Lecture 2 Differential Privacy Basics

Yu-Xiang Wang

Recap: last lecture

- The challenge of privacy in the big data era
 - Remove PII?
 - Reveal only aggregate statistics?
 - Reveal ML models
- Dinur-Nissim attack
 - "Revealing too much information too accurately results in blatant-non-privacy"

This lecture

- 1. Differential privacy: Definition and interpretations
- 2. The curator model of private data analysis
- 3. Mechanism:
 - 1. Randomized Response, revisited
 - 2. Laplace Mechanism
- 4. Applying RR and Laplace mechanism for linear query release

Readings

- Dwork and Roth textbook. Chapter 2 and 3.1-3.3
- Supplementary reading:
 - Differential privacy: A primer for non-technical audience
 - On the `semantic` of differential privacy

How do we formally define privacy?

- We have seen:
 - ("Dinur-Nissm") Data reconstruction attack
 - Data linkage attack (IMDB \rightarrow Netflix)
 - Membership inference attack (a small sample of training data / non-training data)
 - ...
- It is insufficient to defend against one specific attack.
- Idea: separate "privacy definition" from the actual algorithm that implements the defense.

k-anonymity and composition attack

- K-anonymity (informally): any person's non-sensitive attribute be binned into size >= K
- An example of K-anonymous outputs

Δ

	Non-Sensitive			Sensitive		Non-Sensitive			Sensitive	
	Zip code	Age	Nationality	Condition			Zip code	Age	Nationality	Condition
1	130**	<30	*	AIDS	\searrow	1	130**	<35	*	AIDS
2	130**	<30	*	Heart Disease	/	2	130**	<35	*	Tuberculosis
3	130**	<30	*	Viral Infection		3	130**	<35	*	Flu
4	130**	<30	*	Viral Infection		4	130**	<35	*	Tuberculosis
5	130**	≥40	*	Cancer	i (5	130**	<35	*	Cancer
6	130**	\geq 40	*	Heart Disease		6	130**	<35	*	Cancer
7	130**	\geq 40	*	Viral Infection	/	7	130**	>35	*	Cancer
8	130**	\geq 40	*	Viral Infection		8	130**		*	Cancer
9	130**	3*	*	Cancer	1	9	130**		*	Cancer
10	130**	3*	*	Cancer		10	130**		*	Tuberculosis
11	130**	3*	*	Cancer		11	130**		*	Viral Infection
12	130**	3*	*	Cancer		12	130**	\ge 35	*	Viral Infection

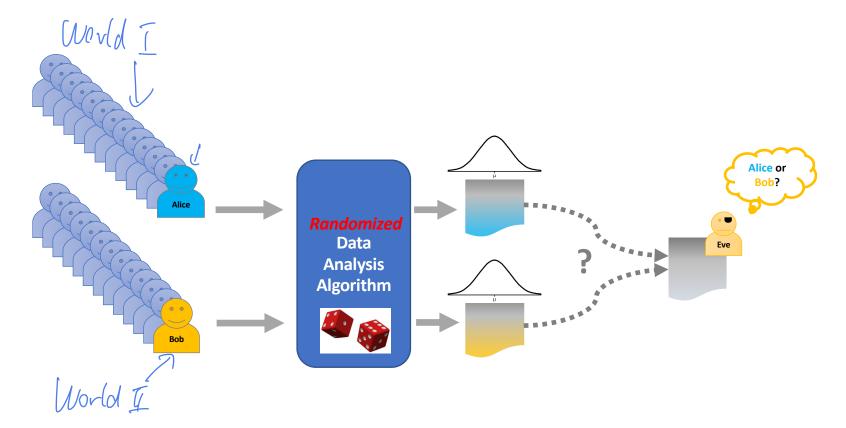
Side information: Alice's boss knows she is 28, lives in 13012, and go to both hospitals.

Example from: Ganta, Kasiviswanathan, and Smith. "Composition attacks and auxiliary information in data privacy." In *KDD* 2008.

Any reasonable privacy definition should satisfy the following.

- 1. Protect against most (if not all) attacks known to date
- 2. Not making strong assumptions about the adversary
- 3. Not making strong assumptions about the input data
- 4. Graceful degradation over composition

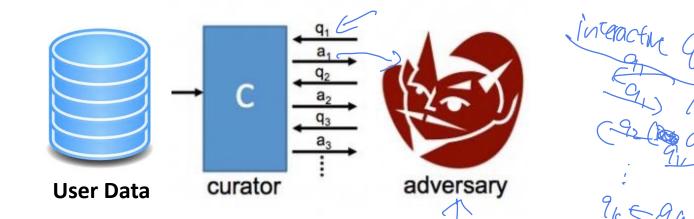
The idea of differential privacy --- the indistinguishability of two worlds



A subtle change of paradigm

- k-anonymity is a definition that covers a property that the (sanitized) output should satisfy, and it does not control how these outputs are obtained.
- In contrast, differential privacy is a property of the algorithm that publishes information from the dataset.

Basic terms: The curator model



Defining the jargon. (What do we mean when we talk about the following?)

Query, trusted curator, query, privacy mechanism, release

Different modes of operations:

- Interactive vs non-interactive query release
- Synthetic data generation
- Training machine learning models

Who is the adversary?

Examples: Scientists, Readers of the released statistics, users of a recommender system, etc...

Mathematical notations Probability Simplex Output space and a sigma-field: Randomized algorithm: M: Detespace -> ACB) M(X) is an R.V. TYM(X) Data space, individuals, dataset = Kayle, angle, pars icx X EMM Detest: Eque Pear and angle Individual vs. data row / data po an individual $\frac{\partial V \partial u \partial u}{\partial x} = \frac{\partial V \partial u}{\partial x} + \frac{\partial V$

More mathematical notations

Distance between two datasets

XYENIX [|Xy]] = Z[Xi-Yi] E # of people you need to add/remare to go from X to Y

Neighboring relationship

^{(c} Replace One": Swappy one malinel cum another ^{CL} Add/ Remove": X Berry rff [IX-y][5]

Formal definition of differential privacy

Definition 2.4 (Differential Privacy). A randomized algorithm \mathcal{M} with domain $\mathbb{N}^{|\mathcal{X}|}$ is (ε, δ) -differentially private if for all $\mathcal{S} \subseteq \operatorname{Range}(\mathcal{M})$ and for all $x, y \in \mathbb{N}^{|\mathcal{X}|}$ such that $||x - y||_1 \leq 1$: $\Pr[\mathcal{M}(x) \in \mathcal{S}] \leq \exp(\varepsilon) \Pr[\mathcal{M}(y) \in \mathcal{S}] + \delta,$ where the probability space is over the coin flips of the mechanism \mathcal{M} . If $\delta = 0$, we say that \mathcal{M} is ε -differentially private.

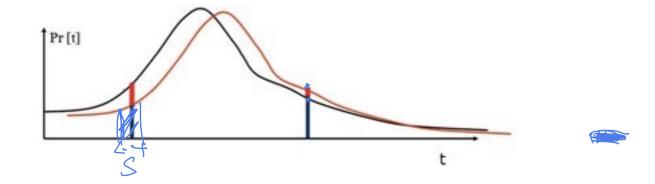
- A few remarks
- The randomness is **only** coming from the randomized algorithm.
- We may define "neighboring relationship" differently to encode different granularity of the DP guarantee: e.g., "Add / remove", "Replace"
- This need to hold for **any pairs** of neighboring inputs and **any set** of outputs

Making intuitive sense of the guarantee

Definition 2.4 (Differential Privacy). A randomized algorithm \mathcal{M} with domain $\mathbb{N}^{|\mathcal{X}|}$ is (ε, δ) -differentially private if for all $\mathcal{S} \subseteq \text{Range}(\mathcal{M})$ and for all $x, y \in \mathbb{N}^{|\mathcal{X}|}$ such that $||x - y||_1 \leq 1$:

$$\Pr[\mathcal{M}(x) \in \mathcal{S}] \le \exp(\varepsilon) \Pr[\mathcal{M}(y) \in \mathcal{S}] + \delta,$$

where the probability space is over the coin flips of the mechanism \mathcal{M} . If $\delta = 0$, we say that \mathcal{M} is ε -differentially private.

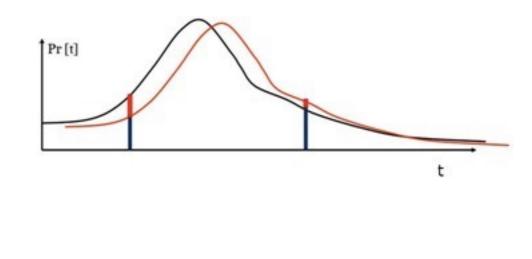


Privacy parameters (ϵ , δ) measure the "loss of privacy".

- Reasonable ranges of privacy parameter
 - ε is a small constant. $\leq ($ $\varepsilon \in \mathcal{O}()$
 - δ should be very small. o(1/poly(n)) in theory, o(1/n) in practice.

(hoop 5 > 1/9

(O, \$ 5/-1) Eardunly satply (2, X; 1)



We will focus on (pure) ϵ -DP for the first few lectures.

Making sense of the side-information from a Bayesian interpretation of DP

X: dotogen

Adversary has a prior belief. •

XALLY II

TI(S)

- Adversary finds the posterior belief by conditioning on the output Receives Dr YM(X)
- Whether or not "Alice" is in the dataset, the posterior beliefs are about the same. same. Sup Sup TV[TI(S|M(x|=y))], $TI(S|M(x/renueAlic)=y)] \in e^{\varepsilon}$
- The prior belief can encode any side information.

TILS M(x)=y)

Kasiviswanathan, S. P., & Smith, A. (2014). On the semantics of differential privacy: A bayesian formulation. Journal of Privacy and Confidentiality, $\overline{6(1)}$. 16 Robustness to side-information is a consequence of the worst-case nature of the DP definition.

- Let's say that there is a distribution the data is sampled from. $\times n D$ $X = (\times n M)^{N}$ $X = (\times n M)^{N}$
- But DP applies to all datasets...

Desirable properties of DP $fan = -f(m(\cdot))$

1. Closure to post-processing $M is (\Xi,SI-D) \implies f_{\circ}M is (\Xi-SI-D) \forall f$ $Prof: Pr(fom(x)GS) = \frac{Pr(m(x)GT)}{F} \leq e^{2}Pr(m(y)GT) + g = e^{2}Pr(fom(y)GS)$ S=Rongelf1, T=f[S/={teRongelM) [sf.f(t)es} 2. Composition M_2 ; G_{S_2} -Dp [preimage Si= f2=0] Pr[M.(x),M294)ESXS2] (M_1, M_2) is $(\varepsilon_i t \varepsilon_2, \varepsilon_i t \varepsilon_2) - DP.$ $\mathbb{R}_{\mathcal{F}}[\mathcal{M}_{\mathcal{O}}(\mathcal{X})] = \mathbb{R}_{\mathcal{F}}[\mathcal{M}_{\mathcal{O}}(\mathcal{X})] = \mathbb{R}_{\mathcal{F}}[\mathcal{M}_{\mathcal{O}}(\mathcal{X})]$ < C²27/M2C/SP2/MS7

= exs. Pritmery (SI,SI)

[Mily]=s

= Atta. (y)=s) Ar(a. (y) GS/M. 18]]

3. Small group privacy Mis E-DP on Add/Renow One passy KE-DD on Ibda/Rom any group

An important disclaimer: DP does not prevent all harms of a data analysis

- Example: medical study.
 - A study conducted differential privately may conclude that "Smoking causes lung cancer"
 - Alice is a smoker.
 - Due to this study, Alice's insurance company increases the premium for all smokers.
- Does this break DP?

The promise of differential privacy

- Decouples the risk of the study itself and the risk of participation.
- Privacy loss ε as a risk multiplier.
 - Any bad things that could happen without your participation can happen at most exp(ε) times higher probability.
- Hides the information specific to individuals, but permits information about the population to be learned accurately.

 $\Pr[M_{\text{W}} \in S] \leq \Pr[M_{\text{W}} g]$

Checkpoint: qualitative properties of DP

- 1. Protection against arbitrary risk, not just against re-identification.
- 2. Automatic neuralization of linkage-attacks from any datasets / other side information /
- 3. Quantifiable privacy loss
- 4. Composition with graceful degradation
- 5. Group privacy
- 6. Closure under post-processing

Remainder of the lecture

- Randomized Response
- Laplace mechanism
- Apply to answering linear queries

Randomized Response, revisited

- Do you like Justin Bieber?
 - Space of the answer: {0,1}
 - 1. Each individual tosses an independent coin with probability p > 0.5
 - 2. If "head", keep your answer.
 - 3. Otherwise, flip your answer.

$$\begin{array}{l} PR. \ 20,13 \longrightarrow 2(20,13) & Mput X & Output Y \\ E[Y|X=1] = P.1 + (1-P).0 = P \\ E[Y|X=2] = P.0 + (1-P).1 = 1-P \\ estimators & X = 0.5 + \frac{Y-0.5}{2(P-0.5)} & P.2(X=1) \\ P.2(P-0.5) & P.2(P-0.5) & P.2(P-0.5) \\ P.2(P-0.5) = 0 & P.2(P-0.5) = 0 \\ P.2(P-0.5) & P.2(P-0.5) = 0 \end{array}$$

Randomized response satisfies differential privacy!

- Some questions to address:
 - What is the dataset here?

 - What is the mechanism? Rep: outpt 1 × up P
 What is the neighboring relationship to define DP? Grade One"

KRpj=Xr

What is the privacy parameter of RR(p)?

 $\frac{X=1, \ y=0}{P[Y=1|X=1]=P=\frac{P(1-P)=e^{(0)\frac{P}{1-P}(1-P)}=e^{(0)\frac{P}{1-P}(1-P)}\frac{P[Y=1|X=0]}{P[Y=1|X=0]}}$ $P[X=0|X=1] = [-p] = [-p] \cdot p = e^{\log p} \cdot p = [e^{(\sqrt{p})}] P[X=0|X=0]$ Casan ulen K= 2, y= $z = (y_{IP}^{A} \not =) e^{z} = \frac{P}{IP}$ DP WHY E=(-SED $() P = e^2$ 24

Laplace mechanism

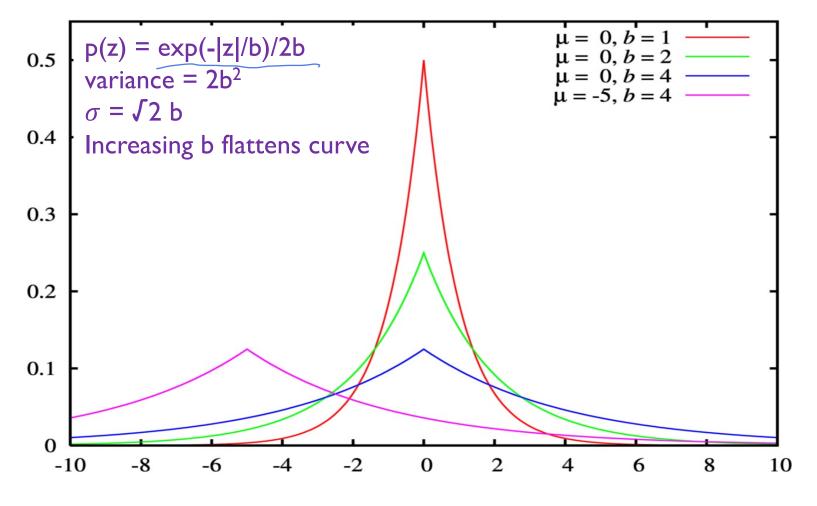
• Consider the query aims at releasing real value(s)

 $f: \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^k$ • L1 Sensitivity of the query:

$$\Delta f = \max_{\substack{x, y \in \mathbb{N}^{|\mathcal{X}|} \\ ||x-y||_1 = 1 \\ \text{heighery lifetime}}} \|f(x) - f(y)\|_1$$

Laplace mechanism returns

The Laplace distribution



(Figure from Wikipedia)

Proof that the Laplace mechanism is differentially private

• Recall the mechanism returns: f(x) + Z where $Z_i \sim \text{Lap}(\Delta f/\epsilon)$ i.i.d. for $i \in [k]$ $M_{f}(x) = f(x) + \mathcal{X}$ $P(Z_i) = C \frac{-|Z_i|}{b}$ $(M_{\ell}(x)=y) \leq e^{\epsilon} P(M_{\ell}(\xi)=y)$ $\frac{-14-fx}{5} = \frac{1}{5} =$ $\begin{array}{c} F_{1} & >b \\ = \left(\frac{1}{2b} \right)^{c} e^{\int \frac{y}{b_{1}} \left(\frac{y}{b_{2}} \right) - \frac{y}{b_{2}} \left(\frac{y}{b_{2}} - \frac{y}{b_{2}} - \frac{y}{b_{2}} \right) - \frac{y}{b_{2}} \left(\frac{y}{b_$ 27

Utility of the Laplace Mechanism

• CDF of the Laplace distribution:

$$\left\{egin{array}{ll} rac{1}{2}\expigg(rac{x-\mu}{b}igg) & ext{if } x\leq\mu \ \ 1-rac{1}{2}\expigg(-rac{x-\mu}{b}igg) & ext{if } x\geq\mu \end{array}
ight.$$

Theorem 3.8. Let $f : \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^k$, and let $y = \mathcal{M}_L(x, f(\cdot), \varepsilon)$. Then $\forall \delta \in (0, 1]$:

$$\Pr\left[\|f(x) - y\|_{\infty} \ge \ln\left(\frac{k}{\delta}\right) \cdot \left(\frac{\Delta f}{\varepsilon}\right)\right] \le \delta$$

Example applications of Laplace mechanism. What is the L1 sensitivity?

- Linear query (from the last lecture)
- Histograms: distribution of grades in a class
- Demographics statistics over map:
 - Number of people living in different zip code by race and gender

- COVID'19 Hospitalization Data:
 - Number of active patients in the ICU of each hospital

Apply Laplace mechanism to answer many linear queries

- 1. Set privacy budget, and number of queries
- 2. Decide how much noise to add
- 3. Work out the error bound

4. Error bound => sample complexity

Apply randomized response to answer linear queries

Answering a single linear query

Hoeffding's inequality: Suppose that X_1, \ldots, X_n are independent and that, $a_i \leq X_i \leq b_i$, and $\mathbb{E}[X_i] = \mu$. Then for any t > 0,

$$\mathbb{P}\left(\left|\overline{X}-\mu\right| \ge t\right) \le 2\exp\left(-\frac{2n^2t^2}{\sum_{i=1}^n (b_i-a_i)^2}\right) \text{ where } \overline{X}_n = n^{-1}\sum_i X_i.$$

Apply randomized response to answer linear queries

• Answering many linear query

• Question: does it cost any additional privacy?

Comparing randomized response and Laplace mechanism in answering linear queries.

What can we still do?

Target accuracy	k = O(2^n) linear	k = O(n) linear	k << n linear
	queries	queries	queries
α = O(1) (any non-trivial error)	Blatantly non- private	?	?
α = O(1/sqrt(n))	Blatantly non-	Blatantly non-	DP / Laplace mech
(statistical error)	private	private	
α = o(1/sqrt(n))	Blatantly non-	Blatantly non-	DP / Laplace mech
(<< statistical error)	private	private	