Lecture 16 Data-Adaptive DP in Machine Learning

Yu-Xiang Wang

Logistics

- Last lecture with new materials.
- We may have short lecture next Monday if I don't finish everything today.
- Remaining lectures will be for
 - Project consultation
 - Homework discussion
 - Anything on your mind
- I will be in this lecture hall. All are welcome.

Recap: data-dependent DP algorithms

- Smooth sensitivity
- Distance-to-Instability
- Propose-Test-Release
- Privately Releasing Local-Sensitivity

Recap: distance-to-instability

- Distance to instability
 - $d(x) = d(x; \{x'' \mid f(x'') \neq f(neighbor of x'')\})$ $= d(x; \{x'' \mid f(x'') \neq f(x)\}) - 1$
- The Dist2Instability mechanism: $d(x) = d(x)f(dp)(\frac{f}{2})$ (Fd(x) > losts, then verturn f(x); otherwise Verturn "[']
- Proof: Observe that decision is post-processing of Laplace mechanism.

Case A: If $f(x) = f(x') \Rightarrow |d(x) - d(x')| \le 1$ $\langle f(x) \perp \rangle \qquad (z-D)$ (E81-01) Case B: If $f(x) \neq f(x') => d(x) = d(x') = 0$ U.S-DD d(x) = d(y + lupte)

Recap: Propose-Test-Release

- Propose a bound on LS
- Privately test it by adding noise.
 - $d(x,\beta) = d(x, \{x^{\prime\prime} | LS(x^{\prime\prime}) > \beta\})$
 - Output \perp if $d(x,\beta) + Lap\left(\frac{1}{\epsilon}\right) < \frac{\log \frac{1}{\delta}}{\epsilon}$ Else output $f(x) + Lap\left(\frac{1}{\epsilon}\right)$
- Proof idea similar to "Distance-to-instability"
 - Case A: $LS(x) > \beta \Rightarrow d(x, \beta) = 0$ Test fails with low probability. (E. G)-DP
 - Case B: $LS(x) \leq \beta \Rightarrow$ Composition to two Laplace **Mechanisms** (2E, 2) Df

This is computationally efficient if we can release the local sensitivity efficiently.

Example: Output perturbation of DP-GLM with Lipschitz, smooth and convex losses.

Summary: Data-dependent DP algorithms so far

	Applicability	Computationally efficiency	
Smooth sensitivity	Numerical queries (does not scale to high- dimension)	Efficient when SS or other smooth upper bound of LS is efficient	
Dist2Instability	Arbitrary queries But need LS = 0 in neighborhood of x.	Efficient when dist2instability function is efficiently computable.	
PTR	Numerical queries. Need a good guess of a stable LS upper bound	Efficient when dist2largeLS function is efficiently computable.	
Privately Bounding LS	Numerical queries.	Efficient when LS can be bounded and privately released efficiently.	

This lecture

- Beyond local sensitivity
 - Per-instance differential privacy
 - pDP to DP conversion
- Examples of data-dependent algorithms in differentially private machine learning
- Open problems / good research directions in DP

Example: Data-Dependent Differentially Private ERM

- Convex, Lipschitz and Smooth losses $\begin{array}{l} \mathcal{G} = \operatorname{cyg} hh & \mathcal{I}_{i}(o) & \mathcal{G}_{i}(\widehat{\theta}) = +\infty \\ \mathcal{G}_{\lambda} = \operatorname{cyg} hh & \mathcal{I}_{i}(\Theta) + \mathcal{G}_{i}(\Theta)^{2} & \mathcal{G}_{i}(\widehat{\theta}_{\lambda}) \leq -\frac{1}{2} \end{array}$
- Local sensitivity

Lemma 17 (Stability of smooth learning problems, Lemma 14 of (Wang, 2017)). Assume ℓ and r be differentiable and their gradients be absolute continuous. Let $\hat{\theta}$ be a stationary point of $\sum_{i} \ell(\theta, z_i) + r(\theta), \hat{\theta}'$ be a stationary point $\sum_{i} \ell(\theta, z_i) + \ell(\theta, z) + r(\theta)$ and in addition, let $\eta_t = t\hat{\theta} + (1-t)\hat{\theta}'$ denotes the interpolation of $\hat{\theta}$ and $\hat{\theta}'$. Then the following identity holds:

$$\hat{\theta} - \hat{\theta}' = \left[\int_0^1 \left(\sum_i \nabla^2 \ell(\eta_t, z_i) + \nabla^2 \ell(\eta_t, z) + \nabla^2 r(\eta_t) \right) dt \right]^{-1} \nabla \ell(\hat{\theta}, z) = -\left[\int_0^1 \left(\sum_i \nabla^2 \ell(\eta_t, z_i) + \nabla^2 r(\eta_t) \right) dt \right]^{-1} \nabla \ell(\hat{\theta}', z).$$

=H(3)

 Output perturbation Amin (1400) they has globad sensitive of B \$ 2.(0)

What if we the mechanism is not just adding noise?

- Example: Revisiting linear regression
 - Posterior sampling mechanism:

 $p(\theta|X, \mathbf{y}) \propto e^{-\frac{\gamma}{2} \left(\|\mathbf{y} - X\theta\|^2 + \lambda \|\theta\|^2 \right)}$

Amm (x x) >>0

 The distribution depends jointly on the data and on the hyperparameters of the mechanisms

General idea: Working with privacy loss random variables

- The output space can be arbitrary, but the space of the privacy loss RV is 1-D.
- We can
 - 1. Work out the privacy loss random variables
 - 2. Figuring out what part of it depends on the data
 - 3. Release an upper bound of these data-dependent quantities differentially privately.
 - 4. Calibrate noise to privacy budget according to this upper bound.

Detour: Per-instance Differential Privacy

Definition 2.2 (Per-instance Differential Privacy). For a fixed data set Z and a fixed data point z. We say a randomized algorithm \mathcal{A} satisfy (ϵ, δ) -per-instance-DP for (Z, z) if, for all measurable set $\mathcal{S} \subset \Theta$, it holds that

$$P_{\theta \sim \mathcal{A}(Z)}(\theta \in \mathcal{S}) \leq e^{\epsilon} P_{\theta \sim \mathcal{A}([Z,z])}(\theta \in \mathcal{S}) + \delta,$$
$$P_{\theta \sim \mathcal{A}([Z,z])}(\theta \in \mathcal{S}) \leq e^{\epsilon} P_{\theta \sim \mathcal{A}(Z)}(\theta \in \mathcal{S}) + \delta.$$

- Remarks:
 - Defining DP for each pair of neighboring datasets.
 - Measure the privacy loss for each individual z given a fixed dataset Z (or [Z,z])
 - Can be viewed as taking ε as a function
- Properties:
 - Composition / Post-processing and many other properties.
 - DP can be obtained by maximizing over Z,z

Figure 1: Illustration of the privacy loss ϵ of an output perturbation algorithm under DP, pDP for all, as well as the distribution of pDP's privacy loss for data points in the data set. The data set is generated by a linear Gaussian model, where the design matrix is normalized such that each row has Euclidean norm 1 and y is also clipped at [-1, 1]. The output perturbation algorithm releases $\hat{\theta} \sim \mathcal{N}((X^T X + I)^{-1} X \mathbf{y}, \sigma^2 I)$ with $\sigma = 4$. Our choice of $\delta = 10^{-6}$.

Figure 1: Visualization of *ex-post* pDP losses for logistic regression (n = 1000, d = 2).

Redberg and W. (2021) Privately publishable Per-instance Privacy: https://arxiv.org/abs/2111.02281

Per-instance differential privacy of Posterior Sampling for linear regression?

$$\epsilon(Z, z) \leq \frac{1}{2} \left| -\log(1+\mu) + \frac{\gamma\mu}{(1+\mu)} (y - x^T \hat{\theta})^2 \right| + \frac{\mu}{2} \log(2/\delta) + \sqrt{\gamma\mu \log(2/\delta)} |y - x^T \hat{\theta}|$$

$$= \frac{1}{2} \left| -\log(1-\mu') - \frac{\gamma\mu'}{1-\mu'} (y - x^T \hat{\theta}')^2 \right| + \frac{\mu'}{2} \log(2/\delta) + \sqrt{\gamma\mu' \log(2/\delta)} |y - x^T \hat{\theta}'|.$$

$$(4.3)$$

$$(4.4)$$

Where

Let $\hat{\theta}$ and $\hat{\theta}'$ be the ridge regression estimate with data set $X \times \mathbf{y}$ and $[X, x] \times [\mathbf{y}, y]$ and defined the out of sample leverage score $\mu := x^T (X^T X + \lambda I)^{-1} x = x^T H^{-1} x$ and in-sample leverage score $\mu' := x^T [(X')^T X' + \lambda I]^{-1} x = x^T (H')^{-1} x$.

Maximizing it so we have a bound that covers all individuals

Remark 11. Let $L := \|\mathcal{X}\|(\|\mathcal{X}\|\|\theta_{\lambda}^*\| + \|\mathcal{Y}\|)$, The OPS algorithm for ridge regression with parameter (λ, γ) obeys (ϵ, δ) -pDP for each data set (X, y) and all target (x, y) with

$$\epsilon = \sqrt{\frac{\gamma L^2 \log(2/\delta)}{\lambda + \lambda_{\min}}} + \frac{\gamma L^2}{2(\lambda + \lambda_{\min} + \|\mathcal{X}\|^2)} + \frac{(1 + \log(2/\delta))\|\mathcal{X}\|^2}{2(\lambda + \lambda_{\min})}.$$

- How to make it dataset-independent?
- It depends on just two quantities of interest.

$$\sum_{i=fin} \sqrt{m_{in}} = \sqrt{m_{in}} \left(\frac{x^{T}x}{x} \right)$$

How do we privately release the two quantities?

- The smallest eigenvalue has bounded global sensitivity $\left| \begin{array}{c} \lambda_{m}(x_{x}) & -\lambda_{m}(x_{x} + x_{x}) \end{array} \right| \leq \frac{|x||^{2}}{2} \\ \end{array} \right|$
- $\| \leq \| \hat{\theta} - \hat{\theta}' \| = |y - x^T \hat{\theta}| \sqrt{x^T ([X, x]^T [X, x] + \lambda I)^{-2} x}$ $\int \alpha + \beta \left[|\hat{b}|| - \left(\alpha + \beta \left[|\hat{b}'|| \right) \right] \leq \frac{\beta^2}{\beta^2} \left(\alpha + \beta \left[\hat{b} \right] \right)$ $\int \alpha + \beta \left[|\hat{b}'|| - \left(\alpha + \beta \left[|\hat{b}|| \right] \right) \right] \leq \frac{\beta^2}{\beta^2} \left(\alpha + \beta \left[\hat{b} \right] \right)$ $\int \frac{\beta^2}{\beta^2} \left[\alpha + \beta \left[\hat{b} \right] \right]$ $\int \frac{\beta^2}{\beta^2} \left[\alpha + \beta \left[\hat{b} \right] \right]$ $\int \frac{\beta^2}{\beta^2} \left[\alpha + \beta \left[\hat{b} \right] \right]$

Generalized Propose-Test-Release: Privately releasing per-instance DP bounds

- Your mechanism has parameter ϕ (e.g., noise-level, regularization), the data-dependent quantities $\psi(D, \phi)$.
- Generalizing PTR:
 - 1. Propose some parameter ϕ , work out the pDP $\epsilon_{\phi}(D, z)$
 - 2. Privately test if $\max \epsilon_{\phi}(D, z)$ is smaller than budget ϵ
 - 3. If so, run this mechanism with parameter ϕ
 - 4. Otherwise, return ⊥
- Questions to ask when using this:
 - What if we do not know what parameter ϕ to choose?
 - How to run the private test?

Otest of Bolds

The general recipe: "pDP to DP conversion" that allows calibrating ϕ to privacy budgets

- Your mechanism has parameter ϕ (e.g., noise-level, regularization), the data-dependent quantities $\psi(D, \phi)$.
- pDP function $\epsilon_{\phi}(D, z)$ depends the data
- We can often write $\max_{z} \epsilon_{\phi}(D, z)$ is also data dependent, but we can release a high-probability data-dependent upper bound $\tilde{\epsilon}_{\phi}(D) \ge \max_{z} \epsilon_{\phi}(D, z)$ differentially privately.
- Then we can calibrate the parameter ϕ according to the upper bound.

Checkpoint: two new recipes that generalizes PTR

- No restrictions on randomized algorithms.
- Release data-dependent quantities in the privacy loss RV.
- Privately test or release the data-dependent privacy loss accordingly.

Remainder of the lecture

- Two representative methods in data-adaptive differentially private learning
 - NoisySGD and adaptive clipping
 - PATE and model-agnostic private learning

Noisy SGD with Adaptive Clipping

- I saple a minibatch a passin samphy 'f
 NoisySGD (2) Att = Ot Yt (≤ Vli(Ot) + NO, 5²) / Minital Ada Chippen To, Tr, by proteodesis Some infor fourthe dote
 Idea: As we train the models, most data points
- would've been classified correctly and the gradients are small. So we can use more aggressive clipping.

• Why not make it 90% percentile of the gradient norm?

Galen, Thakkar, McMahan, Ramaswamy etc.: "Differentially Private Learning with Adaptive Clipping" https://arxiv.org/abs/1905.03871

Noisy SGD with Adaptive Clipping

Figure 3: Impact of clipping without noise. Performance of the unclipped baseline compared to five settings of γ , from $\gamma = 0.1$ (aggressive clipping) to $\gamma = 0.9$ (mild clipping). The values shown are the evaluation metrics on the validation set averaged over the last 100 rounds. Note that the y-axes have been compressed to show small differences, and that for EMNIST-AE lower values are better.

Galen, Thakkar, McMahan, Ramaswamy etc.: "Differentially Private Learning with Adaptive Clipping" https://arxiv.org/abs/1905.03871

PATE with SVT and large margin

The *PATE* Framework:

- 1. Randomly partition the private dataset into K splits.
- 2. Train one "teacher" classifier on each split.
- 3. Apply the K "teacher" classifiers on public data and *privately release* their majority votes as pseudo-labels.

014

- 4. Output the "student" classifier trained on the pseudo-labeled public data.
- Standard Gaussian mechanism release
- Alternative: SVT + Dist2Instability
 - Use add noise to a threshold.
 - If the margin > noisy-threshold,
 - release the exact value of the argmax
 - and continue
 - Otherwise
 - release nothing, update the threshold noise.

Bassily, Thakkar, Thakurta. Model-Agnostic Private Learning via Stability: <u>https://arxiv.org/abs/1803.05101</u>

Digt 2 Instabily

Alternative way of adapting to large margins in PATE

- Just use Gaussian mechanism
- But work out a data-dependent DP losses

Theorem 6 (informal). Let \mathcal{M} be a randomized algorithm with (μ_1, ε_1) -RDP and (μ_2, ε_2) -RDP guarantees and suppose that given a dataset D, there exists a likely outcome i^* such that $\Pr[\mathcal{M}(D) \neq i^*] \leq \tilde{q}$. Then the data-dependent Rényi differential privacy for \mathcal{M} of order $\lambda \leq \mu_1, \mu_2$ at D is bounded by a function of $\tilde{q}, \mu_1, \varepsilon_1, \mu_2, \varepsilon_2$, which approaches 0 as $\tilde{q} \to 0$.

• Amplification by Large Margin of the voting scores.

Proposition 7. For any $i^* \in [m]$, we have $\Pr[\mathcal{M}_{\sigma}(D) \neq i^*] \leq \frac{1}{2} \sum_{i \neq i^*} \operatorname{erfc}\left(\frac{n_{i^*} - n_i}{2\sigma}\right)$, where erfc is the complementary error function.

Papernot et al. (2018) "Scalable Private Learning with PATE" https://arxiv.org/abs/1802.08908

Adapting to "large margin" without using data-adaptive DP algorithm

- Select data points according to active learning rules
 - Disagreement-based Active Learning [See this excellent ICML tutorial: <u>https://icml.cc/media/icml-2019/Slides/4341.pdf</u>]
- Uses naïve Gaussian mechanisms based queries

Dataset	Method	# Queries	ϵ	$\epsilon_{\texttt{ex}}$ post	Accuracy
real-sim	PSQ-NP	1,447	$+\infty$	$+\infty$	0.8234 ± 0.0014
	ASQ-NP	434	$+\infty$	$+\infty$	0.8289 ± 0.0008
	\mathbf{PSQ}	1,447	0.5	0.5	0.6355 ± 0.0065
	\mathbf{ASQ}	434	0.5	0.5	0.7389 ± 0.0014
	\mathbf{PSQ}	1,447	1.0	1.0	0.7550 ± 0.0058
	ASQ	434	1.0	1.0	0.8040 ± 0.0009
	\mathbf{PSQ}	1,447	2.0	2.0	0.8025 ± 0.0037
	ASQ	434	2.0	2.0	0.8231 ± 0.0009

Liu et al. (2021) "Revisiting Model-Agnostic Private Learning" https://arxiv.org/abs/2011.03186

Expanding list of papers on datadependent DP for learning

- Clustering: [<u>k-means</u>, <u>k-medians</u>, ...]
- Linear regression: [AdaOPS/AdaSSP]
- Statistical estimation: [mean, covariance]
- Statistical inference: [<u>Hypothesis testing</u>, <u>OLS</u>]
- Boosting: [<u>Adapting to margin</u>]
- Topic models: [<u>Spectral LDA</u>]
- Many more...

Good research directions

- Stronger, more practical, more adaptive DP algorithms:
 - Mechanism specific analysis (RDP, CDP, Privacy Profiles) of dataadaptive algorithms
 - Per-instance DP of more algorithms.
- The use of DP in novel context
 - e.g. Adaptive Data Analysis / preventing implicit overfitting
 - For fairness, for truthfulness in mechanism design
 - As a general smoothing trick that induces stability
 - ...
- Practical implementation / empirical evaluation of DP
 - Not necessary new methodology. Just off-the-shelf tools are already sufficient for solving many problems!