Lecture 15 Propose-Test-Release

Yu-Xiang Wang

COMPUTER SCIENCE
UC SANTA BARBARA
Computing. Relnvented.

Logistics

- Please submit your HW2.
- The coding part should be pretty easy given my template.
- Let me know if you run into troubles.
- HW3 will be light-weighted so you have time to work on your project.

Recap: Beyond worst-case noise in DP query release

- Global sensitivity

$$
\operatorname{CSS}_{9}(x)=\max _{x}
$$

- Local sensitivity

$$
\mathrm{LS}_{q}(x)=\max \left\{q(x)-q\left(x^{\prime}\right) \mid: x^{\prime} \sim x\right\}
$$

- Smooth sensitivity

$$
\begin{aligned}
& \text { th sensitivity } \\
& \left.S S_{q}(x \beta)=\max \left\{S_{9}(x), \max _{x^{\prime}} L S_{q}\left(x^{\prime \prime}\right) \cdot e^{-\beta d\left(x x^{\prime}\right)}\right\}\right\}
\end{aligned}
$$

Recap: Admissible noise

Notation. For a subset \mathcal{S} of \mathbb{R}^{d}, we write $\mathcal{S}+\Delta$ for the set $\{z+\Delta \mid z \in \mathcal{S}\}$, and $e^{\lambda} \cdot \mathcal{S}$ for the set $\left\{e^{\lambda} \cdot z \mid z \in \mathcal{S}\right\}$. We also write $a \pm b$ for the interval $[a-b, a+b]$.

Definition 2.5 (Admissible Noise Distribution). A probability distribution on \mathbb{R}^{d}, given by a density function h, is (α, β)-admissible (with respect to ℓ_{1}) if, for $\alpha=\alpha(\epsilon, \delta), \beta=\beta(\epsilon, \delta)$, the following two conditions hold for all $\Delta \in \mathbb{R}^{d}$ and $\lambda \in \mathbb{R}$ satisfying $\|\Delta\|_{1} \leq \alpha$ and $|\lambda| \leq \beta$, and for all measurable subsets $\mathcal{S} \subseteq \mathbb{R}^{d}$:

Sliding Property:

$$
\overline{\text { Dilation Property: }}
$$

$$
\frac{\operatorname{Pr}_{Z \sim h}[Z \in \mathcal{S}] \leq e^{\frac{\epsilon}{2}} \cdot \operatorname{Pr}_{Z \sim h}[Z \in \mathcal{S}+\Delta]+\frac{\delta}{2}}{\underset{Z \sim h}{\operatorname{Pr}}[Z \in \mathcal{S}] \leq e^{\frac{\epsilon}{2}} \cdot \operatorname{Pr}_{Z \sim h}\left[Z \in e^{\lambda} \cdot \mathcal{S}\right]+\frac{\delta}{2}}
$$

Figure 1: Sliding and dilation for the Laplace distribution with p.d.f. $h(z)=\frac{1}{2} e^{-|z|}$, plotted as a solid line. The dotted lines plot the densities $h(z+0.3)$ (left) and $e^{0.3} h\left(e^{0.3} z\right)$ (right).

- Then $\mathcal{A}(x)=f(x)+\frac{S(x)}{\frac{\alpha}{\alpha} \cdot Z}$ satisfies $(\varepsilon, \delta)-$ DP.

Recap: Summary of the noises that are known to work

- Cauchy distribution
- Student t-distribution

- Laplace-log-normal
- Uniform-log-normal
- Arcsinh-normal

- Gaussian
- Laplace

$\delta>0$

Recap: Laplace-log-normal noise and CDP

- Adding log-normal noise

$$
Z=X \cdot e^{\sigma Y}
$$

- X drawn from Laplace and Y from a standard Normal.

$$
\begin{array}{|l}
\text { Proposition 3. Let } f: \mathcal{X}^{n} \rightarrow \mathbb{R} \text { and let } Z \leftarrow \underline{\operatorname{LLN}(\sigma)} \text { for some } \sigma>0 \text {. Then, for all } s, t>0 \text {, the } \\
\text { algorithm } M(x)=f(x)+\frac{1}{s} \cdot \mathrm{~S}_{f}^{t}(x) \cdot Z \text { guarantees } \frac{1}{2} \varepsilon^{2} \text {-CDP for } \varepsilon=t / \sigma+e^{3 \sigma^{2} / 2} s \text {. }
\end{array}
$$

This lecture

- Finish smooth sensitivity
- Sketching the idea of the zCDP proof for Laplace lognormal.
- Empirical results on truncated mean.
- Propose-Test-Release
- Easy-to-use recipes for PTR and examples

Reading materials

- Vadhan book Section 3.2-3.4
- Dwork and Lei "Differential Privacy and Robust Statistics"
- Original paper for PTR.
- W. (2018) "Revisiting Differentially Private Linear Regression" https://arxiv.org/abs/1803.02596
- A good example for deriving data-dependent DP algorithm

Concentrated DP analysis of Smoothed Sensitivity

- Adding log-normal noise

$$
Z=X \cdot e^{\sigma Y}
$$

- X drawn from Laplace and Y from a standard Normal.

Proposition 3. Let $f: \mathcal{X}^{n} \rightarrow \mathbb{R}$ and let $Z \leftarrow \operatorname{LLN}(\sigma)$ for some $\sigma>0$. Then, for all $s, t>0$, the algorithm $M(x)=f(x)+\frac{1}{s} \cdot \mathrm{~S}_{f}^{t}(x) \cdot Z$ guarantees $\frac{1}{2} \varepsilon^{2}$-CDP for $\varepsilon=t / \sigma+e^{3 \sigma^{2} / 2} s$.

Bun and Steinke (2019): "Average case averages": https://arxiv.org/pdf/1906.02830.pdf Dibtry

Summary of the noises that are known to work

- Cauchy distribution
- Student t-distribution
- Laplace-log-normal
- Uniform-log-normal
- Arcsinh-normal
- Gaussian
- Laplace

Sketch of the proof for the Laplace-Log-Normal

- Let's say for all neighboring datasets

$$
\left|f(x)-f\left(x^{\prime}\right)\right| \leq g(x) \quad \text { and } \quad e^{-t} g(x) \leq g\left(x^{\prime}\right) \leq e^{t} g(x)
$$

- Algorithm: $\quad M(x)=f(x)+\frac{g(x)}{s} \cdot Z \quad$ for $\quad Z \leftarrow \operatorname{LLN}(\sigma)$.
- We have that $\mathrm{D}_{\alpha}\left(M(x) \| M\left(x^{\prime}\right)\right)=\mathrm{D}_{\alpha}(Z \| \underbrace{\frac{f\left(x^{\prime}\right)-f(x)}{g(x)} \cdot s+\frac{g\left(x^{\prime}\right)}{g(x)} \cdot Z})$.

Technical tools

- Group privacy for CDP:

$$
\begin{gathered}
\left.(P \| Q)(\sqrt{a}+\sqrt{b})^{2}-\cos \right) \\
11)
\end{gathered}
$$

PllR)a-CDP b-CDp
Lemma 11. Let P, Q, R be probability distributions. Suppose $\mathrm{D}_{\alpha}(P \| R) \leq a \cdot \alpha$ and $\mathrm{D}_{\alpha}(R \| Q) \leq$ $b \cdot \alpha$ for all $\alpha \in(1, \infty)$. Then, for all $\alpha \in(1, \infty)$,
$\mathrm{D}_{\alpha}(P \| Q) \leq \alpha \cdot(\sqrt{a}+\sqrt{b})^{2} \leq 2 \alpha \cdot(a+b)$.

- Decompose what we want to bound

Bounding the two parts separately

Lemma 19. Let $Z \leftarrow \operatorname{LLN}(\sigma)$ for $\sigma>0$. Let $t \in \mathbb{R}$ and $\alpha \in(1, \infty)$. Then

$$
\mathrm{D}_{\alpha}\left(Z \| e^{t} Z\right) \leq \frac{\alpha t^{2}}{2 \sigma^{2}}
$$

$$
\frac{t^{2}}{د_{c^{2}}}=: 9
$$

- Proof:
quacitemontis) of D $D(\cdot(1$.$) \quad posfeplocesing$

Lemma 20. Let $Z \leftarrow \operatorname{LLN}(\sigma)$ for $\sigma>0$. Let $s \in \mathbb{R}$ and $\alpha \in(1, \infty)$. Then

$$
\underline{\mathrm{D}_{\alpha}(Z \| Z+s)} \leq \min \left\{\frac{1}{2} e^{3 \sigma^{2}} s^{2} \alpha, e^{\frac{3}{2} \sigma^{2}} s\right\}
$$

- Proof: $\mid \log$ classy vatan $\left\lvert\, \leqslant e^{\frac{3}{2} 6^{2}} \cdot s\right.$

$$
\varepsilon-\Delta p \Rightarrow s_{13}^{\varepsilon^{2}} \cdot \operatorname{cop}
$$

Improvement from running smoothed sensitivity is substantial!

$$
\operatorname{trim}_{m}(x)=\frac{x_{(m+1)}+x_{(m+2)}+\cdots+x_{(n-m)}}{n-2 m}
$$

Bun and Steinke (2019): "Average case averages": https://arxiv.org/pdf/1906.02830.pdf

Drawbacks of Smooth Sensitivity

- Restricted to numerical valued outputs.
- Requires elaborate design of the noise, generally with a much heavier tail
- Does not generalize well to high-dimension
- Are there more flexible recipes for deriving data-dependent DP algorithms?

Example: Releasing reciprocal

- Let $f(\mathrm{D})$ be a counting query, define $g(D)=1 / f(\mathrm{D})$
- What is the global and local sensitivity of g(D)?
$+\infty$
- What is the smooth sensitivity of $g(D)$?

- Example: the prediction variance of linear regression on a new dataset
- Useful for statistical inference / uncertainty quantification

Examples: Private Argmax

- Voting: Who won the election?
- Model selection: Which is the best performing model when evaluating on a private dataset?
- Netflix: What is the Top-k most-popular movie last week?

Release Stable Values without adding noise.

Define "Dist2Instability" function:

"Dist2Instability": $\operatorname{setf}\left(x^{\prime}\right) \neq f(x)$

1. $\hat{d}=d(x)+\operatorname{Cap}\left(\frac{1}{\varepsilon}\right)$
$d(x)$ is 1-insensing
$G_{1} S_{0}=1$
2. if $\hat{d}>\frac{\log \frac{1}{\varepsilon}}{\varepsilon}$, then out per $f(x)$ ese $\left(\hat{d} \leq \frac{\cos \theta}{\varepsilon}\right)$, then atp t " L "

Utility of "Dist2Instability"

- Perfect utility with high probability when "margin is large"
- No utility at all when the margin is small.
- Comparing to exponential mechanism
- Homework 3 question.

Propose-Test-Release

1. Propose a bound on local-sensitivity
2. Test the validity of this bound

$$
\hat{d}=d\left(x,\left\{x^{\prime}: \operatorname{LS}_{q}\left(x^{\prime}\right)>\beta\right\}\right)+\operatorname{Lap}(1 / \varepsilon),
$$

3. Release: retain $q(x)+\operatorname{lap}\left(\frac{\beta}{\varepsilon}\right)$

else return "L"

Proposition 3.2 (propose-test-release [33]). For every query $q: X^{n} \rightarrow \mathbb{R}$ and $\varepsilon, \delta, \beta \geq 0$, the above algorithm is $(2 \varepsilon, \delta)$-differentially private.
$[2 \varepsilon, 8|D|]$

$$
q L x \rightarrow k
$$

The privacy analysis of PTR

- Case 1: $\operatorname{LS}_{q}(x)>\beta \Rightarrow d\left(x,\left\{x^{\prime \prime}: \underline{\left.\left.S_{q}\left(x^{\prime \prime}\right)>\beta\right\}\right)}=0\right.\right.$
(< \& \& -DP

$$
\begin{aligned}
& \hat{d}_{(x)}=0+\operatorname{Cop}\left(\frac{1}{\varepsilon}\right) \quad \mathbb{P}(\underbrace{\bar{\delta}}_{\text {len } \mathbb{D}(x)-\frac{\log }{\varepsilon}}) \leq \mathcal{S}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{P}(m(x) \in S)=\mathbb{P}\left(M(x) \in S \cap E^{c}\right)+\mathbb{E}(M(M) \in S \cap E) \\
& \leqslant \mathbb{P}(M(x)=1 / 1 \\
& 2:
\end{aligned}
$$

laplleewoch then atty $M(x) \in \mathbb{R}(\{\perp \perp\}$

$$
\begin{aligned}
& \text { - Case 2: } \\
& \left.1 P\left(n(x)==^{\prime \prime} 1\right)^{\prime \prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\left.e^{q} p(a x+1) \in s\right)+\delta \\
n_{E^{c}} \\
\delta
\end{array}
\end{aligned}
$$

Two remaining issues with PTR

1. How do I know what bound to propose?
2. Isn't it still relying on local sensitivity and noiseadding? How does it help to go beyond releasing numerical queries?

How do I know what bound to propose? Privately releasing "a high probability bound" of local sensitivity.

- Example: Estimating the number of triangles in a graph under Edge Differential Privacy.
- Global sensitivity: n-2
- Local sensitivity: the max degree of G
- Private releasing local sensitivity?

Privacy analysis of the approach to release local sensitivity privately.

Lemma: Let $\quad \tilde{\Delta}_{f}(D) /$ satisfies ε-DP and

$$
\mathbb{P}\left[\Delta_{f}(D) \geq \tilde{\Delta}_{f}(D)\right] \leq \delta \Leftrightarrow
$$

Then $\quad f(D)+\operatorname{Lap}\left(\tilde{\Delta}_{f}(D) / \epsilon\right) \quad$ satisfies (2 $\left.\varepsilon, \delta\right)$-DP.

- Proof: $(y, u) \quad u \quad$ is $\varepsilon-D p, y=f(x)+\operatorname{lap}\left(\frac{y}{\tilde{n}}\right)-\sum|u \in c\rangle$

Beyond local sensitivity / noiseadding approaches

- What happens when the output space is not numerical?
- How to design data-adaptive versions of posteriorsampling, or objective-perturbation, or NoisySGD rather than just noise adding?

Topic of the next (and final) lecture

- Beyond local sensitivity
- Per-instance differential privacy
- pDP to DP conversion
- Data-dependent algorithms in differentially private machine learning

