change much under translation (sliding) and scaling
(dilation). See Fig. 1 for an example. A distribution satisfying the two properties can be used to add noise
proportional to a smooth upper bound on local sensitivity:

Lemma 2.6. Let h be an (↵,�)-admissible noise probability density function, and let Z be a fresh random
variable sampled according to h. For a function f : Dn ! Rd, let S : Dn ! R be a �-smooth upper bound
on the local sensitivity of f . Then algorithm A(x) = f(x) + S(x)

↵
· Z is (✏, �)-differentially private.

For two neighbor databases x and y, the output distribution A(y) is a shifted and scaled version of A(x).
The sliding and dilation properties ensure that Pr[A(x) 2 S] and Pr[A(y) 2 S] are close for all sets S of
outputs.

Proof of Lemma 2.6: For all neighboring x, y 2 D
n and all sets S , we need to show that

Pr[A(x) 2 S]  e
✏ · Pr[A(y) 2 S] + �.
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Recap: Summary of the noises 
that are known to work
• Cauchy distribution
• Student t-distribution

• Laplace-log-normal
• Uniform-log-normal
• Arcsinh-normal

• Gaussian
• Laplace

5



Recap: Laplace-log-normal noise
and CDP
• Adding log-normal noise

• X drawn from Laplace and Y from a standard 
Normal.

6

Bun and Steinke (2019): “Average case averages”: https://arxiv.org/pdf/1906.02830.pdf

differential privacy. In particular, the notion of concentrated differential privacy (CDP) [15, 5] has a
simple and tight composition theorem for analyzing how privacy degrades over many releases while
accommodating most of the key algorithms in the differential privacy literature, including addition of
Gaussian noise calibrated to global sensitivity.
Definition 2 (Concentrated Differential Privacy (CDP) [15, 5]). A randomized algorithm

M : Xn ! Y is
1
2"

2
-concentrated differentially private (

1
2"

2
-CDP) if, for all neighboring

datasets x, y 2 Xn
and all ↵ 2 (1,1), D↵ (M(x)kM(y))  1

2"
2
↵, where D↵ (PkQ) =

1
↵�1 log E

X P

h
(P (X)/Q(X))↵�1

i
denotes the Rényi divergence of order ↵.

Another variant, Rényi Differential Privacy (RDP) [26], is closely related to CDP. Specifically, 1
2"

2-
CDP is equivalent to the conjunction of an infinite family of RDP guarantees, namely (↵, 1

2"
2 ·↵)-RDP

for every ↵ 2 (1,1). In particular, any CDP algorithm (such as those we present) is also an RDP
algorithm.

It is natural to ask whether concentrated differential privacy admits distributions that can be scaled to
smooth sensitivity while offering better privacy-accuracy tradeoffs than Cauchy, Laplace, or Gaussian.

1.2 Our Contributions: Smooth Sensitivity and CDP

As concentrated differential privacy is a relaxation of pure differential privacy, Cauchy noise and its
generalizations automatically guarantee CDP. However, admissible distributions for CDP could have
much lighter tails. (The full version [6] contains a lower bound showing that quasi-polynomial tails are
necessary, whereas pure DP tails must be polynomial.) Nevertheless, it is not clear what distribution
to conjecture would have these properties. In this work, we identify three such distributions with
quasi-polynomial tails and show that they provide CDP when scaled to smooth sensitivity. Detailed
statements and proofs appear in the full version [6].

Laplace Log-Normal: The first such distribution we identify, and term the “Laplace log-Normal”
LLN(�), is the distribution of the random variable Z = X · e�Y where X is a standard Laplace, Y
is a standard Gaussian, and � > 0 is a shape parameter. This distribution has mean zero, variance
2e2�

2

, and satisfies the quasi-polynomial tail bound P [|Z| > z]  e
� log2(z)/3�2

for large z. The
following result shows that scaling Laplace log-Normal noise to smooth sensitivity gives CDP.
Proposition 3. Let f : Xn ! R and let Z  LLN(�) for some � > 0. Then, for all s, t > 0, the

algorithm M(x) = f(x) + 1
s · Stf (x) · Z guarantees

1
2"

2
-CDP for " = t/� + e

3�2/2
s.

Intuitively, additive scaling of Z = X · e�Y is handled by X (i.e., D↵ (ZkZ + s)  ↵s
2
e
3�2

/2),
while multiplicative dilations are handled by Y after taking logarithms (i.e., D↵ (ZketZ) 
D↵ (�Y kt+ �Y ) = ↵t

2
/2�2). Group privacy handles additive-multiplicative combinations.

Uniform Log-Normal: Second, ULN(�), is the distribution of Z = U · e�Y where U is uniformly
distributed over [�1, 1], Y is a standard Gaussian, and � > 0 is a shape parameter. It has mean zero
and variance 1

3e
2�2

, and also has the tail bound P [|Z| > z]  e
� log2(z)/2�2

for all z � 1.

Proposition 4. Let f : Xn ! R and let Z  ULN(�) with � �
p
2. Then, for all s, t > 0, the

algorithm M(x) = f(x) + 1
s · Stf (x) · Z guarantees

1
2"

2
-CDP for " = t/� + e

3�2/2 ·
p

2/⇡�2 · s.

Arsinh-Normal: Our final new distribution is the “arsinh-normal” which is the distribution of
Z = 1

� sinh(�Y ) where Y is a standard Gaussian and sinh(y) = (ey�e�y)/2 denotes the hyperbolic

sine function. This distribution has mean zero, variance e2�
2
�1

2�2 , and quasi-polynomial tails. We show
that it gives CDP, albeit with a worse dependence on the smoothing parameter t.
Proposition 5. Let f : Xn ! R and let Z = sinh(Y ) where Y is a standard Gaussian. Then, for all

s, t 2 (0, 1), the algorithm M(x) = f(x) + 1
s · Stf (x) · Z guarantees

1
2"

2
-CDP for " = 2

p
t+ 1.2s.

We conjecture that the privacy analysis of the arsinh-Normal distribution can be improved to match
(or better) the guarantees of our other two distributions.
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This lecture

• Finish smooth sensitivity
• Sketching the idea of the zCDP proof for Laplace log-
normal.
• Empirical results on truncated mean.

• Propose-Test-Release

• Easy-to-use recipes for PTR and examples
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Reading materials

• Vadhan book Section 3.2 – 3.4

• Dwork and Lei “Differential Privacy and Robust
Statistics”
• Original paper for PTR.

• W. (2018) “Revisiting Differentially Private Linear
Regression” https://arxiv.org/abs/1803.02596
• A good example for deriving data—dependent DP
algorithm
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Concentrated DP analysis of 
Smoothed Sensitivity
• Adding log-normal noise

• X drawn from Laplace and Y from a standard 
Normal.

9
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Summary of the noises that are 
known to work
• Cauchy distribution
• Student t-distribution

• Laplace-log-normal
• Uniform-log-normal
• Arcsinh-normal

• Gaussian
• Laplace
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Sketch of the proof for the 
Laplace-Log-Normal
• Let’s say for all neighboring datasets

• Algorithm: 

• We have that
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2 · s for all s 2 R. Note that D↵ (ZkZ + s) 
D1 (ZkZ + s) [BS16].

By Proposition 10, D↵ (XkX + s)  1
2e

3�2 · s2 for all s 2 R and all ↵ 2 (1,1).

Proof of Theorem 18. We use Lemma 11 to combine Lemmas 19 and 20. Specifically, to
bound D↵ (ZketZ + s) = D↵ (Z � sketZ), we use D↵ (Z � skZ) = D↵ (ZkZ + s) and D↵ (ZketZ).
To bound D↵ (etZ + skZ) = D↵ (etZkZ � s), we use D↵ (etZkZ) = D↵ (Zke�tZ) and D↵ (ZkZ � s).
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0 2 X n, we have

|f(x)� f(x0)|  g(x) and e
�t
g(x)  g(x0)  e

t
g(x).

Define a randomized algorithm M : X n ! R by

M(x) = f(x) +
g(x)

s
· Z for Z  LLN(�).
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t

�
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✓
Z

����
f(x0)� f(x)

g(x)
· s+ g(x0)

g(x)
· Z

◆
.

We also have

E
⇥
(M(x)� f(x))2

⇤
=

g(x)2

s2
2e2�

2
.
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Technical tools  

• Group privacy for CDP:

• Decompose what we want to bound

12

We will make specific use of the following more precise statement of the conversion from
pure to concentrated di↵erential privacy.

Proposition 10 ([BS16, Prop. 3.3]). Let P and Q be probability distributions satisfying

D1 (PkQ)  " and D1 (QkP )  ". Then D↵ (PkQ)  1
2"

2
↵ for all ↵ 2 (1,1).

We also make use of the following group privacy property of concentrated di↵erential
privacy.

Lemma 11. Let P,Q,R be probability distributions. Suppose D↵ (PkR)  a·↵ and D↵ (RkQ) 
b · ↵ for all ↵ 2 (1,1). Then, for all ↵ 2 (1,1),

D↵ (PkQ)  ↵ · (
p
a+

p
b)2  2↵ · (a+ b).

Proof. We use the following triangle-like inequality for Rényi divergence.

Lemma 12 ([BDRS18]). Let P,Q,R be probability distributions and �, � 2 (1,1). Set

↵ = ��/(� + � � 1). Then

D↵ (PkQ)  �

� � 1
D� (PkR) + D� (RkQ) .

We fix ↵ and we must pick �, � 2 (1,1) satisfying ↵ = ��/(� + � � 1) to minimize

D↵ (PkQ)  �

� � 1
D� (PkR) + D� (RkQ)

 �

� � 1
a� + b�

=
↵�

� � ↵
a+ b�

= ↵ ·
✓

u

u� 1
a+ bu

◆
,

where the final equalities use the fact that � = ↵ · ��1
��↵ and the substitution � = u↵. We set

u = 1 +
p

a/b to minimize:

D↵ (PkQ)  ↵ ·
✓

u

u� 1
a+ bu

◆

= ↵ ·
 
1 +

p
a/bp

a/b
a+ b(1 +

p
a/b)

!

= ↵ ·
⇣
a+ b+ 2

p
ab

⌘

= ↵ ·
⇣p

a+
p
b

⌘2

 ↵ ·
⇣p

a+
p
b

⌘2
+ ↵ ·

⇣p
a�

p
b

⌘2

= ↵ · (2a+ 2b) .
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Bounding the two parts 
separately

• Proof:

• Proof:
13

Lemma 20. Let Z  LLN(�) for � > 0. Let s 2 R and ↵ 2 (1,1). Then
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�
.

Proof. Let Z  LLN(�) for some � > 0. First we compute the probability density function
of Z: Let z > 0. (Note that Z is symmetric about the origin, so f(�z) = f(z).)
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2.3 Subgaussian Distributions

We study the class of subgaussian distributions.

Definition 16. A distribution D on R is �-subgaussian if

9µ 2 R 8t 2 R E
X D

⇥
e
t(X�µ)⇤  e

t2�2/2
.

We say that a distribution is subgaussian if it is �-subgaussian for some finite �.

Note that N(µ, �2), a Gaussian with variance �
2, is �-subgaussian. Furthermore, any

distribution supported on the interval [a, b] is b�a
2 -subgaussian.

If D is �-subgaussian and has mean zero, then E
X D

[X2]  �
2 and, for all � > 0,

P
X D

[X � �] = E
X D

[I[X � � � 0]]  E
X D

⇥
e
t(X��)⇤ = e

t2�2/2�t� = e
��2/2�2

,

where the final equality follows from setting t = �/�
2.

3 Smooth Sensitivity Noise Distributions

3.1 Laplace Log-Normal

Definition 17. Let X and Y be independent random variables with X a standard Laplace

(density e
�|x|

/2) and Y a standard Gaussian (density e
�y2/2

/
p
2⇡). Let � > 0 and Z =

X · e�Y . The distribution of Z is denoted LLN(�).

Note that LLN(�) is a symmetric distribution. It has mean 0 and variance 2e2�
2
. More

generally, for all p > 0,
E

Z LLN(�)
[|Z|p] = �(p+ 1) · e�2p2/2

,

where � is the gamma function satisfying �(p+ 1) = p! if p is an integer.

Theorem 18. Let Z  LLN(�) and s, t 2 R. Then, for all ↵ 2 (1,1),

D↵ (ZketZ + s)
D↵ (etZ + skZ)

�
 ↵

2
·
✓
|t|
|�| + e

3
2�

2 · |s|
◆2

 ↵ ·
✓
t
2

�2
+ e

3�2
s
2

◆
.

Lemma 19. Let Z  LLN(�) for � > 0. Let t 2 R and ↵ 2 (1,1). Then

D↵

�
Z
��etZ

�
 ↵t

2

2�2
.

Proof. Let X be a standard Laplace random variable and Y an independent standard Gaus-
sian random variable. Let Z = Xe

�Y ⇠ LLN(�). By the quasi-convexity and postprocessing
properties of Rényi divergence [BS16, Lem. 2.2], we have

D↵

�
Z
��etZ

�
= D↵

�
Xe

�Y
��Xe

�Y+t
�
 sup

x
D↵

�
xe

�Y
��xe�Y+t

�
 D↵ (�Y k�Y + t) .

Finally, we can calculate that D↵ (�Y k�Y + t) = ↵t2

2�2 [BS16, Lem. 2.4].
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Improvement from running 
smoothed sensitivity is substantial!

14

Figure 3: Excesss variance of the private
trimmed mean with smooth sensitivity. Data is
[N(0, 1)1001][�50,1050]. Average of 106 runs.

Figure 4: Excesss variance of the private
trimmed mean with smooth sensitivity. Data is
[N(0, 1)5001][�50,1050]. Average of 106 runs.

Proposition 13. Let D be a symmetric O(�)-subgaussian distribution on R with mean µ and variance

�
2
. Let a+O(� log n) < µ < b�O(� log n). Let n,m 2 Z satisfy n > 3m � 0. Then

E
X Dn

h�
trimm

�
[X][a,b]

�
� µ

�2i
=

�
2

n

⇣
1 +O

⇣
m

n

⌘⌘
.

We remark that if D is not subgaussian, but rather subexponential, then a similar bound can be proved.
Next we turn to analyzing the smooth sensitivity of the trimmed mean with truncated inputs.

Lemma 14. Let D be a �-subgaussian distribution on R. Let a < 0 < b. Then

E
X Dn

⇣
St
trimm([·][a,b])

(X)
⌘2

�
 8�2 log n+ e

�2mt(b� a)2

(n� 2m)2
.

Proof. By Proposition 11,

St
trimm([·][a,b])

(x) =
1

n� 2m
n

max
k=0

e
�kt k+1

max
`=0

x(n�m+1+k�`) � x(m+1�`)


max{x(n) � x(1), e

�mt · (b� a)}
n� 2m

,

where the inequality follows from the fact that x(n�m+1+k�`) � x(m+1�`)  x(n) � x(1) when
k < m and x(n�m+1+k�`) � x(m+1�`)  b� a when k � m. Thus

E
X Dn

⇣
St
trimm([·][a,b])

(X)
⌘2

�
 1

(n� 2m)2
E

X Dn

⇥
(X(n) �X(1))

2 + e
�2mt(b� a)2

⇤

 8�2 log(2n) + e
�2mt(b� a)2

(n� 2m)2
,

where the final inequality follows from properties of subgaussians [16, Lem. 4.5] and the fact that
(x� y)2  4max{x2

, y
2} for all x, y 2 R.

Combining Proposition 13 and Lemma 14 with the distributions from Section 1.2 yields Theorem 6.

Truncation of Outputs: Rather than truncating the inputs to the trimmed mean, we can truncate
the output. This is useful for heavier-tailed distributions and is also simpler to analyze: If Y is a
random variable and µ 2 [a, b], then E

⇥
([Y ][a,b] � µ)2

⇤
 E

⇥
(Y � µ)2

⇤
. Truncation of outputs also

controls smooth sensitivity. An analysis analogous to that above yields Theorem 8.
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Figure 1: Variance of trimmed mean for various
distributions as the trimming fraction is varied.
The plot depicts n = 1001 averaged of 106 runs.

Figure 2: Excesss variance of the private
trimmed mean with smooth sensitivity. Data is
[N(0, 1)201][�50,1050]. Average of 106 runs.

is that the trimming automatically adjusts to the data distribution, whereas the prior approaches lack
this versatility and rely on relatively brittle distributional assumptions.

Shortly after this work, Avella-Medina and Brunel [2] used the smooth sensitivity framework (and the
propose-test-release framework) for median estimation. Of course, the mean and median are closely
related. However, there is a subtle – but important – difference: Whereas the standard deviation
provides the appropriate scale for the accuracy of an estimate of the mean, the reciprocal of the
probability density around the median provides the appropriate scale for an estimate of the median
[31]. Indeed, the standard deviation of the empirical mean and the empirical median scale with these
quantities respectively. Accordingly, while our results state accuracy bounds in terms of the variance
of the unknown distribution, their results state accuracy bounds in terms of the probability density in
the neighbourhood of the median. Neither type of bound dominates the other, as it is easy to find
distributions more favourable to each analysis. However, while their analysis and bounds are very
different from ours, their algorithm is not; their algorithm is a special case of our algorithm. Thus we
view their work as providing further independent validation of the utility of our approach.

Further Applications Mean estimation is an extremely fundamental task that arises as a subroutine
of more complex tasks. For example, private optimization and machine learning often rely on
estimating gradients [3, 1]. This is a (multivariate) mean estimation task and our methods may yield
improvements here. Mean estimation also naturally arises in hypothesis testing [33, 18, 7, 9, 10, 8].

The smooth sensitivity framework has also been applied to other problems. Examples include learning
decision forests [17], principal component analysis [20], analysis of outliers [28], and analysis of
graphical data [23, 25, 34, 30]. Our new distributions can immediately be applied to these problems.

After estimating the mean (or location parameter) of a distribution, the next question is to estimate its
scale (e.g. variance). For this, our methods can be applied to robust location estimators [31].

2 Trimmed Mean

For the problem of mean estimation, we use the trimmed mean as our estimator.
Definition 9 (Trimmed Mean). For n,m 2 Z with n > 2m � 0, define trimm : Rn ! R by

trimm(x) =
x(m+1) + x(m+2) + · · ·+ x(n�m)

n� 2m
,

where x(1)  x(2)  · · ·  x(n) denote the order statistics of x.

Intuitively, the trimmed mean interpolates between the mean (m = 0) and the median (m = n�1
2 ).

Error of the Trimmed Mean: Before we consider privatising the trimmed mean, we look at the
error introduced by the trimming itself. We focus on mean squared error relative to the mean. That is,
E

X Dn

h
(trimm(X)� µ)2

i
, where µ = E

X D
[X] is the mean of the distribution D.
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Figure 2: Excesss variance of the private
trimmed mean with smooth sensitivity. Data is
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Bun and Steinke (2019): “Average case averages”: https://arxiv.org/pdf/1906.02830.pdf

https://arxiv.org/pdf/1906.02830.pdf


Drawbacks of Smooth Sensitivity

• Restricted to numerical valued outputs.

• Requires elaborate design of the noise, generally with a
much heavier tail

• Does not generalize well to high-dimension

• Are there more flexible recipes for deriving data-dependent
DP algorithms?

15



Example: Releasing reciprocal

• Let f(D) be a counting query, define g(D) = 1/f(D)
• What is the global and local sensitivity of g(D)?

• What is the smooth sensitivity of g(D)?

• Example: the prediction variance of linear
regression on a new dataset
• Useful for statistical inference / uncertainty
quantification

16



Examples: Private Argmax

• Voting: Who won the election?

• Model selection: Which is the best performing
model when evaluating on a private dataset?

• Netflix: What is the Top-k most-popular movie last
week?

17



Release Stable Values without
adding noise.
Define “Dist2Instability” function:

“Dist2Instability”:
1.

2.

18



The privacy analysis of
“Dist2Instability”
• Case A:

• Case B:
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Utility of “Dist2Instability”

• Perfect utility with high probability when “margin is
large”

• No utility at all when the margin is small.

• Comparing to exponential mechanism
• Homework 3 question.

20



Propose-Test-Release

1. Propose a bound on local-sensitivity

2. Test the validity of this bound

3. Release:

21

1. Propose a target bound � on local sensitivity.

2. Let d̂ = d(x, {x0 : LSq(x0) > �}) + Lap(1/"), where d denotes Hamming distance.

3. If d̂  ln(1/�)/", output ?.

4. If d̂ > ln(1/�)/", output q(x) + Lap(�/").

Proposition 3.2 (propose-test-release [33]). For every query q : Xn ! R and ", �,� � 0, the above
algorithm is (2", �)-di↵erentially private.

Proof. Consider any two neighboring datasets x ⇠ x0. Because of the Laplacian noise in the
definition of d̂ and the fact that Hamming distance has global sensitivity at most 1, it follows that

Pr[M(x) = ?] 2 [e�" · Pr[M(x0) = ?], e" · Pr[M(x0) = ?]]. (3)

Also, for those outputs that are not ?, we have two cases:

Case 1: LSq(x) > �. In this case, d(x, {x00 : LSq(x00) > �}) = 0, so the probability that d̂ will
exceed ln(1/�)/" is at most �. Thus, for every set T ✓ R [ {?}, we have:

Pr[M(x) 2 T ]  Pr[M(x) 2 T \ {?}] + Pr[M(x) 6= ?]

 e" · Pr[M(x0) 2 T \ {?}] + �

 e" · Pr[M(x0) 2 T ] + �,

where the second inequality follows from (3), noting that T \ {?} equals either {?} or ;.

Case 2: LSq(x)  �. In this case, |q(x)�q(x0)|  �, which in turn implies the (", 0)-indistinguishability
of q(x) + Lap(�/") and q(x0) + Lap(�/"). Thus, by (3) and Basic Composition, we have (2", 0)-
indistinguishability overall.

Notice that, like smooth sensitivity, the naive algorithm for computing d(x, {x0 : LSq(x0) > �})
enumerates over all datasets x0 2 X

n. Nevertheless, for the median function, it can again be
computed e�ciently.

3.3 Releasing Stable Values

A special case of interest in Propose-Test-Release is when � = 0. Then it can be verified that
d(x, {x0 : LSq(x0) > �}) = d(x, {x0 : q(x0) 6= q(x)}) � 1, so the algorithm is testing whether the
function q is constant in a neighborhood of x (of radius roughly ln(1/�)/") and if so, it outputs q
with no noise. That is, if q is stable around x, then we can safely release the value q(x) (exactly, with
no noise!), provided our test of stability is di↵erentially private. This also applies to, and indeed
makes the most sense for, discrete-valued functions q : Xn ! Y. In more detail, the mechanism
works as follows on x 2 X

n:

1. Let d̂ = d(x, {x0 : q(x0) 6= q(x)}) + Lap(1/"), where d denotes Hamming distance.

2. If d̂  1 + ln(1/�)/", output ?.
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The privacy analysis of PTR
• Case 1:

• Case 2:

22



Two remaining issues with PTR

1. How do I know what bound to propose?

2. Isn’t it still relying on local sensitivity and noise-
adding? How does it help to go beyond releasing
numerical queries?
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How do I know what bound to
propose? Privately releasing “a high
probability bound” of local sensitivity.
• Example: Estimating the number of triangles in a

graph under Edge Differential Privacy.

• Global sensitivity: n-2
• Local sensitivity: the max degree of G

• Private releasing local sensitivity?

24



Privacy analysis of the approach to
release local sensitivity privately.
Lemma: Let satisfies 𝜀-DP and

Then satisfies (2𝜀,𝛿)-DP.
• Proof:
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<latexit sha1_base64="b40eW1p+MPfyN68xfhhjNMX7W08=">AAACGnicbZC7SgNBFIZnvRtvUUubwSAkCHFXBC1FU1hYRDAXyIYwOzkbB2dnl5mzYljyHDa+io2FInZi49s4uRQa/WHg4z/ncOb8QSKFQdf9cmZm5+YXFpeWcyura+sb+c2tuolTzaHGYxnrZsAMSKGghgIlNBMNLAokNILb82G9cQfaiFhdYz+BdsR6SoSCM7RWJ++FxUqJ7lMf4R6zS5YMipaF7ELmV0AiG3SGHQc+JEbIWJVoJ19wy+5I9C94EyiQiaqd/IffjXkagUIumTEtz02wnTGNgksY5PzUQML4LetBy6JiEZh2NjptQPes06VhrO1TSEfuz4mMRcb0o8B2RgxvzHRtaP5Xa6UYnrQzoZIUQfHxojCVFGM6zIl2hQaOsm+BcS3sXym/YZpxtGnmbAje9Ml/oX5Y9ixfHRVOzyZxLJEdskuKxCPH5JRckCqpEU4eyBN5Ia/Oo/PsvDnv49YZZzKzTX7J+fwGf++fTQ==</latexit><latexit sha1_base64="b40eW1p+MPfyN68xfhhjNMX7W08=">AAACGnicbZC7SgNBFIZnvRtvUUubwSAkCHFXBC1FU1hYRDAXyIYwOzkbB2dnl5mzYljyHDa+io2FInZi49s4uRQa/WHg4z/ncOb8QSKFQdf9cmZm5+YXFpeWcyura+sb+c2tuolTzaHGYxnrZsAMSKGghgIlNBMNLAokNILb82G9cQfaiFhdYz+BdsR6SoSCM7RWJ++FxUqJ7lMf4R6zS5YMipaF7ELmV0AiG3SGHQc+JEbIWJVoJ19wy+5I9C94EyiQiaqd/IffjXkagUIumTEtz02wnTGNgksY5PzUQML4LetBy6JiEZh2NjptQPes06VhrO1TSEfuz4mMRcb0o8B2RgxvzHRtaP5Xa6UYnrQzoZIUQfHxojCVFGM6zIl2hQaOsm+BcS3sXym/YZpxtGnmbAje9Ml/oX5Y9ixfHRVOzyZxLJEdskuKxCPH5JRckCqpEU4eyBN5Ia/Oo/PsvDnv49YZZzKzTX7J+fwGf++fTQ==</latexit><latexit sha1_base64="b40eW1p+MPfyN68xfhhjNMX7W08=">AAACGnicbZC7SgNBFIZnvRtvUUubwSAkCHFXBC1FU1hYRDAXyIYwOzkbB2dnl5mzYljyHDa+io2FInZi49s4uRQa/WHg4z/ncOb8QSKFQdf9cmZm5+YXFpeWcyura+sb+c2tuolTzaHGYxnrZsAMSKGghgIlNBMNLAokNILb82G9cQfaiFhdYz+BdsR6SoSCM7RWJ++FxUqJ7lMf4R6zS5YMipaF7ELmV0AiG3SGHQc+JEbIWJVoJ19wy+5I9C94EyiQiaqd/IffjXkagUIumTEtz02wnTGNgksY5PzUQML4LetBy6JiEZh2NjptQPes06VhrO1TSEfuz4mMRcb0o8B2RgxvzHRtaP5Xa6UYnrQzoZIUQfHxojCVFGM6zIl2hQaOsm+BcS3sXym/YZpxtGnmbAje9Ml/oX5Y9ixfHRVOzyZxLJEdskuKxCPH5JRckCqpEU4eyBN5Ia/Oo/PsvDnv49YZZzKzTX7J+fwGf++fTQ==</latexit><latexit sha1_base64="b40eW1p+MPfyN68xfhhjNMX7W08=">AAACGnicbZC7SgNBFIZnvRtvUUubwSAkCHFXBC1FU1hYRDAXyIYwOzkbB2dnl5mzYljyHDa+io2FInZi49s4uRQa/WHg4z/ncOb8QSKFQdf9cmZm5+YXFpeWcyura+sb+c2tuolTzaHGYxnrZsAMSKGghgIlNBMNLAokNILb82G9cQfaiFhdYz+BdsR6SoSCM7RWJ++FxUqJ7lMf4R6zS5YMipaF7ELmV0AiG3SGHQc+JEbIWJVoJ19wy+5I9C94EyiQiaqd/IffjXkagUIumTEtz02wnTGNgksY5PzUQML4LetBy6JiEZh2NjptQPes06VhrO1TSEfuz4mMRcb0o8B2RgxvzHRtaP5Xa6UYnrQzoZIUQfHxojCVFGM6zIl2hQaOsm+BcS3sXym/YZpxtGnmbAje9Ml/oX5Y9ixfHRVOzyZxLJEdskuKxCPH5JRckCqpEU4eyBN5Ia/Oo/PsvDnv49YZZzKzTX7J+fwGf++fTQ==</latexit>

See a more general statement and proof in
Appendix G.6 of this paper: https://sites.cs.ucsb.edu/~yuxiangw/docs/spectral_privatelda.pdf

https://sites.cs.ucsb.edu/~yuxiangw/docs/spectral_privatelda.pdf


Beyond local sensitivity / noise-
adding approaches
• What happens when the output space is not

numerical?

• How to design data-adaptive versions of posterior-
sampling, or objective-perturbation, or NoisySGD
rather than just noise adding?
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Topic of the next (and final)
lecture
• Beyond local sensitivity
• Per-instance differential privacy
• pDP to DP conversion

• Data-dependent algorithms in differentially private
machine learning
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