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Logistics

• Last lecture with new materials.

• We may have short lecture next Monday if I don’t finish 
everything today.

• Remaining lectures will be for
• Project consultation
• Homework discussion
• Anything on your mind

• I will be in this lecture hall. All are welcome.
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Recap:  data-dependent DP 
algorithms
• Smooth sensitivity

• Distance-to-Instability

• Propose-Test-Release

• Privately Releasing Local-Sensitivity
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Recap: distance-to-instability

• Distance to instability
• d(x) = d(x; {x” | f(x”) ≠ f(neighbor of x” ) })

= d(x; {x” | f(x”) ≠ f(x) }) – 1
• The Dist2Instability mechanism:

• Proof:  Observe that decision is post-processing of 
Laplace mechanism.

Case A:  If f(x) = f(x’) =>  | d(x) – d(x’)| ≤  1

Case B:  If f(x) ≠ f(x’) => d(x) = d(x’) = 0
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Recap: Propose-Test-Release

• Propose a bound on LS
• Privately test it by adding noise.
• 𝑑 𝑥, 𝛽 = 𝑑(𝑥, 𝑥!!| 𝐿𝑆 𝑥!! > 𝛽 )

• Output ⊥ if 𝑑 𝑥, 𝛽 + 𝐿𝑎𝑝 "
# <

$%&!"
#

• Else output 𝑓 𝑥 + 𝐿𝑎𝑝 "
#

• Proof idea similar to “Distance-to-instability”
• Case A: 𝐿𝑆 𝑥 > 𝛽 => 𝑑 𝑥, 𝛽 = 0 Test fails with low 

probability. 
• Case B: 𝐿𝑆 𝑥 ≤ 𝛽 => Composition to two Laplace 

Mechanisms
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Recap: Privately releasing local
sensitivity
Lemma: Let satisfies 𝜀-DP and

Then satisfies (2𝜀,𝛿)-DP.
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See a more general statement and proof in
Appendix G.6 of this paper: https://sites.cs.ucsb.edu/~yuxiangw/docs/spectral_privatelda.pdf

This is computationally efficient if we can release the local sensitivity efficiently.

Example: Output perturbation of DP-GLM with Lipschitz, smooth and convex losses.



Summary: Data-dependent DP 
algorithms so far

Applicability Computationally efficiency

Smooth sensitivity Numerical queries
(does not scale to high-
dimension)

Efficient when SS or other 
smooth upper bound of LS is 
efficient

Dist2Instability Arbitrary queries
But need LS = 0 in 
neighborhood of x.

Efficient when dist2instability
function is efficiently 
computable.

PTR Numerical queries. 
Need a good guess of a 
stable  LS upper bound

Efficient when dist2largeLS
function is efficiently 
computable.

Privately Bounding LS Numerical queries. Efficient when LS can be 
bounded and privately released 
efficiently. 
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This lecture

• Beyond local sensitivity
• Per-instance differential privacy
• pDP to DP conversion

• Examples of data-dependent algorithms in 
differentially private machine learning

• Open problems / good research directions in DP
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Example:  Data-Dependent 
Differentially Private ERM
• Convex, Lipschitz and Smooth losses
• Local sensitivity

• Output perturbation
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Proof. Since log( p(✓)
p0(✓) ) = � log(p

0(✓)
p(✓) ) and the tail bound is two-sided. It suffices for us to prove just one

direction. Let E be the event that |✏(✓)| > t.

Pp(✓ 2 S) = Pp(✓ 2 S [ Ec) + Pp(✓ 2 S [ E)  Pp0(✓ 2 S [ E)et + Pp(✓ 2 E)  etPp0(✓ 2 S) + �.

Lemma 16 (Weyl’s eigenvalue bound (Stewart, 1998, Theorem 1)). Let X,Y,E 2 Rm⇥n
, w.l.o.g., m � n.

If X � Y = E, then |�i(X)� �i(Y )|  kEk for all i = 1, ..., n.

Lemma 17 (Stability of smooth learning problems, Lemma 14 of (Wang, 2017)). Assume ` and r be

differentiable and their gradients be absolute continuous. Let ✓̂ be a stationary point of
P

i
`(✓, zi)+ r(✓), ✓̂0 be

a stationary point
P

i
`(✓, zi) + `(✓, z) + r(✓) and in addition, let ⌘t = t✓̂ + (1� t)✓̂0 denotes the interpolation

of ✓̂ and ✓̂0. Then the following identity holds:

✓̂ � ✓̂0 =

"Z 1

0

 
X

i

r2`(⌘t, zi) +r2`(⌘t, z) +r2r(⌘t)

!
dt

#�1

r`(✓̂, z)

= �
"Z 1

0

 
X

i

r2`(⌘t, zi) +r2r(⌘t)

!
dt

#�1

r`(✓̂0, z).

E (✏, �)-DP calibration of OPS for linear regression.

This appendix describes the details of how we implement the non-adaptive version of OPS as a baseline.

OPS was proposed as a ✏-pure-DP mechanism via the use of the exponential mechanism. In this paper, we
are working with (✏, �)-DP and it is only fair to compare to a version of OPS with (✏, �)-DP. Such guarantees
are studied by Mir (2013, Chapter 5) and later by Minami et al. (2016), but neither can be straightforwardly
and satisfactorily applied to the linear regression problem.

Minami et al. (2016) requires that the loss function is Lipschitz. Linear regression is not Lipschitz unless we
constraint |⇥| as in Assumption A2 just like for ObjPert then it becomes Lipschitz. With appropriate choice
of � and � and using ideas in Section C.4. Unfortunately, unlike ObjPert, OPS is not an optimization based
method. Sampling from the posterior distribution subject to the additional constraint requires techniques
such as rejection sampling, which we find very costly, and prone to numerical issues.

Mir (2013) does not require an explicit constraint on the parameter space. Instead, they use a large
regularization parameter �, so that with probability 1 � � over the distribution of the OPSmechanism,
the output is not too much larger than Ridge regression solution, which effectively produces a constraint
on the domain. Then they apply an exponential mechanism-based argument after conditioning on this
high-probability event. See Section 5.4.1 of (Mir, 2013) for details. Unfortunately, this approach yields a
suboptimal rate under (✏, �)-DP, which depends linearly in d rather than the optimal

p
d dependence.

The pDP analysis of linear regression of Wang (2017) suggests that we do not actually need global Lipschitz
constant, instead the local Lipschitz constant at ✓⇤

�
is sufficient for us to obtain differential privacy. For any

data set (X,y), we can show that

k✓⇤
�
k  k(XTX + �I)�1XT k2

p
nkYk  min

⇢p
nkYkp
2�

,
nkXkkYk

�

�
. (23)

The local Lipschitz constant at ✓⇤
�

is therefore smaller than
p
nkXk2kYkp

2�
+ kXkkYk = kXkkYk(

p
nkXkp
2�

+ 1) =: L(�).

Apply Remark 11 with the above Lipschitz constant upper bound and also take �min = 0, we get a pDP
guarantee for any pairs of adjacent data sets, which by definition, upgrades into a DP guarantee. In other

28



What if we the mechanism is not 
just adding noise?
• Example: Revisiting linear regression
• Posterior sampling mechanism:

• The distribution depends jointly on the data and on 
the hyperparameters of the mechanisms
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statistical inference, e.g., t-test and ANOVA for linear regression coefficients would be
trivial.

Interestingly, for linear and ridge regression, the second and third choices are closely related
to popular algorithms studied before. In fact, taking A = (XTX)2 recovers the objective
perturbation (ObjPert) method[Chaudhuri et al., 2011, Kifer et al., 2012]:

θ̂ = argmin
θ∈Θ

‖y −Xθ‖2 + 〈z, θ〉, θ ∼ N (0,σ2I). (4.1)

while taking A = XTX recovers the one-posterior-sampling (OPS) mechanism proposed in
[Dimitrakakis et al., 2014, Wang et al., 2015], which outputs

θ̂ ∼ P (θ|X,y) ∝ e−γ‖y−Xθ‖2 . (4.2)

An important difference is that in ObjPert and OPS, A is not fixed, but rather depends
on the data. As a result, we cannot use Lemma 2.4 to calculate the pDP. In fact, the
data-independent choice of A could imply an unbounded ε (consider an arbitrarily near
singular X and x in its null space).

Not surprisingly, existing analyses of ObjPert and OPS require additional assumptions.
Kifer et al. [2012] adds an additional λ‖θ‖2 to (4.1), while Wang et al. [2015] assumes that
the loss function is bounded (by modifying it or constraining the domain Θ) so that the
exponential mechanism [McSherry and Talwar, 2007] would apply. It was later pointed
out in [Foulds et al., 2016] that OPS is not asymptotically efficient in that it has an
asymptotic relative efficiency (ARE) inversely proportional to ε, while simple sufficient
statistics perturbation can achieve asymptotic efficiency comparable to [Smith, 2008].

In the remainder of the section, we will first zoom into the OPS and propose a direct
analysis of pDP using Lemma 3.1, then we will describe how to use the pDP analysis to
obtain an extension of OPS that obeys (ε, δ)-DP and asymptotically efficient under the
same data assumption in [Foulds et al., 2016]. We will see that OPS effectively converges to
the “Fisher”-choice of noise adding in the same asymptotic regime and offers dimension and
condition number independent expected pDP loss.

4.1. pDP analysis of OPS. The first result calculates the pDP loss of OPS.

Theorem 4.1 (The adaptivity of OPS in Linear/Ridge Regression). Consider the OPS
algorithm that samples from

p(θ|X,y) ∝ e−
γ
2 (‖y−Xθ‖2+λ‖θ‖2).

Let θ̂ and θ̂′ be the ridge regression estimate with data set X × y and [X,x] × [y, y] and
defined the out of sample leverage score µ := xT (XTX + λI)−1x = xTH−1x and in-sample
leverage score µ′ := xT [(X ′)TX ′ + λI]−1x = xT (H ′)−1x. Then for every δ > 0, privacy



General idea: Working with 
privacy loss random variables
• The output space can be arbitrary, but the space of 

the privacy loss RV is 1-D. 

• We can
1. Work out the privacy loss random variables
2. Figuring out what part of it depends on the data
3. Release an upper bound of these data-dependent 

quantities differentially privately. 
4. Calibrate noise to privacy budget according to this

upper bound.
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Detour: Per-instance Differential
Privacy

• Remarks:
• Defining DP for each pair of neighboring datasets.
• Measure the privacy loss for each individual z given a fixed dataset Z (or

[Z,z])
• Can be viewed as taking 𝜀 as a function

• Properties:
• Composition / Post-processing and many other properties.
• DP can be obtained by maximizing over Z,z

12

INSTRUCTIONS 7

Definition 2.1 (Differential privacy [Dwork et al., 2006]). We say a randomized algorithm
A satisfies (ε, δ)-DP if, for all data set Z and data set Z ′ that can be constructed by adding
or removing one data point z from Z,

Pθ∼A(Z)(θ ∈ S) ≤ eεPθ∼A(Z′)(θ ∈ S) + δ, ∀ measurable set S.

When δ = 0, this is also known as pure differential privacy.

It is helpful to understand what differential privacy is protecting against — a powerful
adversary that knows everything in the entire universe, except one bit of information:
whether a target z is in the data set or not in the data set. The optimal strategy for
such an adversary is to conduct a likelihood ratio test (or posterior inference) on this bit,
and differential privacy uses randomization to limit the probability of success of such test
[Wasserman and Zhou, 2010].

Note that the adversary always knows Z and has a clearly defined target z, and it is natural
to evaluate the winnings and losses of the “player”, the data curator by conditioning on the
same data set and privacy target. This gives rise to the following generalization of DP.

Definition 2.2 (Per-instance Differential Privacy). For a fixed data set Z and a fixed data
point z. We say a randomized algorithm A satisfy (ε, δ)-per-instance-DP for (Z, z) if, for all
measurable set S ⊂ Θ, it holds that

Pθ∼A(Z)(θ ∈ S) ≤ eεPθ∼A([Z,z])(θ ∈ S) + δ,

Pθ∼A([Z,z])(θ ∈ S) ≤ eεPθ∼A(Z)(θ ∈ S) + δ.

This definition is different from DP primarily because DP is the property of the A only and
pDP is the property of both A, Z and z. If we take supremum over all Z ∈ Zn and z ∈ Z,
then it recovers the standard differential privacy.

Similarly, we can define per-instance sensitivity for (Z, z).

Definition 2.3 (per-instance sensitivity). Let H = Rd, for a fixed Z and z. The per-instance
‖ · ‖∗ sensitivity of a function f : Data → Rd is defined as ‖f(Z)− f([Z, z])‖∗, where ‖ · ‖∗
could be $p norm or ‖ · ‖A =

√
(·)TA(·) defined by a positive definite matrix A.

This definition also generalizes quantities in the classic DP literature. If we fix Z but
maximize over all z ∈ Z, we get local-sensitivity [Nissim et al., 2007]. If we maximize over
both Z ∈ Z∗ and z ∈ Z, we get global sensitivity [Dwork et al., 2014, Definition 3.1]. These
two are often infinite in real-life problems, but for a fixed data set Z and target z to be
protected, we could still get meaningful per-instance sensitivity.

Immediately, the per-instance sensitivity implies pDP for a noise adding procedure.

Lemma 2.4 (Multivariate Gaussian mechanism). Let θ̂ be a deterministic map from a data
set to a point in Θ, e.g., a deterministic learning algorithm, and let the A-norm per-instance
sensitivity ∆A(Z, z) be ‖θ̂([Z, z])− θ̂(Z)‖A. Then adding noise with covariance matrix A−1/γ
obeys (ε(Z, z), δ)-pDP for any δ > 0 with

ε(Z, z) = γ∆A(Z, z)
√
log(1.25/δ).

W. (2019). Per-instance differential privacy. Journal of Privacy and Confidentiality, 9(1)
https://journalprivacyconfidentiality.org/index.php/jpc/article/download/662/675



Visualizing pDP vs DP upper bound 
output perturbation in linear 
regression
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Figure 1: Illustration of the privacy loss ε of an output perturbation algorithm under DP, pDP
for all, as well as the distribution of pDP’s privacy loss for data points in the data
set. The data set is generated by a linear Gaussian model, where the design matrix
is normalized such that each row has Euclidean norm 1 and y is also clipped at
[−1, 1]. The output perturbation algorithm releases θ̂ ∼ N ((XTX + I)−1Xy,σ2I)
with σ = 4. Our choice of δ = 10−6.

Roth, 2015, Ebadi et al., 2015, Liu et al., 2015] and could be useful when individuals
have different sensitivity.

pDP with assumptions on data sets: As we mentioned in the introduction, a branch
of modern machine learning focuses on finding reasonable assumptions on the data sets
which reduces the computation and sample complexity of a problem. In this case, Z could
be drawn from any distributions such that these assumptions are true with probability 1,
in other words, we can take advantage of these assumptions when calculating the privacy
loss of an individual z.

pDP with a data set prior: When we take Z ∼ π for some prior distribution π, then the
moments of pDP make it possible to take advantage of that prior distribution to describe
the privacy of an individual z as a distribution over the possible privacy loss.

As an illustration, we compare pDP of a data set, pDP for all and the classical differential
privacy using a simulated experiment. The results are shown in Figure 1. As we can see, the
more fine-grained per-instance DP reveals more than an order of magnitude stronger privacy
protection for all users in the data set, and six times better privacy protection for all users in
the entire universe, than the standard DP’s characterization. We will revisit some of these
notions in our case study for linear regressions in Section 4 with concrete bounds.

2.3. Generalization and domain adaptation. Assume that the data set is drawn iid
from some unknown distribution D — a central assumption in statistical learning theory —
then we can take P = Dn−1×D. This allows us to use the moment of pDP losses to capture
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Note that the quantity µ(x) in the first term is the generalized leverage score (Wei et al., 1998),
quantifying the influence of a data point on the model fit. The second and third terms are a function of
the gradient of the loss function and provide a complementary measure of how well the fitted model
predicts individual z’s data.

Figure 1: Visualization of ex-post pDP losses for logistic regression (n = 1000, d = 2).

Since the ex-post pDP is a function of ✓̂
P , we don’t even need to run Algorithm 1 to calculate ex-post

pDP losses – we can plug in directly to Corollary 7 in order to calculate the pDP distribution induced
by any hypothetical ✓̂

P . For Figure 1, we use a synthetic dataset D sampled from the unit ball with
two linearly separable classes separated by margin m = 0.4. Then we solve for ✓̂ = argmin J(✓; D)
with � = 1 to minimize the logistic loss, and directly perturb the output by rotating it by angle
! 2 [0,

⇡
12

,
⇡
4
,

⇡
2
,

3⇡
4

, ⇡]. We then denote ✓̂
P := ✓+! to mean ✓ rotated counter-clockwise by angle !.

The color scale is a function of the ex-post pDP loss of data point z.

Figure 1 illustrates how the mechanism output ✓̂
P affects the ex-post pDP distribution of objective

perturbation for our logistic regression problem. For ! 2 [0,
⇡
12

], the data points closest to the
decision boundary have the highest ex-post pDP loss. These data points have a strong effect on the
learned model and would therefore have high leverage scores, making the first term dominate. As
the perturbation (and model error) increases, the second and third terms dominate; the more badly a
model predicts a data point, the less protection this data point has.

Hidden in this analysis are the �’s of Theorem 5, which along with the choice of � and � could
affect which of the three terms is dominant. Fortunately, the probability of outputting something like
✓̂

P = ✓+⇡ is astronomically low for any reasonable privacy setting!

3.2 Releasing the pDP losses

Next we consider: after having released ✓̂
P and calculated the per-instance privacy losses of doing

so, how do we privately release these pDP losses? Our goal is to allow any individual z 2 Z (in the
dataset or not) to know her privacy loss while preserving the privacy of others in the dataset.

Observe that the expression from Theorem 6 depends on the dataset D only through two quantities:
the leverage score µ(x) = x

T
�
r2

J(✓̂P ; D)
��1

x and the inner product rJ(✓̂P ; D)T r`(✓̂P ; z). As
a result, if we can find a data-independent bound for these two terms, or privately release them with
only a small additional privacy cost, then we are done.

6

Theorem 5 (Privacy guarantees of Algorithm 1 (Kifer et al., 2012)). Consider dataset D = {zi}n
i=1

;

loss function L(✓; D) =
P

i `(✓; zi); convex regularizer r(✓); and convex domain ⇥. Assume that

r2
`(✓; zi) � �Id and ||r`(✓; zi)||2  ⇠ for all zi 2 X ⇥ Y and for all ✓ 2 ⇥. For � � 2�/✏1 and

� = ⇠
2(8 log(2/�) + 4✏1)/✏

2
1
, Algorithm 1 satisfies (✏1, �)-differential privacy.

The privacy guarantees stated in Theorem 5 apply even when ✓ is constrained to a closed convex set,
but for ease of our per-instance privacy analysis we will require ⇥ = Rd from this point on.

3 Privately Publishable pDP

3.1 pDP Analysis of Objective Perturbation

Our goal in this section is to derive the personalized privacy losses (under Definition 3) associated
with observing the output ✓̂

P of objective perturbation. This ex-post perspective is highly adaptive
and also convenient for our analysis of Algorithm 1, whose privacy parameters are a function of the
data. Since we are analyzing the per-instance privacy cost of releasing ✓̂

P , it makes perfect sense to
condition the pDP loss on the privatized output of the computation.

Our first technical result is a precise calculation of the ex-post pDP loss of objective perturbation.
Theorem 6 (ex-post pDP loss of objective perturbation for a convex loss function). Let J(✓; D) =
L(✓; D) + r(✓) + �

2
||✓||2

2
such that L(✓; D) + r(✓) =

P
i `(✓; zi) + r(✓) is a convex and twice-

differentiable regularized loss function, and sample b ⇠ N (0, �
2
Id). Then for every privacy

target z = (x, y), releasing ✓̂
P = argmin✓2Rd J(✓; D) + b

T
✓ satisfies ✏1(✓̂P

, D, D±z)-ex-post

per-instance differential privacy with

✏1(✓̂
P

, D, D±z) =

������
� log

dY

j=1

⇣
1 ⌥ µj

⌘
+

1

2�2
||r`(✓̂P ; z)||2

2
± 1

�2
rJ(✓̂P ; D)T r`(✓̂P ; z)

������
,

where µj = �ju
T
j

⇣
rb(✓̂P ; D) ⌥

Pj�1

k=1
�kuku

T
k

⌘�1

uj according to the eigendecomposition

r2
`(✓; z) =

Pd
k=1

�kuku
T
k .

Proof sketch. Following the analysis of (Chaudhuri et al., 2011), we establish a bijection between
the mechanism output ✓̂

P and the noise vector b, and use a change-of-variables defined by the
Jacobian mapping between ✓̂

P and b in order to rewrite the log-probability ratio in terms of the
probability density function of b. First-order conditions then allow us to solve directly for the
distribution of b. To calculate the first term of the above equation, we use the eigendecomposition of
the Hessian r2

`(✓̂P ; z) and recursively apply the matrix determinant lemma. The rest of the proof is
straightforward algebra. The full proof is given in Appendix E.

The above expression holds for any convex loss function, but is a bit unwieldy. The calculation
becomes much simpler when we assume `(·) to be a generalized linear loss function, with inner-
product form `(✓; z) = f(xT

✓; y). For the sake of interpretability, we will defer further discussion of
the ex-post pDP loss of objective perturbation until after presenting the following corollary.
Corollary 7 (ex-post pDP loss of objective perturbation for GLMs). Let J(✓; D) = L(✓; D) +
r(✓)+ �

2
||✓||2

2
such that L(✓; D) =

P
i `(✓; zi) is a linear loss function, and sample b ⇠ N (0, �

2
Id).

Then for every privacy target z = (x, y), releasing ✓̂
P = argmin✓2Rd J(✓; D) + b

T
✓ satisfies

✏1(✓̂P
, D, D±z)-ex-post per-instance differential privacy with

✏(✓̂P
, D, D±z) 

����� log
�
1 ± f

00(·)µ(x)
�

+
1

2�2
||r`(✓̂P ; z)||2

2
± 1

�2
rJ(✓̂P ; D)T r`(✓̂P ; z)

���� ,

where µ(x) = x
T
�
r2

J(✓̂P ; D)
��1

x, r`(✓̂P ; z) = f
0(xT

✓̂
P ; y)x and f

00(·) is shorthand for

f
00(·) = f

00(xT
✓̂

P ; y). The notation b(✓̂P ; D) means the realization of the noise vector b for

which the output of Algorithm 1 will be ✓̂
P

when the input dataset is D.

5

Redberg and W. (2021) Privately publishable Per-instance Privacy: 
https://arxiv.org/abs/2111.02281



Per-instance differential privacy of
Posterior Sampling for linear regression?

• Where

15

INSTRUCTIONS 15

target (x, y), the algorithm is (ε, δ)-pDP with

ε(Z, z) ≤1

2

∣∣∣∣− log(1 + µ) +
γµ

(1 + µ)
(y − xT θ̂)2

∣∣∣∣+
µ

2
log(2/δ) +

√
γµ log(2/δ)|y − xT θ̂|

(4.3)

=
1

2

∣∣∣∣− log(1− µ′)− γµ′

1− µ′ (y − xT θ̂′)2
∣∣∣∣+

µ′

2
log(2/δ) +

√
γµ′ log(2/δ)|y − xT θ̂′|.

(4.4)

The proof is given in the appendix.

The two equivalent upper bounds are both useful. (4.3) is ideal for calculating pDP when x
is not in the data set and (4.4) is perfect for the case when x is in the data set.

Remark 4.2. The bound (4.3) can be simplified to

µ

2
(1 + log(2/δ)) +

1

2
γmin(µ, 1)|y − xT θ̂′|2 +

√
γµ log(2/δ)|y − xT θ̂′|.

If µ = o(log(2/δ))4 and we choose γ such that
√

γµ′ log(2/δ)|y − xT θ̂′| ≤ 1, then the bound
can be simplified to

ε(Z, z) ≤ 2
√

γµ log(2/δ)|y − xT θ̂|+ o(1).

This matches the order of Gaussian mechanism with a fixed (data-independent) covariance
matrix.

The results in [Foulds et al., 2016] are stated for general exponential family models under a
set of assumptions that translate into the following for linear regression:

(a) data x1, ..., xn is drawn i.i.d. from D supported on X where X ⊂ B‖·‖2(1).

(b) population covariance matrix m
d I $ EDxxT $ M

d I for constant m and M ,

(c) yi ∼ N (xTi θ0,σ
2) for some θ0.

To simplify the presentation, we also assume n scales with respect to d such that

(d) with high probability, XXT & αn
2d I.

The last assumption measures how quickly the empirical covariance matrix 1
nXXT concen-

trates to Ex∼DxxT . It can be shown that if X is an appropriately scaled subgaussian random
matrix, this happens with probability 1− n−10 whenever n > max(10d, 10d−2/3 log n).

Proposition 4.3. The sequence of OPS algorithm with parameter γn, λn obeys the following
properties.

(1) pDP and DP in the agnostic setting. Assume ‖x‖ ≤ 1 for every x ∈ X . The
algorithm obeys (εn, δ)-pDP, for each data set (X,y) and all target (x, y),

εn =

√
γn log(2/δ)

λn + λmin
|y − xT θ̂|+ γn|y − xT θ̂|2

2max{λn + λmin, 1}
+

γn(1 + log(2/δ))

2(λn + λmin)
. (4.5)

4 This is not an unrealistic assumption because µ and µ′ are o(1) as long as x is bounded and the minimum
eigenvalue of XTX + λI is ω(1). This is required for (agnostic) linear regression to be consistent and is
implied by the condition that the population covariance matrix 1

nEX
TX is full rank.
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statistical inference, e.g., t-test and ANOVA for linear regression coefficients would be
trivial.

Interestingly, for linear and ridge regression, the second and third choices are closely related
to popular algorithms studied before. In fact, taking A = (XTX)2 recovers the objective
perturbation (ObjPert) method[Chaudhuri et al., 2011, Kifer et al., 2012]:

θ̂ = argmin
θ∈Θ

‖y −Xθ‖2 + 〈z, θ〉, θ ∼ N (0,σ2I). (4.1)

while taking A = XTX recovers the one-posterior-sampling (OPS) mechanism proposed in
[Dimitrakakis et al., 2014, Wang et al., 2015], which outputs

θ̂ ∼ P (θ|X,y) ∝ e−γ‖y−Xθ‖2 . (4.2)

An important difference is that in ObjPert and OPS, A is not fixed, but rather depends
on the data. As a result, we cannot use Lemma 2.4 to calculate the pDP. In fact, the
data-independent choice of A could imply an unbounded ε (consider an arbitrarily near
singular X and x in its null space).

Not surprisingly, existing analyses of ObjPert and OPS require additional assumptions.
Kifer et al. [2012] adds an additional λ‖θ‖2 to (4.1), while Wang et al. [2015] assumes that
the loss function is bounded (by modifying it or constraining the domain Θ) so that the
exponential mechanism [McSherry and Talwar, 2007] would apply. It was later pointed
out in [Foulds et al., 2016] that OPS is not asymptotically efficient in that it has an
asymptotic relative efficiency (ARE) inversely proportional to ε, while simple sufficient
statistics perturbation can achieve asymptotic efficiency comparable to [Smith, 2008].

In the remainder of the section, we will first zoom into the OPS and propose a direct
analysis of pDP using Lemma 3.1, then we will describe how to use the pDP analysis to
obtain an extension of OPS that obeys (ε, δ)-DP and asymptotically efficient under the
same data assumption in [Foulds et al., 2016]. We will see that OPS effectively converges to
the “Fisher”-choice of noise adding in the same asymptotic regime and offers dimension and
condition number independent expected pDP loss.

4.1. pDP analysis of OPS. The first result calculates the pDP loss of OPS.

Theorem 4.1 (The adaptivity of OPS in Linear/Ridge Regression). Consider the OPS
algorithm that samples from

p(θ|X,y) ∝ e−
γ
2 (‖y−Xθ‖2+λ‖θ‖2).

Let θ̂ and θ̂′ be the ridge regression estimate with data set X × y and [X,x] × [y, y] and
defined the out of sample leverage score µ := xT (XTX + λI)−1x = xTH−1x and in-sample
leverage score µ′ := xT [(X ′)TX ′ + λI]−1x = xT (H ′)−1x. Then for every δ > 0, privacy
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W. (2018) “Revisiting Differentially Private Linear Regression”: https://arxiv.org/abs/1803.02596



Maximizing it so we have a bound
that covers all individuals

• How to make it dataset-independent?

• It depends on just two quantities of interest.
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Proof. Let H := XTX + �I = Q⇤QT , and let Z ⇠ N (0, ��1Id)

k✓̃ � ✓⇤
�
k2
H

= (✓̃ � ✓⇤
�
)TH(✓̃ � ✓⇤

�
) = ZT⇤�1/2QTQ⇤QTQ⇤�1/2Z = kZk22

Note that �kZk22 has a �2-distribution with degree of freedom d, by the standard right tail bound inequality
of �2 R.V., we get the results as claimed. The second statement is trivial and it follows directly from the
algorithm. For the third statement, note that the MLE ✓⇤ is unbiased for linear regression, also, it has
covariance matrix �2(XTX)�1. The second part of the randomness comes from sampling from the posterior
distribution which has covariance matrix ��1(XTX)�1 by the algorithm. The results follows after noting
that the we are adding independent noise.

Lemma 9 (Optimization error / regret bound). Let ✓⇤ be a local minimum of a convex quadratic function F
and

✓̃ ⇠ N (✓⇤, ��1[r2F (✓⇤)]�1),

then for all 0 < % < 1, with probability 1� %

F (✓̃)� F (✓⇤) 
d+ 2

p
d log(1/%) + 2 log(1/%)

2�
 2.5d log(1/%)

�
.

Proof. Since F is quadratic, r2F ⌘ H for some fixed matrix H (independent to location). By Taylor’s
theorem

F (✓̃)� F (✓⇤) = hrF (✓⇤), ✓̃ � ✓⇤i+ 1

2
k✓̃ � ✓⇤k2

H
.

Substitute Lemma 8 into the above we get the result as claimed.

C.2 pDP analysis of OPS for fixed (�,�)

We now cite the per-instance differential privacy of OPS for a fixed set of parameters from (Wang, 2017).
Theorem 10 (Theorem 15 of Wang (2017) ). Consider the algorithm that samples from

p(✓|X,y) / e�
�
2 (ky�X✓k2+�k✓k2).

Let ✓̂ and ✓̂0 be the ridge regression estimate with data set X⇥y and [X,x]⇥[y, y] and defined the out of sample

leverage score µ := xT (XTX+�I)�1x = xTH�1x and in-sample leverage score µ0 := xT [(X 0)TX 0+�I]�1x =
xT (H 0)�1x. Then for every � > 0, privacy target (x, y), the algorithm is (✏, �)-pDP with

✏(Z, z)  1

2

����� log(1 + µ) +
�µ

(1 + µ)
(y � xT ✓̂)2

����+
µ

2
log(2/�) +

p
�µ log(2/�)|y � xT ✓̂| (16)

=
1

2

����� log(1� µ0)� �µ0

1� µ0 (y � xT ✓̂0)2
����+

µ0

2
log(2/�) +

p
�µ0 log(2/�)|y � xT ✓̂0|. (17)

Remark 11. Let L := kXk(kXkk✓⇤
�
k+ kYk), The OPS algorithm for ridge regression with parameter (�, �)

obeys (✏, �)-pDP for each data set (X, y) and all target (x, y) with

✏ =

s
�L2 log(2/�)

�+ �min
+

�L2

2(�+ �min + kXk2) +
(1 + log(2/�))kXk2

2(�+ �min)
.

C.3 pDP to DP conversion

The hallmark of DP algorithm design is that one needs to calibrate the amount of noise so that no matter
what data set is sent into the algorithm, the algorithm meets a prescribed privacy budget (✏, �). The pDP
guarantees of OPS says that for a fixed randomized algorithm, if the data set is nice, then the privacy
guarantee is strong, while if the data set is poorly-conditioned, then the privacy loss is big. What is more, the

22



How do we privately release the 
two quantities?
• The smallest eigenvalue has bounded global

sensitivity

• The norm of the the Ridge regression estimate?
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pDP analysis illustrates that the key ingradients of that appears in the pDP bound is the smallest eigenvalue
of XTX and the local Lipschitz constant L (given as a function of kXk and kYk and the magnitude of the
solution k✓⇤

�
k).

The approach used in Wang (2017) is to differentially privately release �min and an adaptive amount of
regularization � is added so that a pre-specified strong convexity parameter ↵⇤ is met with high probability.
Then a crude upper bound of k✓⇤

�
k is used based on �⇤ or �min (if larger than �⇤) to calibrate �. The outcome

is an asymptotically efficient differentially private estimator of linear regression coefficients when the data set
is well-conditioned. However, there are two issues. First, it is unclear how �⇤ is chosen; second, the crude
upper bound of k✓⇤

�
k leads to unnecessary dimension dependence in the bound.

In this section, we further extend the idea by proposing a novel way of releasing the k✓⇤
�
k differential privately

by injecting a multiplicative noise, which allows us to design a DP algorithm that adapts to small local
Lipschitz constant near the optimal solution and also a principled approach of choosing the regularization
parameter �, such that (1) the algorithm is (✏, �)-DP for all input data, (2) it is statistically efficient with an
improved dimension-dependence when the data follows a linear Gaussian model (3) the optimization error is
optimal up to a logarithmic term for each (unknown) strong convexity parameter and local Lipschitz constant
separately.

The algorithm basically looks like the following:

1. Differentially privately release �min using (✏/4, �/3), and choose regularization parameter � accordingly.

2. Condition on a high probability event of �min, and choose �.

3. Differentially privately release k✓⇤
�
k using (✏/4, �/3), where ✓⇤

�
= (XTX + �I)�1XTy.

4. Condition on a high probability event of both �min and k✓⇤
�
k, calibrate the noise to meet the (✏/2, �/3)

requirement.

We start by showing how we can release �min and k✓⇤
�
k. By Weyl’s lemma, �min has a global sensitivity of

kXk2. It turns out that while k✓⇤
�
k does not have a well-behaved global or local sensitivity, a logarithmic

transformation log(kYk + kXkk✓⇤
�
k) has a very stable local sensitivity that is parameterized only by the

smallest eigenvalue, which we can easily construct a differentially private upper bound.
Lemma 12. Let ✓⇤

�
be the ridge regression estimate with parameter � and the smallest eigenvalue of XTX

be �min, then the function log(kYk+ kXkk✓⇤
�
k) has a local sensitivity of log(1 + kXk2

�min+�
).

Proof. Denote kYk =: ↵ and kXk =: �. Let the data point being added to the data set be (x, y). For a
fixed �, denote ✓̂ and ✓̂0 as the ridge regression estimate with parameter � on data set X,y and [X,x], [y, y]
respectively.

By Lemma 17, we have
���k✓̂k � k✓̂0k

���  k✓̂ � ✓̂0k = |y � xT ✓̂|
q

xT ([X,x]T [X,x] + �I)�2x  �

�min + �
(↵+ �min{k✓̂0k, k✓̂k}).

Multiplying � on both sides and use triangular inequality, we have
(
(↵+ �k✓̂k)� (↵+ �k✓̂0k)  �

2

�min+�
(↵+ �k✓̂0k)

((↵+ �k✓̂0k)� (↵+ �k✓̂k)  �
2

�min+�
(↵+ �k✓̂k)

Rearrange the terms and take log on both sides, we get
�����log

↵+ �k✓̂k
↵+ �k✓̂0k

�����  log(1 +
�2

�min + �
).
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Generalized Propose-Test-Release: 
Privately releasing per-instance DP
bounds
• Your mechanism has parameter 𝜙 (e.g., noise-level, 

regularization),  the data-dependent quantities 𝜓(𝐷, 𝜙). 

• Generalizing PTR:
1. Propose some parameter 𝜙, work out the pDP 𝜖#(𝐷, 𝑧)
2. Privately test if max

$
𝜖# 𝐷, 𝑧 is smaller than budget 𝜖

3. If so, run this mechanism with parameter 𝜙
4. Otherwise, return ⊥

• Questions to ask when using this:
• What if we do not know what parameter 𝜙 to choose?
• How to run the private test?
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The general recipe: “pDP to DP 
conversion” that allows calibrating 𝜙
to privacy budgets 
• Your mechanism has parameter 𝜙 (e.g., noise-level, 

regularization),  the data-dependent quantities 𝜓(𝐷, 𝜙). 

• pDP function 𝜖((𝐷, 𝑧) depends the data

• We can often write max) 𝜖( 𝐷, 𝑧 is also data dependent, 
but we can release a high-probability data-dependent upper 
bound ̃𝜖( 𝐷 ≥ max

)
𝜖( 𝐷, 𝑧 differentially privately.

• Then we can calibrate the parameter 𝜙 according to the 
upper bound.
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Checkpoint: two new recipes that 
generalizes PTR
• No restrictions on randomized algorithms.

• Release data-dependent quantities in the privacy 
loss RV.

• Privately test or release the data-dependent privacy 
loss accordingly.

(Based on an ongoing work.)
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Remainder of the lecture

• Two representative methods in data-adaptive 
differentially private learning

• NoisySGD and adaptive clipping

• PATE and model-agnostic private learning

21



Noisy SGD with Adaptive Clipping

• NoisySGD

• Idea:  As we train the models, most data points 
would’ve been classified correctly and the gradients 
are small.  So we can use more aggressive clipping.

• Why not make it 90% percentile of the gradient
norm? 

22
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Noisy SGD with Adaptive Clipping
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Figure 3: Impact of clipping without noise. Performance of the unclipped baseline compared to
five settings of �, from � = 0.1 (aggressive clipping) to � = 0.9 (mild clipping). The values shown
are the evaluation metrics on the validation set averaged over the last 100 rounds. Note that the y-axes
have been compressed to show small differences, and that for EMNIST-AE lower values are better.

Because clipping (whether fixed or adaptive) reduces the average norm of the client updates, it may
be necessary to use a higher server learning rate to compensate. Therefore, for all approaches with
clipping—fixed or adaptive—we search over a small grid of five server learning rates, scaling the
values in Table 1 by {1, 101/4

, 101/2
, 103/4

, 10}. For all configurations, we report the best performing
model whose server learning rate was chosen from this small grid on the validation set.4

We first examine the impact of adaptive clipping without noise to see how it affects model performance.
Figure 3 compares baseline performance without clipping to adaptive clipping with five different
quantiles. For each quantile, we show the best model after tuning over the five server learning rates
mentioned above on the validation set. On three tasks (CIFAR-100, EMNIST-AE, SO-NWP),
clipping improves performance relative to the unclipped baseline. On SHAKESPEARE and SO-LR
performance is slightly worse, but we can conclude that adaptive clipping to the median generally
fares well compared to not using clipping across tasks. Note that for our primary goal of training with
DP, it is essential to limit the sensitivity one way or another, so the modest decrease in performance
observed from clipping on some tasks may be part of the inevitable tension between privacy and
utility.

3.2 Fixed-clip baselines

We would like to compare our adaptive clipping approach to a fixed clipping baseline, but comparing
to just one fixed-clip baseline may not be enough to demonstrate that adaptive clipping consistently
performs well. Instead, our strategy will be to show that quantile-based adaptive clipping performs as
well or nearly as well as any fixed clip chosen in hindsight. If we can first identify clipping norms
that span the range of normal values during training on each problem/configuration, we can compare
adaptive clipping to fixed clipping with those norms.

To that end, we first use adaptive clipping without noise to discover the value of the update norm
distribution at the following five quantiles: {0.1, 0.3, 0.5, 0.7, 0.9}. Then we choose as the minimum
of our fixed clipping range the smallest value at the 0.1 quantile over the course of training, and as
the maximum the largest value at the 0.9 quantile. Plots of the update norms during training on each
of the tasks are shown in Figure 4.

On each task there is a ramp up period where the clipping norm, initialized to 0.1 for all tasks, catches
up to the correct norm distribution. Thus we disregard norm values collected until the actual fraction
of clipped counts b̄t on some round is within 0.05 of the target quantile �. The chosen values for the

4Note that this modest retuning of the server learning rate is only necessary because we are starting from a
configuration that was optimized without clipping. In practice, as we will discuss in Section 4, we recommend
that all hyperparameter optimization should be done with adaptive clipping enabled from the start, eliminating
the need for this extra tuning.

7
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PATE with SVT and large margin

• Standard Gaussian mechanism release
• Alternative: SVT + Dist2Instability
• Use add noise to a threshold.
• If the margin > noisy-threshold, 

• release the exact value of the argmax
• and continue

• Otherwise 
• release nothing, update the threshold noise.
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avoid the explicit dependence in the ambient dimension of the model and to develop practical
methods in privately releasing deep learning models with a large number of parameters.

The “knowledge transfer” model of di↵erentially private learning is a promising recent
development [Papernot et al., 2017, 2018a] which relaxes the problem by giving the learner
access to a public unlabeled dataset. The main workhorse of this model is the Private
Aggregation of Teacher Ensembles (PATE) framework:

The PATE Framework:

1. Randomly partition the private dataset into K splits.

2. Train one “teacher” classifier on each split.

3. Apply the K “teacher” classifiers on public data and privately release their majority
votes as pseudo-labels.

4. Output the “student” classifier trained on the pseudo-labeled public data.

PATE achieves DP via the sample-and-aggregate scheme [Nissim et al., 2007] for releasing
the pseudo-labels. Since the teachers are trained on disjoint splits of the private dataset,
adding or removing one data point could a↵ect only one of the teachers, hence limiting the
influence of any single data point. The noise injected in the aggregation will then be able to
“obfuscate” the output and obtain provable privacy guarantees.

This approach is appealing in practice as it does not place any restrictions on the teacher
classifiers, thus allowing any deep learning models to be used in a model-agnostic fashion.
The competing alternative for di↵erentially private deep learning, NoisySGD [Abadi et al.,
2016], is not model-agnostic, and it requires significantly more tweaking and modifications
to the model to achieve a comparable performance, (e.g., on MNIST), if achievable.

There are a number of DP mechanisms that can be used to instantiate the PATE
Framework. Laplace mechanism and Gaussian mechanism are used in Papernot et al. [2017,
2018a] respectively. This paper primarily considers the new mechanism of Bassily et al.
[2018a], which instantiates the PATE framework with a more data-adaptive scheme of private
aggregation based on the Sparse Vector Technique (SVT). This approach allows PATE to
privately label many examples while paying a privacy loss for only a small subset of them
(see Algorithm 2 for details). Moreover, Bassily et al. [2018a] provides the first theoretical
analysis of PATE which shows that it is able to PAC-learn any hypothesis classes with finite
VC-dimension in the realizable setting, i.e, expected risk of best hypothesis equals 0. And in
this case, the center of teacher agreement is true label. However, this is a giant leap from
the standard di↵erentially private learning models (without the access to a public unlabeled
dataset) because the VC-classes are not privately learnable in general [Bun et al., 2015,
Wang et al., 2016]. Bassily et al. [2018a] also establishes a set of results on the agnostic
learning setting, albeit less satisfying, as the excess risk, i.e., the error rate of the learned
classifier relative to the optimal classifier, does not vanish as the number of data points
increases, a.k.a., inconsistency.

To fill in the gap, in this paper, we revisit the problem of model-agnostic private learning
in PATE framework in two non-realizable settings: under the Tsybakov Noise Condition
(TNC) [Mammen and Tsybakov, 1999, Tsybakov, 2004] and in agnostic setting. By making
TNC assumption, teachers stay close to the best hypothesis h⇤ in hypothesis class, thus we
consider h⇤ as the new center for teachers to agree on, instead of considering true label in

2



Alternative way of adapting to 
large margins in PATE
• Just use Gaussian mechanism
• But work out a data-dependent DP losses

• Amplification by Large Margin of the voting scores.
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Theorem 6 (informal). Let M be a randomized algorithm with (µ1, "1)-RDP and (µ2, "2)-
RDP guarantees and suppose that given a dataset D, there exists a likely outcome i⇤ such

that Pr [M(D) 6= i⇤]  q̃. Then the data-dependent Rényi differential privacy for M of order

�  µ1, µ2 at D is bounded by a function of q̃, µ1, "1, µ2, "2, which approaches 0 as q̃ ! 0.

The new bound improves on the data-independent privacy for � as long as the distribution of the
algorithm’s output on that input has a strong peak (i.e., q̃ ⌧ 1). Values of q̃ close to 1 could result
in a looser bound. Therefore, in practice we take the minimum between this bound and �/�2 (the
data-independent one). The theorem generalizes Theorem 3 from Papernot et al. (2017), where it
was shown for a mechanism satisfying "-differential privacy (i.e., µ1 = µ2 = 1 and "1 = "2).

The final step in our analysis uses the following lemma to bound the probability q̃ when i⇤ corre-
sponds to the class with the true plurality of teacher votes.
Proposition 7. For any i⇤ 2 [m], we have Pr [M�(D) 6= i⇤]  1

2

P
i 6=i⇤ erfc

�ni⇤�ni

2�

�
, where

erfc is the complementary error function.

In Appendix A, we detail how these results translate to privacy bounds. In short, for each query to
the GNMax aggregator, given teacher votes ni and the class i⇤ with maximal support, Proposition 7
gives us the value of q̃ to use in Theorem 6. We optimize over µ1 and µ2 to get a data-dependent RDP
guarantee for any order �. Finally, we use composition properties of RDP to analyze a sequence of
queries, and translate the RDP bound back to an (", �)-DP bound.

Expensive queries. This data-dependent privacy analysis leads us to the concept of an expensive

query in terms of its privacy cost. When teacher votes largely disagree, some ni⇤ � ni values may
be small leading to a large value for q̃: i.e., the lack of consensus amongst teachers indicates that
the aggregator is likely to output a wrong label. Thus expensive queries from a privacy perspec-
tive are often bad for training too. Conversely, queries with strong consensus enable tight privacy
bounds. This synergy motivates the aggregation mechanisms discussed in the following sections:
they evaluate the strength of the consensus before answering a query.

4.2 THE CONFIDENT-GNMAX AGGREGATOR

In this section, we propose a refinement of the GNMax aggregator that enables us to filter out queries
for which teachers do not have a sufficiently strong consensus. This filtering enables the teachers
to avoid answering expensive queries. We also take note to do this selection step itself in a private
manner.

The proposed Confident Aggregator is described in Algorithm 1. To select queries with overwhelm-
ing consensus, the algorithm checks if the plurality vote crosses a threshold T . To enforce privacy
in this step, the comparison is done after adding Gaussian noise with variance �2

1 . Then, for queries
that pass this noisy threshold check, the aggregator proceeds with the usual GNMax mechanism
with a smaller variance �2

2 . For queries that do not pass the noisy threshold check, the aggregator
simply returns ? and the student discards this example in its training.

In practice, we often choose significantly higher values for �1 compared to �2. This is because
we pay the cost of the noisy threshold check always, and without the benefit of knowing that the
consensus is strong. We pick T so that queries where the plurality gets less than half the votes (often
very expensive) are unlikely to pass the threshold after adding noise, but we still have a high enough
yield amongst the queries with a strong consensus. This tradeoff leads us to look for T ’s between
0.6⇥ to 0.8⇥ the number of teachers.

The privacy cost of this aggregator is intuitive: we pay for the threshold check for every query, and
for the GNMax step only for queries that pass the check. In the work of Papernot et al. (2017), the
mechanism paid a privacy cost for every query, expensive or otherwise. In comparison, the Confident
Aggregator expends a much smaller privacy cost to check against the threshold, and by answering a
significantly smaller fraction of expensive queries, it expends a lower privacy cost overall.

4.3 THE INTERACTIVE-GNMAX AGGREGATOR

While the Confident Aggregator excludes expensive queries, it ignores the possibility that the student
might receive labels that contribute little to learning, and in turn to its utility. By incorporating the
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Adapting to “large margin” without 
using data-adaptive DP algorithm
• Select data points according to active learning rules

• Disagreement-based Active Learning  [See this excellent ICML 
tutorial: https://icml.cc/media/icml-2019/Slides/4341.pdf ]

• Uses naïve Gaussian mechanisms based queries
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5.2 Experimental Results

The results are presented in Table 4, where both utility (classification accuracy on the test
set) and privacy (privacy budget ✏ and privacy loss ✏ex post) metrics are reported. Best
results in each category are marked in bold fonts. We make a few observations of the results
below.

Table 4: Utility and privacy results of di↵erent PATE models. # Queries shows the
number of queries actually answered in experiments. Accuracy is reported as mean±1.96⇥
standard error/

p
30, i.e., 98% asymptotic confidence interval of the expected accuracy

based on inverting Wald’s test. All “PATE-” prefixes of methods are omitted to improve
readability.

Dataset Method # Queries ✏ ✏ex post Accuracy

mushroom

PSQ-NP 163 +1 +1 0.9773± 0.0006
ASQ-NP 47.3± 0.2 +1 +1 0.9146± 0.0036
PSQ 163 0.5 0.5 0.6416± 0.0036
ASQ 40.1± 0.7 0.5 0.4461 0.6418± 0.0091
PSQ 163 1.0 1.0 0.7534± 0.0045
ASQ 42.9± 0.5 1.0 0.9267 0.7727± 0.0098
PSQ 163 2.0 2.0 0.8974± 0.0027
ASQ 46.5± 0.3 2.0 1.9410 0.8858± 0.0059

a9a

PSQ-NP 977 +1 +1 0.5555± 0.0157
ASQ-NP 225.6± 5.0 +1 +1 0.5461± 0.0160
PSQ 977 0.5 0.5 0.5040± 0.0034
ASQ 293 0.5 0.5 0.5212± 0.0088
PSQ 977 1.0 1.0 0.5171± 0.0050
ASQ 290.8± 0.8 1.0 0.9958 0.5369± 0.0103
PSQ 977 2.0 2.0 0.5176± 0.0070
ASQ 290.3± 0.9 2.0 1.9896 0.5543± 0.0089

real-sim

PSQ-NP 1, 447 +1 +1 0.8234± 0.0014
ASQ-NP 434 +1 +1 0.8289± 0.0008
PSQ 1, 447 0.5 0.5 0.6355± 0.0065
ASQ 434 0.5 0.5 0.7389± 0.0014
PSQ 1, 447 1.0 1.0 0.7550± 0.0058
ASQ 434 1.0 1.0 0.8040± 0.0009
PSQ 1, 447 2.0 2.0 0.8025± 0.0037
ASQ 434 2.0 2.0 0.8231± 0.0009

1. Given the same privacy budget, ASQ performs substantially better than PSQ in most
cases. The improvement is sometimes 10% (real-sim / ✏ = 0.5). The only exception
is when ✏ = 2.0 on the “mushroom” dataset, in which the active learning performed
substantially worse than the passive-learning counterpart in the non-private baseline
as well.
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Expanding list of papers on data-
dependent DP for learning
• Clustering:  [k-means, k-medians, ...]
• Linear regression: [AdaOPS/AdaSSP]
• Statistical estimation: [mean, covariance]
• Statistical inference: [Hypothesis testing, OLS] 
• Boosting: [Adapting to margin] 
• Topic models: [Spectral LDA]

• Many more…
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Good research directions

• Stronger, more practical, more adaptive DP algorithms:
• Mechanism specific analysis (RDP, CDP,  Privacy Profiles) of data-

adaptive algorithms
• Per-instance DP of more algorithms.

• The use of DP in novel context
• e.g. Adaptive Data Analysis / preventing implicit overfitting
• For fairness, for truthfulness in mechanism design
• As a general smoothing trick that induces stability 
• …

• Practical implementation / empirical evaluation of DP 
• Not necessary new methodology. Just off-the-shelf tools are already 

sufficient for solving many problems!
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