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Logistics

e Last lecture with new materials.

* We may have short lecture next Monday if | don’t finish
everything today.

* Remaining lectures will be for
* Project consultation
* Homework discussion
* Anything on your mind

* | will be in this lecture hall. All are welcome.



Recap: data-dependent DP
algorithms

* Smooth sensitivity
* Distance-to-Instability
* Propose-Test-Release

* Privately Releasing Local-Sensitivity



Recap: distance-to-instability

* Distance to instability
. i&) =d(x; {x” | f(x”) # f(neighbor of x” ) })
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Recap: Propose-Test-Release
P

* Propose a bound on LS

* Privately test it by adding noise.
« d(x, ) = d(x, {x"| LS(x"") > B})

: 1 IOg%
* Output L ifd(x,) + Lap (Z) <—
* Else output f(x) + Lap (g)

* Proof idea similar to “Distance-to-instability”
e Case A: LS(x) > B =>d(x,B) = 0 Test fails with low
probability. & S Dp
 Case B: LS(x) < B => Composition to two Laplace

Mechanisms @5/ 9)be




Recap: Privately releasing loc
sensitivity Xlexp( SRS

. T S~
Lemma: Let A,(D) satisfies e-DP and
P [Af(p) > Af(D)} <5

Then f(D) +Lapgﬁf(Dg/T satisfies (2&,0)-DP.

This is computationally efficient if we can release the local sensitivity efficiently.

Example: Output perturbation of DP-GLM with Lipschitz, smooth and convex losses.

See a more general statement and proof in

Appendix G.6 of this paper: https://sites.cs.ucsb.edu/~yuxiangw/docs/spectral privatelda.pdf 6




Summary: Data-dependent DP
algorithms so far

_ Applicability Computationally efficiency

Smooth sensitivity Numerical queries Efficient when SS or other
(does not scale to high- smooth upper bound of LS is
dimension) efficient

Dist2Instability Arbitrary queries Efficient when dist2instability
But need LS=0in function is efficiently
neighborhood of x.‘{ computable.

PTR Numerical queries. Efficient when dist2largelS

Need a good guess of a  function is efficiently
stable LS upper bound computable.

Privately Bounding LS Numerical queries. Efficient when LS can be
bounded and privately released
efficiently.



This lecture

* Beyond local sensitivity
* Per-instance differential privacy
* pDP to DP conversion

* Examples of data-dependent algorithms in
differentially private machine learning

* Open problems / good research directions in DP



Example: Data-Dependent
D|fferent|a\|y Private ERM
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Lemma 17 (Stability of smooth learning problems, Lemma 14 of (Wang, 2017)). Assume ¢ and r be
differentiable and their gradients be absolute continuous. Let 6 be a stationary point of 3., (8, z;) +7(8), 8’ be
a stationary point Y, €(0,z;) + £(0, 2) + r(0) and in addition, let n, = t0 + (1 — )8 denotes the interpolation
of 6 and 0. Then the Jollowing identity holds:
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* Local sensitivity

Vi, 2)




What if we the mechanism is not
just adding noise? . ot

5 = ok
* Example: Revisiting linear regression
* Posterior sampling mechanism: o' /V( \ 2(@09
\/
p(01X,y) o e~ 3 (ly=XCI+AlIo]) @
AM\(KTK) >>0

* The distribution depends jointly on the data and on
the hyperparameters of the mechanisms

10



General idea: Working with
privacy loss random variables

* The output space can be arbitrary, but the space of
the privacy loss RV is 1-D.

S

* We can
1. Work out the privacy loss random variables
2. Figuring out what part of it depends on the data
3. Release an upper bound of these data-dependent
quantities differentially privately.
4. Calibrate noise to privacy budget according to this

upper bound.



Detour: Per-instance Differential
rivacy

Definition 2.2 (Per-instance Differential Privacy). For a fixed data set Z and a fixed data
point z. We say a randomized algorithm A satisfy (€, §)-per-instance-DP for (Z, z) if, for all
measurable set S C O, it holds that

PQN'A(.Z)(H €S < GGPQNA([@)(Q €S)+6,
PQNA([Z,z])(H e S) < QGPQNA(Z)(Q € 8) + 0.

e Remarks:

* Defining DP for each pair of neighboring datasets.

* Measure the privacy loss for each individual z given a fixed dataset Z (or
[,2]) g
* Can be viewed as taking € as a function

* Properties:

* Composition / Post-processing and many other properties.
* DP can be obtained by maximizing over Z,z

W. (2019). Per-instance differential privacy. Journal of Privacy and Confidentiality, 9(1)

https://journalprivacyconfidentiality.org/index.php/jpc/article/download/662/675 2




Visualizing pDP vs DP upper bound
output perturbation in linear

regression (R 2 o
g 52 HL

—DP

——pDP for all
[ pDP histogram for data set
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Figure 1: Illustration of the privacy loss € of an output perturbation algorithm under DP, pDP
for all, as well as the distribution of pDP’s privacy loss for data points in the data
set. The data set is generated by a linear Gaussian model, where the design matrix
is normalized such that each row has Euclidean norm 1 and y is also clipped at
[—1,1]. The output perturbation algorithm releases § ~ N(XTX +1)"' Xy, 021
with o = 4. Our choice of § = 1075, =
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-or classification problems: objective
oerturbation on logistic regression.
The (ex post) pDP says the following
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Figure 1: Visualization of ex-post pDP losses for logistic regression (n = 1000, d = 2).

Redberg and W. (2021) Privately publishable Per-instance Privacy:
https://arxiv.org/abs/2111.02281
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Per-instance differential privacy of
Posterior Sampling for linear regression?

1 . A
((2{z) <3|~ log(1+ ) + T (y — 2" 0)%| + S log(2/6) + \/yulog(2/3)y — =6
N ——

e

% (1 + ,U) —————
W (4-3)

/

/
~log(L = i) = 15y — T8 5 log(2/0) + v/ yu g2/ ly — 70
(4.4)

1
2

* Where &9)

Let 6 and 0’ be the ridge regression estimate with data set X Xy and (X, x] X [y,y] and
defined the out of sample leverage score p:= 7 (XX + )\I)_la:(; T H 'z and in-sample

leverage score p' = xT[( XX + N|7tx = 2T (H') 1x. }[T

W. (2018) “Revisiting Differentially Private Linear Regression”: https://arxiv.org/abs/1803.02596 15




Maximizing it so we have a bound
that covers all individuals

Remark 11. Let L := | X||(||X]||0x]l + |V]]), The OPS algorithm for ridge regression with parameter (X,7y)
obeys (¢,0)-pDP foreachduta set (X, §) and all target (x,y) with

Z
. [7EPlog(2/9) yL? (1 +1log(2/9))] X
- >\+)\min 2(A+>\m1n+ HXH2) 2(A+>\m1n) '

* How to make it dataset-independent?

* It depends on just two quantities of interest.

| . 7 \VWV\ =k, (Q)

:éﬂr(@{)




How do we privately release the
two quantities? R NI

* The smallest eigenvalue has bounded global

sensitivity L—

ARG \/\M({fm@)/g Ll

* The norm of the t idge regression estimate?
| = (] )1 Il €]y
18] =[S TO=01l = ly — =" 81y/a7 (X, 2] [X, ] + A1) =2

o1 < bl £
O@E(/é\[lf—(%? (/@IU < £ . )\q{
W&ﬁ/(g // ) [oﬁ_/?/(é)u) /\Mr,(,)\ (DV?/%O ,)
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Generalized Propose-Test-Release:
Privately releasing per-instance DP
bounds b=l

* Your mechanism has parameter ¢ (e.g., noise-level, (\6%
regularization), the data-dependent quantities ¥ (D, ¢).

e
* Generalizing PTR: /o
1. Propose some parameter ¢, work out the pDP € (D, z) ) 5
2. Privately test if max €g, (D, z) is smaller than budget € Oteut ¥ /£>Z§/
3.  If so, run this mechanism with parameter ¢ @ A )
a. turn L - O e

Otherwise, return L h
- f

\2 /§
* Questions to ask when using this:

* What if we do not know what parameter ¢ to choose?

* How to run the private test?

18



The general recipe: “pDP to DP
conversion” that allows calibrating ¢
to privacy budgets

* Your mechanism has parameter ¢ (e.g., noise-level,
regularization), the data-dependent quantities Y(D, @).

* pDP function €4 (D, z) depends the data

M/—'\ﬁ

* We can often write max, E¢(D,Z) is also data dependent,

but we can release a high-probability data-dependent upper
] > max €4 (D, z) differentially privately.
Z

g

< A
* Then we can calibrate the parameter ¢ according to the

upper bound.



Checkpoint: two new recipes that
generalizes PTR

* No restrictions on randomized algorithms.

* Release data-dependent quantities in the privacy
loss RV.

* Privately test or release the data-dependent privacy
loss accordingly.

(Based on an ongoing work.)



Remainder of the lecture

* Two representative methods in data-adaptive
differentially private learning

* NoisySGD and adaptive clipping

* PATE and model-agnostic private learning



Noisy SGD with Adaptive Clipping

() Snle GlVV\\m(')aﬁc[/\—L )fom\Qmp v &2
* NoisySGD (9 Gu = & @{<z 74009 Jr/\/@ez@)

ey l) T

Ao, T Ta
W%' bti/ }L[ lﬁj NT(W(QS\( (\’\F\,WC"’\‘%(\O&?\’_J

* |dea: As we train the models, most data points
would’ve been classified correctly and the gradients
are small. So we can use more aggressive clipping.

Te = Gol Yo of { /M(ez,)[r li7-£cod
* Why not make it 90% percentile of t e

norm??

Galen, Thakkar, McMahan, Ramaswamy etc.: “Differentially Private Learning with Adaptive Clipping”
https://arxiv.org/abs/1905.03871

22



Noisy SGD with Adaptive Clipping
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Figure 3: Impact of clipping without noise. Performance of the unclipped baseline compared to
five settings of v, from v = 0.1 (aggressive clipping) to v = 0.9 (mild clipping). The values shown
are the evaluation metrics on the validation set averaged over the last 100 rounds. Note that the y-axes
have been compressed to show small differences, and that for EMNIST-AE lower values are better.

Galen, Thakkar, McMahan, Ramaswamy etc.: “Differentially Private Learning with Adaptive Clipping”

https://arxiv.org/abs/1905.03871 .




PATE with SVT and large margin

e Standard Gaussian mechanism release

° A

Bassily, Thakkar, Thakurta. Model-Agnostic Private Learning via Stability:

The PATE Framework:
1. Randomly partition the private dataset into K splits.

2. Train one “teacher” classifier on each split.

votes as pseudo-labels. - -

3. Apply the K “teacher” classifiers on public data and privately release their majority

4. Output the “student” classifier trained on the pseudo-labeled public data.

ternative: SVT + Dist2Instability

s Use add noise to a threshold.

B P TR 0

. If the margin > noisy-threshold,
|*_release the exact value of the argm/(

* and continue

 Otherwise ¢ '

* release nothing, update the threshold noise.

https://arxiv.org/abs/1803.05101

U7
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X
Alternative way of adapting to <;/,
large margins in PATE “

* Just use Gaussian mechanism <Q Q&
Y
* But work out a data-dependent DP |osses

Theorem 6 (informal). Let M be a randomized algorithm with (u1,e1)-RDP and (ps,€2)-
RDP guarantees and suppose that given a dataset D, there exists a likely outcome 1* such
that Pr [M(D) # i*] < q. Then the data-dependent Rényi differential privacy for M of order
A\ < p1, o at D is bounded by a function of G, ju1, €1, b2, €2, which approaches 0 as § — .

* Amplification by Large Margin of the voting scores.

Proposition 7. For any i* € [m|, we have Pr [M,(D) # i*] < %ZZ# erfe ("5-") , where
erfc is the complementary error function.

Papernot et al. (2018) “Scalable Private Learning with PATE”
https://arxiv.org/abs/1802.08908 »




Adapting to “large margin” without
using data-adaptive DP algorithm

* Select data points according to active learning rules

* Disagreement-based Active Learning [See this excellent ICML
tutorial: https://icml.cc/media/icm|-2019/Slides/4341.pdf ]

~—_
* Uses naive Gaussian mechanisms based queries /¢

Dataset Method # Queries € €ex post Accuracy
PSQ-NP 1,447 +00 400 0.8234 £+ 0.0014
ASQ-NP 434 +00 400 0.8289 £ 0.0008
“PSQ 1,447 0.5 0.5 0.6355 £ 0.0065
. ASQ 434 0.5 0.5 0.7389 4+ 0.0014
real-sim
PSQ 1,447 1.0 1.0 0.7550 £ 0.0058
ASQ 434 1.0 1.0 0.8040 £ 0.0009
PSQ 1,447 2.0 2.0 0.8025 =+ 0.0037
_é:SQ 434 2.0 2.0 0.8231 £+ 0.0009

Liu et al. (2021) “Revisiting Model-Agnostic Private Learning”
https://arxiv.org/abs/2011.03186

26



Expanding list of papers on data-
dependent DP for learning
* Clustering: [k-means, k-medians, ...]

* Linear regression: [AdaOPS/AdaSSP]
e Statistical estimation: [mean, covariance]

e Statistical inference: [Hypothesis testing, OLS]

* Boosting: [Adapting to margin]

* Topic models: [Spectral LDA]

* Many more...

27



Good research directions

* Stronger, more practical, more adaptive DP algorithms:

* Mechanism specific analysis (RDP, CDP, Privacy Profiles) of data-
adaptive algorithms

* Per-instance DP of more algorithms.

* The use of DP in novel context
* e.g. Adaptive Data Analysis / preventing implicit overfitting
* For fairness, for truthfulness in mechanism design
* As a general smoothing trick that induces stability

* Practical implementation / empirical evaluation of DP

* Not necessary new methodology. Just off-the-shelf tools are already
sufficient for solving many problems!



