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Recap: last lecture

• The challenge of privacy in the big data era
• Remove PII?
• Reveal only aggregate statistics?
• Reveal ML models

• Dinur-Nissim attack
• “Revealing too much information too accurately results

in blatant-non-privacy”
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This lecture

1. Differential privacy: Definition and interpretations

2. The curator model of private data analysis

3. Mechanism:
1. Randomized Response, revisited
2. Laplace Mechanism

4. Applying RR and Laplace mechanism for linear
query release
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Readings

• Dwork and Roth textbook. Chapter 2 and 3.1-3.3

• Supplementary reading:
• Differential privacy: A primer for non-technical audience
• On the `semantic` of differential privacy
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How do we formally define privacy?

• We have seen:
• (“Dinur-Nissm”) Data reconstruction attack
• Data linkage attack (IMDB à Netflix)
• Membership inference attack (a small sample of training data
/ non-training data)

• …

• It is insufficient to defend against one specific attack.

• Idea: separate “privacy definition” from the actual
algorithm that implements the defense.

5



k-anonymity and composition attack

• K-anonymity (informally): any person’s non-sensitive
attribute be binned into size >= K
• An example of K-anonymous outputs

6Example from: Ganta, Kasiviswanathan, and Smith. “Composition attacks and auxiliary 
information in data privacy.” In KDD 2008.

1.1 Contributions
Our contributions are summarized briefly in the abstract, above,

and discussed in more detail in the following subsections.

1.1.1 CompositionAttacks onPartition-based Schemes
We introduce composition attacks and study their effect on a

popular class of partitioning-based anonymization schemes. Very
roughly, computer scientists have worked on two broad classes of
anonymization techniques. Randomization-based schemes intro-
duce uncertainty either by randomly perturbing the raw data (a
technique called input perturbation, randomized response, e.g., [34,
2, 16]), or post-randomization, e.g., [32]), or by injecting random-
ness into the algorithm used to analyze the data (e.g., [6, 28]).
Partition-based schemes cluster the individuals in the database into
disjoint groups satisfying certain criteria (for example, in k-anony-
mity [30], each group must have size at least k). For each group,
certain exact statistics are calculated and published. Partition-based
schemes include k-anonymity [30] as well as several recent vari-
ants, e.g., [26, 23, 36, 27, 9].
Because they release exact information, partition-based schemes

seem especially vulnerable to composition attacks. In the first part
of this paper we study a simple instance of a composition attack
called an intersection attack. We observe that the specific proper-
ties of current anonymization schemes make this attack possible,
and we evaluate its success empirically.

Example. Suppose two hospitals H1 and H2 in the same city re-
lease anonymized patient-discharge information. Because they are
in the same city, some patients may visit both hospitals with sim-
ilar ailments. Tables 1(a) and 1(b) represent (hypothetical) inde-
pendent k-anonymizations of the discharge data from H1 and H2

using k = 4 and k = 6, respectively. The sensitive attribute here
is the patient’s medical condition. It is left untouched. The other
attributes, deemed non-sensitive, are generalized (that is, replaced
with aggregate values), so that within each group of rows, the vec-
tors if non-sensitive attributes are identical. If Alice’s employer
knows that she is 28 years old, lives in zip code 13012 and re-
cently visited both hospitals, then he can attempt to locate her in
both anonymized tables. Alice matches four potential records in
H1’s data, and six potential records in H2’s. However, the only
disease that appears in both matching lists is AIDS, and so Alice’s
employer learns the reason for her visit.

Intersection Attacks. The above example relies on two proper-
ties of the partition-based anonymization schemes: (i) Exact sensi-
tive value disclosure: the “sensitive” value corresponding to each
member of the group is published exactly; and (ii) Locatability:
given any individual’s non-sensitive values (non-sensitive values
are exactly those that are assumed to be obtainable from other, pub-
lic information sources) one can locate the group in which individ-
ual has been put in. Based on these properties, an adversary can
narrow down the set of possible sensitive values for an individual
by intersecting the sets of sensitive values present in his/her groups
from multiple anonymized releases.
Properties (i) and (ii) turn out to be widespread. The exact dis-

closure of sensitive value lists is a design feature common to all
the schemes based on k-anonymity: preserving the exact distribu-
tion of sensitive values is important, and so no recoding is usually
applied. Locatability is less universal, since it depends on the ex-
act choice of clustering algorithm (used to form groups) and the
recoding applied to the non-sensitive attributes. However, some
schemes always satisfy locatability by virtue of their structure (e.g.,
schemes that recursively partition the data set along the lines of a
hierarchy that is subsequently used for generalization [21, 22]). For

Non-Sensitive Sensitive
Zip code Age Nationality Condition

1 130** <30 * AIDS
2 130** <30 * Heart Disease
3 130** <30 * Viral Infection
4 130** <30 * Viral Infection
5 130** ≥40 * Cancer
6 130** ≥40 * Heart Disease
7 130** ≥40 * Viral Infection
8 130** ≥40 * Viral Infection
9 130** 3* * Cancer
10 130** 3* * Cancer
11 130** 3* * Cancer
12 130** 3* * Cancer

(a)
Non-Sensitive Sensitive

Zip code Age Nationality Condition
1 130** <35 * AIDS
2 130** <35 * Tuberculosis
3 130** <35 * Flu
4 130** <35 * Tuberculosis
5 130** <35 * Cancer
6 130** <35 * Cancer
7 130** ≥35 * Cancer
8 130** ≥35 * Cancer
9 130** ≥35 * Cancer
10 130** ≥35 * Tuberculosis
11 130** ≥35 * Viral Infection
12 130** ≥35 * Viral Infection

(b)

Table 1: A simple example of a composition attack. Tables (a) and (b) are 4-
anonymous (respectively, 6-anonymous) patient data from two hypothetical
hospitals. If an Alice’s employer knows that she is 28, lives in zip code
13012 and visits both hospitals, he learns that she has AIDS.

other schemes, locatability is not perfect but our experiments sug-
gest that using simple heuristics one can locate a individual’s group
with high probability.
Even with these properties, it is difficult to come up with a theo-

retical model for intersection attacks because the partitioning tech-
niques generally create dependencies that are hard to model an-
alytically. However, if the sensitive values of the members of a
group could be assumed to be statistically independent of their
non-sensitive attribute values, then a simple birthday-paradox-style
analysis would yield reasonable bounds.
Experimental Results. Instead, we evaluated the success of in-
tersection attacks empirically. We ran the intersection attack on
two popular census databases anonymized using partition-based
schemes. We evaluated the severity of such an attack by mea-
suring the number of individuals who had their sensitive value re-
vealed. Our experimental results confirm that partitioning-based
anonymization schemes including k-anonymity and its recent vari-
ants, !-diversity and t-closeness, are indeed vulnerable to intersec-
tion attacks. Section 3 elaborates our methodology and results.
Related Work on Modeling Background Knowledge. It is im-
portant to point out that the partition-based schemes in the litera-
ture were not designed to be used in contexts where independent
releases are available. Thus, we do not view our results as pointing
out a flaw in these schemes, but rather as directing the community’s
attention to an important direction for future work.
It is equally important to highlight the progress that has already

been made on modeling sophisticated background knowledge in
partition-based schemes. One line has focused on taking into ac-
count other, known releases, such as previous publications by the
same organization (“sequential” releases, [33, 7, 36]) and multiple
views of the same data set [37]. Another line has considered incor-
porating knowledge of the clustering algorithm used to group indi-
viduals [35]. Most relevant to this paper are works that have sought
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Side information: Alice’s boss knows she is 28, lives in 13012, and go to both hospitals.



Any reasonable privacy definition
should satisfy the following.
1. Protect against most (if not all) attacks known to date

2. Not making strong assumptions about the adversary

3. Not making strong assumptions about the input data

4. Graceful degradation over composition
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The idea of differential privacy --- the
indistinguishability of two worlds
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A subtle change of paradigm

• k-anonymity is a definition that covers a property
that the (sanitized) output should satisfy, and it
does not control how these outputs are obtained.

• In contrast, differential privacy is a property of the
algorithm that publishes information from the
dataset.
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Basic terms: The curator model

User Data
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Defining the jargon. (What do we mean when we talk about the following?)
- Query, trusted curator, query, privacy mechanism, release

Different modes of operations:
- Interactive vs non-interactive query release
- Synthetic data generation
- Training machine learning models

Who is the adversary?
- Examples: Scientists, Readers of the released statistics, users of a recommender

system, etc…



Mathematical notations

• Output space and a sigma-field:

• Randomized algorithm:

• Data space, individuals, dataset

• Individual vs. data row / data point of an individual
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More mathematical notations

• Distance between two datasets

• Neighboring relationship
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Formal definition of differential privacy

• A few remarks
- The randomness is only coming from the randomized algorithm.

- We may define “neighboring relationship” differently to encode different granularity of
the DP guarantee: e.g., “Add / remove”, “Replace”

- This need to hold for any pairs of neighboring inputs and any set of outputs

13

2.3. Formalizing di�erential privacy 17

We will think of databases x as being collections of records from a
universe X . It will often be convenient to represent databases by their
histograms: x œ N|X |, in which each entry xi represents the number of
elements in the database x of type i œ X (we abuse notation slightly, let-
ting the symbol N denote the set of all non-negative integers, including
zero). In this representation, a natural measure of the distance between
two databases x and y will be their ¸1 distance:

Definition 2.3 (Distance Between Databases). The ¸1 norm of a
database x is denoted ÎxÎ1 and is defined to be:

ÎxÎ1 =
|X |ÿ

i=1

|xi| .

The ¸1 distance between two databases x and y is Îx ≠ yÎ1

Note that ÎxÎ1 is a measure of the size of a database x (i.e., the
number of records it contains), and Îx ≠ yÎ1 is a measure of how many
records di�er between x and y.

Databases may also be represented by multisets of rows (elements
of X ) or even ordered lists of rows, which is a special case of a set,
where the row number becomes part of the name of the element. In this
case distance between databases is typically measured by the Hamming
distance, i.e., the number of rows on which they di�er.

However, unless otherwise noted, we will use the histogram
representation described above. (Note, however, that even when the
histogram notation is more mathematically convenient, in actual
implementations, the multiset representation will often be much more
concise).

We are now ready to formally define di�erential privacy, which intu-
itively will guarantee that a randomized algorithm behaves similarly on
similar input databases.

Definition 2.4 (Di�erential Privacy). A randomized algorithm M with
domain N|X | is (Á, ”)-di�erentially private if for all S ™ Range(M) and
for all x, y œ N|X | such that Îx ≠ yÎ1 Æ 1:

Pr[M(x) œ S] Æ exp(Á) Pr[M(y) œ S] + ”,

18 Basic Terms

where the probability space is over the coin flips of the mechanism M.
If ” = 0, we say that M is Á-di�erentially private.

Typically we are interested in values of ” that are less than the
inverse of any polynomial in the size of the database. In particular,
values of ” on the order of 1/ÎxÎ1 are very dangerous: they permit “pre-
serving privacy” by publishing the complete records of a small number
of database participants — precisely the “just a few” philosophy dis-
cussed in Section 1.

Even when ” is negligible, however, there are theoretical distinc-
tions between (Á, 0)- and (Á, ”)-di�erential privacy. Chief among these
is what amounts to a switch of quantification order. (Á, 0)-di�erential
privacy ensures that, for every run of the mechanism M(x), the out-
put observed is (almost) equally likely to be observed on every neigh-
boring database, simultaneously. In contrast (Á, ”)-di�erential privacy
says that for every pair of neighboring databases x, y, it is extremely
unlikely that, ex post facto the observed value M(x) will be much more
or much less likely to be generated when the database is x than when
the database is y. However, given an output › ≥ M(x) it may be possi-
ble to find a database y such that › is much more likely to be produced
on y than it is when the database is x. That is, the mass of › in the
distribution M(y) may be substantially larger than its mass in the
distribution M(x).

The quantity

L
(›)

M(x)ÎM(y)
= ln

3Pr[M(x) = ›]
Pr[M(y) = ›]

4

is important to us; we refer to it as the privacy loss incurred by observ-
ing ›. This loss might be positive (when an event is more likely under x
than under y) or it might be negative (when an event is more likely
under y than under x). As we will see in Lemma 3.17, (Á, ”)-di�erential
privacy ensures that for all adjacent x, y, the absolute value of the pri-
vacy loss will be bounded by Á with probability at least 1≠”. As always,
the probability space is over the coins of the mechanism M.

Di�erential privacy is immune to post-processing: A data analyst,
without additional knowledge about the private database, cannot com-
pute a function of the output of a private algorithm M and make it



Making intuitive sense of the guarantee
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Privacy parameters (ε, δ) measure
the “loss of privacy”.
• Reasonable ranges of privacy parameter

- ε is a small constant.
- δ should be very small. o(1/poly(n)) in theory, o(1/n) in

practice.

15

We will focus on (pure) ε-DP for the first few lectures.



Making sense of the side-information
from a Bayesian interpretation of DP
• Adversary has a prior belief.

• Adversary finds the posterior belief by conditioning on the output

• Whether or not “Alice” is in the dataset, the posterior beliefs are about
the same.

• The prior belief can encode any side information.

16
Kasiviswanathan, S. P., & Smith, A. (2014). On the'semantics' of differential privacy: A bayesian
formulation. Journal of Privacy and Confidentiality, 6(1).



Robustness to side-information is a
consequence of the worst-case
nature of the DP definition.

• Let’s say that there is a distribution the data is sampled from.

• Knowing any side information allows the adversary to
condition on this information, which could change the
distribution

• But DP applies to all datasets…

17



Desirable properties of DP

1. Closure to post-processing

2. Composition

3. Small group privacy

18



An important disclaimer: DP does not
prevent all harms of a data analysis
• Example: medical study.
• A study conducted differential privately may conclude

that “Smoking causes lung cancer”
• Alice is a smoker.
• Due to this study, Alice’s insurance company increases

the premium for all smokers.

• Does this break DP?
• No, because the harm is nearly the same with or

without Alice’s participation

19



The promise of differential privacy

• Decouples the risk of the study itself and the risk of
participation.

• Privacy loss ε as a risk multiplier.
• Any bad things that could happen without your

participation can happen at most exp(ε) times higher
probability.

• Hides the information specific to individuals, but
permits information about the population to be
learned accurately.

20



Checkpoint: qualitative properties
of DP
1. Protection against arbitrary risk, not just against

re-identification.
2. Automatic neuralization of linkage-attacks from

any datasets / other side information
3. Quantifiable privacy loss
4. Composition with graceful degradation
5. Group privacy
6. Closure under post-processing

21



Remainder of the lecture

• Randomized Response

• Laplace mechanism

• Apply to answering linear queries

22



Randomized Response, revisited

• Do you like Justin Bieber?
• Space of the answer:  {0,1}

1. Each individual tosses an independent coin with probability p > 0.5
2. If “head”, keep your answer.
3. Otherwise, flip your answer.

23



Randomized response satisfies
differential privacy!

24

• Some questions to address:
• What is the dataset here?
• What is the mechanism?
• What is the neighboring relationship to define DP?

• What is the privacy parameter of RR(p)?



Laplace mechanism

• Consider the query aims at releasing real value(s)

• L1 Sensitivity of the query:

• Laplace mechanism returns

25

30 Basic Techniques and Composition Theorems

behaviors. Let XYZ be such an activity. Faced with the query, “Have
you engaged in XYZ in the past week?” the respondent is instructed
to perform the following steps:

1. Flip a coin.
2. If tails, then respond truthfully.
3. If heads, then flip a second coin and respond “Yes” if heads and

“No” if tails.
The intuition behind randomized response is that it provides “plau-
sible deniability.” For example, a response of “Yes” may have been
o�ered because the first and second coin flips were both Heads, which
occurs with probability 1/4. In other words, privacy is obtained by pro-
cess, there are no “good” or “bad” responses. The process by which
the responses are obtained a�ects how they may legitimately be inter-
preted. As the next claim shows, randomized response is di�erentially
private.
Claim 3.5. The version of randomized response described above is
(ln 3, 0)-di�erentially private.
Proof. Fix a respondent. A case analysis shows that Pr[Response =
Yes|Truth = Yes] = 3/4. Specifically, when the truth is “Yes” the
outcome will be “Yes” if the first coin comes up tails (probabil-
ity 1/2) or the first and second come up heads (probability 1/4)),
while Pr[Response = Yes|Truth = No] = 1/4 (first comes up heads and
second comes up tails; probability 1/4). Applying similar reasoning to
the case of a “No” answer, we obtain:

Pr[Response = Yes|Truth = Yes]
Pr[Response = Yes|Truth = No]

= 3/4
1/4 = Pr[Response = No|Truth = No]

Pr[Response = No|Truth = Yes] = 3.

3.3 The laplace mechanism

Numeric queries, functions f : N|X |
æ Rk, are one of the most fun-

damental types of database queries. These queries map databases to k

3.3. The laplace mechanism 31

real numbers. One of the important parameters that will determine just
how accurately we can answer such queries is their ¸1 sensitivity:

Definition 3.1 (¸1-sensitivity). The ¸1-sensitivity of a function f :
N|X |

æ Rk is:
�f = max

x,yœN|X |
Îx≠yÎ1=1

Îf(x) ≠ f(y)Î1.

The ¸1 sensitivity of a function f captures the magnitude by which
a single individual’s data can change the function f in the worst case,
and therefore, intuitively, the uncertainty in the response that we must
introduce in order to hide the participation of a single individual.
Indeed, we will formalize this intuition: the sensitivity of a function
gives an upper bound on how much we must perturb its output to pre-
serve privacy. One noise distribution naturally lends itself to di�erential
privacy.

Definition 3.2 (The Laplace Distribution). The Laplace Distribution
(centered at 0) with scale b is the distribution with probability density
function:

Lap(x|b) = 1
2b

exp
3

≠
|x|

b

4
.

The variance of this distribution is ‡2 = 2b2. We will sometimes write
Lap(b) to denote the Laplace distribution with scale b, and will some-
times abuse notation and write Lap(b) simply to denote a random vari-
able X ≥ Lap(b).

The Laplace distribution is a symmetric version of the exponential
distribution.

We will now define the Laplace Mechanism. As its name suggests,
the Laplace mechanism will simply compute f , and perturb each coor-
dinate with noise drawn from the Laplace distribution. The scale of the
noise will be calibrated to the sensitivity of f (divided by Á).1

1Alternately, using Gaussian noise with variance calibrated to �f ln(1/”)/Á,
one can achieve (Á, ”)-di�erential privacy (see Appendix A). Use of the Laplace
mechanism is cleaner and the two mechanisms behave similarly under composition
(Theorem 3.20).

f(x) + Z where Zi ⇠ Lap(�f/✏) i.i.d. for i 2 [k]
<latexit sha1_base64="TIIgnVm8QPOD471ls88ltLfqpak="></latexit><latexit sha1_base64="TIIgnVm8QPOD471ls88ltLfqpak="></latexit><latexit sha1_base64="TIIgnVm8QPOD471ls88ltLfqpak="></latexit><latexit sha1_base64="TIIgnVm8QPOD471ls88ltLfqpak="></latexit>



The Laplace distribution

26
(Figure from Wikipedia)
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Laplace Distribution Lap(b) 

p(z) = exp(-|z|/b)/2b  
variance = 2b2 

𝜎 = √2 b 

Increasing b flattens curve 

Sep 19, 2012 Differential Privacy and Machine Learning 



Proof that the Laplace mechanism
is differentially private
• Recall the mechanism returns:

27

f(x) + Z where Zi ⇠ Lap(�f/✏) i.i.d. for i 2 [k]
<latexit sha1_base64="TIIgnVm8QPOD471ls88ltLfqpak="></latexit><latexit sha1_base64="TIIgnVm8QPOD471ls88ltLfqpak="></latexit><latexit sha1_base64="TIIgnVm8QPOD471ls88ltLfqpak="></latexit><latexit sha1_base64="TIIgnVm8QPOD471ls88ltLfqpak="></latexit>



Utility of the Laplace Mechanism

• CDF of the Laplace distribution:

28

34 Basic Techniques and Composition Theorems

This fact, together with a union bound, gives us a simple bound on
the accuracy of the Laplace mechanism:

Theorem 3.8. Let f : N|X |
æ Rk, and let y = ML(x, f(·), Á). Then

’” œ (0, 1]:

Pr
5
Îf(x) ≠ yÎŒ Ø ln

3
k

”

4
·

3�f

Á

46
Æ ”

Proof. We have:

Pr
5
Îf(x) ≠ yÎŒ Ø ln

3
k

”

4
·

3�f

Á

46
= Pr

C

max
iœ[k]

|Yi| Ø ln
3

k

”

4
·

3�f

Á

4D

Æ k · Pr
5
|Yi| Ø ln

3
k

”

4
·

3�f

Á

46

= k ·

3
”

k

4

= ”

where the second to last inequality follows from the fact that each
Yi ≥ Lap(�f/Á) and Fact 3.7.

Example 3.3 (First Names). Suppose we wish to calculate which first
names, from a list of 10,000 potential names, were the most common
among participants of the 2010 census. This question can be repre-
sented as a query f : N|X |

æ R10000. This is a histogram query, and so
has sensitivity �f = 1, since every person can only have at most one
first name. Using the above theorem, we see that we can simultaneously
calculate the frequency of all 10, 000 names with (1, 0)-di�erential pri-
vacy, and with probability 95%, no estimate will be o� by more than
an additive error of ln(10000/.05) ¥ 12.2. That’s pretty low error for a
nation of more than 300, 000, 000 people!

Di�erentially Private Selection. The task in Example 3.3 is one of
di�erentially private selection: the space of outcomes is discrete and
the task is to produce a “best” answer, in this case the most populous
histogram cell.



Example applications of Laplace
mechanism. What is the L1 sensitivity?
• Linear query (from the last lecture)

• Histograms: distribution of grades in a class

• Demographics statistics over map:
• Number of people living in different zip code by race and
gender

• COVID’19 Hospitalization Data:
• Number of active patients in the ICU of each hospital
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Apply Laplace mechanism to
answer many linear queries
1. Set privacy budget, and number of queries

2. Decide how much noise to add

3. Work out the error bound

4. Error bound => sample complexity
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Apply randomized response to
answer linear queries
• Answering a single linear query

31

LECTURE NOTES 6

1 Hoe↵ding’s inequality

The main drawback was that Mill’s inequality only applies to Gaussian random variables.
Another commonly useful exponential concentration inequality applies to bounded random
variables. This is called Hoe↵ding’s inequality.

Hoe↵ding’s inequality: Suppose thatX1, . . . , Xn are independent and that, ai  Xi  bi,
and E[Xi] = µ. Then for any t > 0,

P
���X � µ

�� � t
�
 2 exp

✓
� 2n2t2Pn

i=1(bi � ai)2

◆

where Xn = n�1
P

i Xi. When a  Xi  b this becomes

P
���X � µ

�� � t
�
 2 exp

✓
� 2nt2

(b� a)2

◆
.

We will not prove this but the proof is in the book.

Hoe↵ding’s inequality looks a bit di↵erent from the other inequalities we have seen yesterday,
but let us rearrange it a bit. Equivalently,

P
 �����

1

n

nX

i=1

Xi

����� � t

rPn
i=1(bi � ai)2

n2

!
 2 exp

�
�2t2

�
.

This is more like the earlier inequalities, but notice that we don’t really have the standard
deviation any more. That said, if ai  Xi  bi then Var(Xi)  (bi � ai)2.

Exercise: Prove the above fact.

So that:

Var

 
1

n

nX

i=1

Xi

!

Pn

i=1(bi � ai)2

n2
,

and this will allow us to interpret Hoe↵ding’s inequality in a more familiar way. Roughly, it
says that the probability that the sample average is more than t standard deviations from
its expectation is at most exp(�2t2).

Let us now use Hoe↵ding’s inequality in our case study example of coin tosses. There each
random variable is between �1 and 1 so we have that by Hoe↵ding’s inequality:

P
���X � µ

�� � t
�
 2 exp

�
�2nt2

�
.

Observe once again this inequality is similar to Chebyshev’s but is much tighter.
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Apply randomized response to
answer linear queries
• Answering many linear query

• Question: does it cost any additional privacy?
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Comparing randomized response and
Laplace mechanism in answering
linear queries.
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What can we still do?

Target accuracy k = O(2^n) linear
queries

k = O(n) linear
queries

k << n linear
queries

α = O(1)
(any non-trivial

error)

Blatantly non-
private ? ?

α = O(1/sqrt(n))
(statistical error)

Blatantly non-
private

Blatantly non-
private DP / Laplace mech

α = o(1/sqrt(n))
(<< statistical error)

Blatantly non-
private

Blatantly non-
private DP / Laplace mech
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