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Recap: last lecture

• Equivalent definitions of differential privacy 
• Via Hockey-stick divergence
• Via Tradeoff function

• Analytical Gaussian mechanism

• Mechanism-specific analysis
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Recap: HS Divergence as an
equivalent definition of DP

• Obtain exactly optimal Gaussian mechanism.
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Theorem: M is (𝜀,𝛿)-DP if and only if

And if and only if

can construct D0 by adding or removing one data point from Z. M : D⇤ ! PO is a randomized
mechanism which returns an output o 2 O by sampling from distribution M(D). Sometimes for
convenience and clarity we define P,Q and p, q to be the distribution and density functions of M(D)

and M(D0
) respectively.

Differential privacy and its equivalent definitions. With these notations clarified, we can now
formally define differential privacy.

Definition 1 (Differential Privacy). A randomized algorithm M is (✏, �)-DP if for every pair of
neighboring datasets D,D0, and every possible output set S ✓ O the following inequality holds:

Pr[M(D) 2 S]  e✏Pr[M(D0 2 S)] + �.

We can alternatively interpret DP from the views of a divergence metric of two probability distribu-
tions, a hypothesis testing view of a binary-classifier, as well as the distribution of the log-odds ratio.
Let us first define these quantities formally.

Definition 2 (Hockey-stick divergence). For ↵ > 0, the Hockey-stick divergence is defined as
H↵(PkQ) := Eo⇠Q[(

dP
dQ(o)�↵)+], where (x)+ := x1(x � 0) and dP

dQ is the Radon-Nikodym-derivative
(or simply the density ratio when density exists for P and Q).

Definition 3 (Trade-off function). Let � be a classifier to distinguish two distributions P from Q
using a sample. ↵� be its Type I error (false positive rate) and �� be its Type II error (false negative
rate). The tradeoff function TP,Q(↵) : [0, 1] ! [0, 1] is defined to be TP,Q(↵) := inf�{�� | ↵�  ↵}.

Definition 4 (Privacy loss R.V.). The privacy loss random variable of for a pair of neighboring
dataset D,D0 under mechanism M is defined as LP,Q := log

M(D)(o)
M(D0)(o) where o ⇠ M(D); similarly,

we have LQ,P := log
M(D0)(o)
M(D)(o) where o ⇠ M(D0

).

These quantities can be used to equivalently define differential privacy [Wasserman and Zhou, 2010,
Barthe and Olmedo, 2013, Kairouz et al., 2015, Balle and Wang, 2018, Balle et al., 2018, Dong et al.,
2021].

Lemma 5. The following statements about a randomized algorithm M are equivalent to Definition 1

1. supD'D0 He✏(M(D)kM(D0
))  �.

2. supD'D0 TM(D),M(D0)(↵) � max{0, 1� � � e✏↵, e�✏
(1� � � ↵).

3. Pro⇠M(D)[LP,Q > ✏]� e✏ Pro⇠M(D0)[LQ,P < �✏]  � for all neighboring D,D0.

We highlight that in all these definitions, it is required for the bound to cover all pairs of neighboring
datasets D,D0.

Mechanism-specific analysis / Functional representation of DP guarantee. Each of these
equivalent interpretations could be used to provide more-fine-grained description of a differential
privacy mechanism M.

Definition 6 (Privacy profile [Balle et al., 2018] and f -DP [Dong et al., 2021]). The privacy profile
of a mechanism M is a function �M : R>0 ! [0, 1]defined as

�M(↵) := sup

D'D0
H↵(M(D)kM(D0

)).
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Recap: Tradeoff function 
characterization of DP
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Proposition 2.5 ([WZ10]). A mechanism M is (", �)-DP if and only if M is f",�-DP.
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Figure 3: Left: f",� is a piecewise linear function and is symmetric with respect to the line y = x.
It has (nontrivial) slopes �e±" and intercepts 1 � �. Right: Trade-o↵ functions of unit-variance
Gaussian distributions with di↵erent means. The case of µ = 0.5 is reasonably private, µ = 1 is
borderline private, and µ = 3 is basically non-private: an adversary can control type I and type II
errors simultaneously at only 0.07. In the case of µ = 6 (almost coincides with the axes), the two
errors both can be as small as 0.001.

2.2 Gaussian Di↵erential Privacy

This subsection introduces a parametric family of f -DP guarantees, where f is the trade-o↵ function
of two normal distributions. We refer to this specialization as Gaussian di↵erential privacy (GDP).
GDP enjoys many desirable properties that lead to its central role in this paper. Among others,
we can now precisely define the trade-o↵ function with a single parameter. To define this notion,
let

Gµ := T
�
N (0, 1), N (µ, 1)

�

for µ > 0. An explicit expression for the trade-o↵ function Gµ reads

Gµ(↵) = �
�
��1(1 � ↵) � µ

�
, (6)

where � denotes the standard normal CDF. For completeness, we provide a proof of (6) in Ap-
pendix A. This trade-o↵ function is decreasing in µ in the sense that Gµ 6 Gµ0 if µ > µ0. We now
define GDP:

Definition 2.6. A mechanism M is said to satisfy µ-Gaussian Di↵erential Privacy (µ-GDP) if it
is Gµ-DP. That is,

T
�
M(S), M(S0)

�
> Gµ

for all neighboring datasets S and S0.

GDP has several attractive properties. First, this privacy definition is fully described by the
single mean parameter of a unit-variance Gaussian distribution, which makes it easy to describe

8

Theorem: M is (𝜀,𝛿)-DP if and only if the adversary’s tradeoff
region is lower bound by

Figure 2: Three di↵erent examples of T
�
M(S), M(S0)

�
. Only the dashed line corresponds to a

trade-o↵ function satisfying f -DP.

for any neighboring pair S, S0. Therefore, it is desirable to restrict our attention to “symmetric”
trade-o↵ functions. Proposition 2.4 shows that this restriction does not lead to any loss of generality.

Proposition 2.4. Let a mechanism M be f -DP. Then, M is fS-DP with fS = max{f, f�1}, where
the inverse function is defined as8

f�1(↵) := inf{t 2 [0, 1] : f(t) 6 ↵} (4)

for ↵ 2 [0, 1].

Writing f = T (P, Q), we can express the inverse as f�1 = T (Q, P ), which therefore is also a
trade-o↵ function. As a consequence of this, fS continues to be a trade-o↵ function by making use
of Proposition 2.2 and, moreover, is symmetric in the sense that

fS = (fS)�1.

Importantly, this symmetrization gives a tighter bound in the privacy definition since fS > f . In
the remainder of the paper, therefore, trade-o↵ functions will always be assumed to be symmetric
unless otherwise specified. We prove Proposition 2.4 in Appendix A.

We conclude this subsection by showing that f -DP is a generalization of (", �)-DP. This fore-
shadows a deeper connection between f -DP and (", �)-DP that will be discussed in Section 2.4.
Denote

f",�(↵) = max
�
0, 1 � � � e"↵, e�"(1 � � � ↵)

 
(5)

for 0 6 ↵ 6 1, which is a trade-o↵ function. Figure 3 shows the graph of this function and its
evident symmetry. The following result is adapted from [WZ10].

8
Equation (4) is the standard definition of the left-continuous inverse of a decreasing function. When f is strictly

decreasing and f(0) = 1 and hence bijective as a mapping, (4) corresponds to the inverse function in the ordinary

sense, i.e. f(f�1
(x)) = f�1

(f(x)) = x. However, this is not true in general.
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Recap: mechanism-specific analysis

• Describing a mechanism by two numbers (𝜀,𝛿) is 
somewhat crude, and lossy.
• More fine-grained description of a mechanism by a

function
• Privacy profile: 𝛿(𝜀) --- smallest 𝛿 such that M satisfies 

(𝜀,𝛿) –DP.

• Tradeoff function 

• Renyi DP

• PLD:  Distribution function of PLRV 5
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x'x0

D↵(M(x)kM(x0))
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fM = max
x'x0

T (M(x),M(x0))
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Recap: Duality between tradeoff
function and privacy profile

• Example: Gaussian mechanism
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Ineq(�tradeo↵) = Ineq(�Blackwell). In stark contrast, this is not true for the order induced by other
popular privacy notions such as Rényi di↵erential privacy and (", �)-DP. We prove this claim in
Appendix B and further justify the informativeness of f -DP by providing general tools that can
losslessly convert f -DP guarantees into divergence based privacy guarantees.

2.4 A Primal-Dual Perspective

In this subsection, we show that f -DP is equivalent to an infinite collection of (", �)-DP guarantees
via the convex conjugate of the trade-o↵ function. As a consequence of this, we can view f -DP
as the primal privacy representation and, accordingly, its dual representation is the collection of
(", �)-DP guarantees. Taking this powerful viewpoint, many results from the large body of (", �)-DP
work can be carried over to f -DP in a seamless fashion. In particular, this primal-dual perspective
is crucial to our analysis of “privacy amplification by subsampling” in Section 4. All proofs are
deferred to Appendix A.

First, we present the result that converts a collection of (", �)-DP guarantees into an f -DP
guarantee.

Proposition 2.11 (Dual to Primal). Let I be an arbitrary index set such that each i 2 I is
associated with "i 2 [0, 1) and �i 2 [0, 1]. A mechanism is ("i, �i)-DP for all i 2 I if and only if it
is f -DP with

f = sup
i2I

f"i,�i .

This proposition follows easily from the equivalence of (", �)-DP and f",�-DP. We remark that
the function f constructed above remains a symmetric trade-o↵ function.

The more interesting direction is to convert f -DP into a collection of (", �)-DP guarantees.
Recall that the convex conjugate of a function g defined on (�1, 1) is defined as

g⇤(y) = sup
�1<x<1

yx � g(x). (8)

To define the conjugate of a trade-o↵ function f , we extend its domain by setting f(x) = 1 for
x < 0 and x > 1. With this adjustment, the supremum is e↵ectively taken over 0 6 x 6 1.

Proposition 2.12 (Primal to Dual). For a symmetric trade-o↵ function f , a mechanism is f -DP
if and only if it is

�
", �(")

�
-DP for all " > 0 with �(") = 1 + f⇤(�e").

For example, taking f = Gµ, the following corollary provides a lossless conversion from GDP
to a collection of (", �)-DP guarantees. This conversion is exact and, therefore, any other (", �)-DP
guarantee derived for the Gaussian mechanism is implied by this corollary. See Figure 4 for an
illustration of this result.

Corollary 2.13. A mechanism is µ-GDP if and only if it is
�
", �(")

�
-DP for all " > 0, where

�(") = �
⇣

� "

µ
+

µ

2

⌘
� e"�

⇣
� "

µ
� µ

2

⌘
.

This corollary has appeared earlier in [BW18]. Along this direction, [BBG18] further proposed
“privacy profile”, which in essence corresponds to an infinite collection of (", �). The notion of
privacy profile mainly serves as an analytical tool in [BBG18].
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Figure 4: Each (", �("))-DP guarantee corresponds to two supporting linear functions (symmetric
to each other) to the trade-o↵ function describing the complete f -DP guarantee. In general, char-
acterizing a privacy guarantee using only a subset of (", �)-DP guarantees (for example, only those
with small �) would result in information loss.

The primal-dual perspective provides a useful tool through which we can bridge the two privacy
definitions. In some cases, it is easier to work with f -DP by leveraging the interpretation and
informativeness of trade-o↵ functions, as seen from the development of composition theorems for
f -DP in Section 3. Meanwhile, (", �)-DP is more convenient to work with in the cases where
the lower complexity of two parameters ", � is helpful, for example, in the proof of the privacy
amplification by subsampling theorem for f -DP. In short, our approach in Section 4 is to first work
in the dual world and use existing subsampling theorems for (", �)-DP, and then convert the results
back to f -DP using a slightly more advanced version of Proposition 2.12.

2.5 Group Privacy

The notion of f -DP can be extended to address privacy of a group of individuals, and a question
of interest is to quantify how privacy degrades as the group size grows. To set up the notation,
we say that two datasets S, S0 are k-neighbors (where k > 2 is an integer) if there exist datasets
S = S0, S1, . . . , Sk = S0 such that Si and Si+1 are neighboring or identical for all i = 0, . . . , k � 1.
Equivalently, S, S0 are k-neighbors if they di↵er by at most k individuals. Accordingly, a mechanism
M is said to be f -DP for groups of size k if

T
�
M(S), M(S0)

�
> f

for all k-neighbors S and S0.
In the following theorem, we use h�k to denote the k-fold iterative composition of a function h.

For example, h�1 = h and h�2(x) = h(h(x)).

Theorem 2.14. If a mechanism is f -DP, then it is
⇥
1 � (1 � f)�k

⇤
-DP for groups of size k. In

particular, if a mechanism is µ-GDP, then it is kµ-GDP for groups of size k.

12



This lecture

• Composition of mechanism-specific 
representations
• RDP accountant
• Fourier accountant

• Unified treatment via a dominating privacy loss 
random variable
• And its characteristic function

• autodp:  How you would represent DP mechanism 
and compute privacy loss

7



Readings

• “Optimal accounting of Differential Privacy Via
Characteristic Function” by Zhu, Dong and W.
https://arxiv.org/abs/2106.08567

• Autodp tutorial / a Jupyter notebook: 
https://github.com/yuxiangw/autodp/blob/master/
tutorials/tutorial_new_api.ipynb

8

https://arxiv.org/abs/2106.08567
https://github.com/yuxiangw/autodp/blob/master/tutorials/tutorial_new_api.ipynb


Composition of Mechanism
Specific Representations
• If we have functional representations 𝑓!, 𝑓", … , 𝑓# of

a mechanism M1, M2 ,…, Mk

• What is a functional representation of their
composition?

9



Composition of Mechanism
Specific Representations
1. RDP function: Just add up!
• But… not tight

2. Tradeoff function:
• Somewhat complex.
• A central limit theorem exists

3. Privacy profile:
• Convolution of the distribution of PLRVs for each pair of

neighboring datasets

10



Renyi DP accountant a.k.a. 
analytical moments accountant

• Tracking RDP for all order as a symbolic functions.
• Numerical calculations for (Ɛ, δ)-DP guarantees.

• Could use the “tail bound” lemma
• But more advanced conversion formula / algorithm exists.

11

RDPacct

RDP of GM

RDP of Laplace Mech.

RDP of Rand. Resp.

Ɛ = ?, δ = 1e-8… …
(Abadi et al. 2016; Mironov, 2017;  W., Balle, Kasiviswanathn, 2019)



The conversion from RDP to 
approximate DP is lossy.

12
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(a) RDP of RR and GM (b) f -DP of RR and GM (c) (✏, �)-DP of RR and GM

Figure 1: The figure illustrates the RDP and f -DP of a Gaussian mechanism with (normalized) � = 1, and a
randomized response mechanism with p =

e

1+e
. Pane (a) shows the RDP function of RR and GM, clearly, RR also

satisfies the same RDP of the Gaussian mechanism for all ↵. Pane (b) in the middle compares the f -DP of the
two mechanisms, as well as the f -DP implied by the optimal conversion from RDP. Pane (c) shows the privacy
profile of the two mechanisms, together with Pane (a), it demonstrates that the optimal f -DP and (✏, �)-DP of
GM cannot be achieved by a conversion from RDP.

and then find the exact optimal (✏, �)-DP by converting
from RDP.

The answer is unfortunately “no”. The reasons are
twofolds. First, there are mechanisms with non-trivial
(✏, �)-DP where RDP parameters partially or entirely
do not exist. We give two concrete examples in Ap-
pendix A.

The second, and a more troubling issue is that even in
the cases when RDP parameters exist everywhere and
hence appears to be characterizing, it does not lead to
a tight conversion to (✏, �)-DP. Gaussian mechanism
is such a candidate where its PLD is completely cap-
tured by its Renyi divergences. However, in Figure 1
we demonstrate that we cannot, in general, convert
the RDP of Gaussian mechanism into an (✏, �)-DP
that matches the optimal accounting one can achieve
through either the privacy profile or f -DP directly.
Specifically, by an example due to [Dong et al., 2021,
Proposition B.7], we know that a randomized response
mechanism (RR) satisfies 1-zCDP, thus the same RDP
as that of a Gaussian mechanism (GM) with � = 1. If
the RDP conversion is tight, then it will have to apply
to RR too, but that will lead to a contradiction with
the tradeoff function of RR. More explicitly, when we
further convert the f -DP in Figure 1 to (✏, �)-DP, this
example shows that while both RR and GM satisfy an
RDP with ✏(↵) =

↵

2 , GM obeys (0.277, 0.3)-DP but
RR does not satisfy (✏, 0.3)-DP with ✏ < 0.471.

This example certifies that the conversion rule we used
(based on an extension of [Balle et al., 2020]) cannot be
improved and that RDP is a lossy representation even
for the Gaussian mechanism.

Trouble with Worst-Cases in the PLD formal-
ism. Recent developments in the PLD formalism show
great promises in computing tight (✏, �)-DP with sta-
ble numerical algorithms and provable error bounds
[Koskela et al., 2020, 2021]. However, as we discussed
earlier, PLD is specified for each pair of input datasets
separately. To use PLD, the original authors (quot-
ing verbatim) “require the privacy analyst interested
in applying our results (PLD formalism) to provide
worst-case distributions.” [Sommer et al., 2019, Section
2]. In a subsequent work [Meiser and Mohammadi,
2018], a subset of the authors further derive the worst-
case pair of distributions for basic mechanisms such as
Gaussian mechanism and Laplace mechanism [Meiser
and Mohammadi, 2018].

While these are valid arguments, the line of work on
PLD formalism does not formally define the worst-
case pair of distributions, nor do they provide general
recipes for “privacy analysts” to determine which pair
of inputs is the worst-case. The issue is more prominent
when we consider mechanism-specific analysis, because
the pairs of datasets that attain the argmax might be
different in different regions of the privacy profile (see
an example in Appendix A).

Moreover, in most typical use cases of the privacy
accounting tools, the mechanism under consideration is
constructed through the composition of a sequence of
simpler mechanisms. Even if for each mechanism, we
know the worst-case pair distributions, the composition
of the individual PLDs may not correspond to the
worst-case PLD of the composed mechanism 1. For this

1
This is an issue we will address later, which shows that

it is OK even if it does not.



Composition of Tradeoff functions

• The composed mechanism

where

• A central limit theorem
• Theorem 3.4 in Dong et al.

2019.
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Theorem 3.2. Let Mi(·, y1, · · · , yi�1) be fi-DP for all y1 2 Y1, . . . , yi�1 2 Yi�1. Then the n-fold
composed mechanism M : X ! Y1 ⇥ · · · ⇥ Yn is f1 ⌦ · · · ⌦ fn-DP.

This theorem shows that the composition of mechanisms remains f -DP or, put di↵erently,
composition is closed in the f -DP framework. Moreover, the privacy bound f1 ⌦ · · · ⌦ fn in
Theorem 3.2 is tight in the sense that it cannot be improved in general. To see this point, consider
the case where the second mechanism completely ignores the output of the first mechanism. In
that case, the composition obeys

T
�
M(S), M(S0)

�
= T

�
M1(S) ⇥ M2(S), M1(S

0) ⇥ M2(S
0)
�

= T
�
M1(S), M1(S

0)
�

⌦ T
�
M2(S), M2(S

0)
�
.

Next, taking neighboring datasets such that T
�
M1(S), M1(S0)

�
= f1 and T

�
M2(S), M2(S0)

�
=

f2, one concludes that f1 ⌦ f2 is the tightest possible bound on the two-fold composition. For
comparison, the advanced composition theorem for (", �)-DP does not admit a single pair of optimal
parameters ", � [DRV10]. In particular, no pair of ", � can exactly capture the privacy of the
composition of (", �)-DP mechanisms. See Section 3.3 and Figure 5 for more elaboration.

In the case of GDP, composition enjoys a simple and convenient formulation due to the identity

Gµ1 ⌦ Gµ2 ⌦ · · · ⌦ Gµn = Gµ,

where µ =
p

µ2
1 + · · · + µ2

n. This formula is due to the rotational invariance of Gaussian distri-
butions with identity covariance. We provide the proof in Appendix D. The following corollary
formally summarizes this finding.

Corollary 3.3. The n-fold composition of µi-GDP mechanisms is
p

µ2
1 + · · · + µ2

n-GDP.

On a related note, the pioneering work [KOV17] is the first to take the hypothesis testing
viewpoint in the study of privacy composition and to use Blackwell’s theorem as an analytic tool
therein. In particular, the authors o↵ered a composition theorem for (", �)-DP that improves on
the advanced composition theorem [DRV10]. Following this work, [MV16] provided a self-contained
proof by essentially proving the “(", �) special case” of Blackwell’s theorem. In contrast, our novel
proof of Theorem 3.2 only makes use of the Neyman–Pearson lemma, thereby circumventing the
heavy machinery of Blackwell’s theorem. This simple proof better illuminates the essence of the
composition theorem.

3.2 Central Limit Theorems for Composition

In this subsection, we identify a central limit theorem type phenomenon of composition in the f -DP
framework. Our main results (Theorem 3.4 and Theorem 3.5), roughly speaking, show that trade-o↵
functions corresponding to small privacy leakage accumulate to Gµ for some µ under composition.
Equivalently, the privacy of the composition of many “very private” mechanisms is best measured
by GDP in the limit. This identifies GDP as the focal privacy definition among the family of f -DP
privacy guarantees, including (", �)-DP. More precisely, all privacy definitions that are based on a
hypothesis testing formulation of “indistinguishability” converge to the guarantees of GDP in the
limit of composition. We remark that [SMM18] proved a conceptually related central limit theorem
for random variables corresponding to the privacy loss. This theorem is used to reason about the
non-adaptive composition for (", �)-DP. In contrast, our central limit theorem is concerned with the
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Put di↵erently, M(S) can be interpreted as the trajectory of a Markov chain whose initial distri-
bution is given by M1(S) and the transition kernel Mi(S, · · · ) at each step.

Using the language above, the goal of this section is to relate the privacy loss of M to that of
the n mechanisms M1, . . . , Mn in the f -DP framework. In short, Section 3.1 develops a general
composition theorem for f -DP. In Sections 3.2, we identify a central limit theorem phenomenon of
composition in the f -DP framework, which can be used as an approximation tool, just like we use
the central limit theorem for random variables. This approximation is extended to and improved
for (", �)-DP in Section 3.3.

3.1 A General Composition Theorem

The main thrust of this subsection is to demonstrate that the composition of private mechanisms
is closed and tight13 in the f -DP framework. This result is formally stated in Theorem 3.2, which
shows that the composed mechanism remains f -DP with the trade-o↵ function taking the form of
a certain product. To define the product, consider two trade-o↵ functions f and g that are given
as f = T (P, Q) and g = T (P 0, Q0) for some probability distributions P, P 0, Q, Q0.

Definition 3.1. The tensor product of two trade-o↵ functions f = T (P, Q) and g = T (P 0, Q0) is
defined as

f ⌦ g := T (P ⇥ P 0, Q ⇥ Q0).

Throughout the paper, write f ⌦ g(↵) for (f ⌦ g)(↵), and denote by f⌦n the n-fold tensor
product of f . The well-definedness of f⌦n rests on the associativity of the tensor product, which
we will soon illustrate.

By definition, f ⌦ g is also a trade-o↵ function. Nevertheless, it remains to be shown that the
tensor product is well-defined: that is, the definition is independent of the choice of distributions
used to represent a trade-o↵ function. More precisely, assuming f = T (P, Q) = T (P̃, Q̃) for some
distributions P̃, Q̃, we need to ensure that

T (P ⇥ P 0, Q ⇥ Q0) = T (P̃ ⇥ P 0, Q̃ ⇥ Q0).

We defer the proof of this intuitive fact to Appendix C. Below we list some other useful properties14

of the tensor product of trade-o↵ functions, whose proofs are placed in Appendix D.

1. The product ⌦ is commutative and associative.

2. If g1 > g2, then f ⌦ g1 > f ⌦ g2.

3. f ⌦ Id = Id ⌦ f = f , where the identity trade-o↵ function Id(x) = 1 � x for 0 6 x 6 1.

4. (f ⌦ g)�1 = f�1 ⌦ g�1. See the definition of inverse in (4).

Note that Id is the trade-o↵ function of two identical distributions. Property 4 implies that when
f, g are symmetric trade-o↵ functions, their tensor product f ⌦ g is also symmetric.

Now we state the main theorem of this subsection. Its proof is given in Appendix C.

13
Section 2.5 shows that f -DP is “closed and tight” in a similar sense, in terms of the guarantees of group privacy.

14
These properties make the class of trade-o↵ functions a commutative monoid. Informally, a monoid is a group

without the inverse operator.

14

composed mechanism, distinguishing between any neighboring datasets is at least as hard as dis-
tinguishing between the following two bivariate distributions:

N (0, 1) ⇥ U [0, 1] versus N (µ, 1) ⇥ U [1 � e��, 2 � e��].

We note that for small �, e�� ⇡ 1 � �. So U [1 � e��, 2 � e��] ⇡ U [�, 1 + �].
This approximation of the tensor product f"n1,�n1 ⌦ · · · ⌦ f"nn,�nn using simple distributions is

important from the viewpoint of computational complexity. Murtagh and Vadhan [MV16] showed
that, given a collection of {("i, �i)}n

i=1, finding the smallest " such that f",� 6 f"1,�1 ⌦ · · · ⌦ f"n,�n is
#P-hard17 for any �. From the dual perspective (see Section 2.4), this negative result is equivalent
to the #P-hardness of evaluating the convex conjugate

�
f"1,�1 ⌦ · · · ⌦ f"n,�n

�⇤
at any point. For

completeness, we remark that [MV16] provided an FPTAS18 to approximately find the smallest
" in O(n3) time for a single �. In comparison, Theorem 3.6 o↵ers a global approximation of the
tensor product in O(n) time using a closed-form expression, subsequently enabling an analytical
approximation of the smallest " for each �.
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10 Composition

GDP from CLT

Optimal DP bound

Figure 5: Left: Tensoring with f0,� scales the graph towards the origin by a factor of 1 � �.
Right: 10-fold composition of (1/

p
10, 0)-DP mechanisms, that is, f⌦n

",0 with n = 10, " = 1/
p

n.
The dashed curve corresponds to " = 2.89, � = 0.001. These values are obtained by first setting
� = 0.001 and finding the smallest " such that the composition is (", �)-DP. Note that the central
limit theorem approximation to the true trade-o↵ curve is almost perfect, whereas the tightest
possible approximation via (", �)-DP is substantially looser.

That being said, Theorem 3.6 remains silent on the approximation error in applications with
a moderately large number of (", �)-DP mechanisms. Alternatively, we can apply Theorem 3.4
to obtain a non-asymptotic normal approximation to f"1,0 ⌦ · · · ⌦ f"n,0 and use � to specify the
approximation error. It can be shown that � = O(1/

p
n) under mild conditions (Corollary D.7).

This bound, however, is not sharp enough for tight privacy guarantees if n is not too large (note
that 1/

p
n ⇡ 0.14 if n = 50, for which exact computation is already challenging, if possible at all).

17
#P is a complexity class that is “even harder than” NP (i.e. a polynomial time algorithm for any #P-hard

problem would imply P=NP). See, e.g., Ch. 9. of [AB09].
18
An approximation algorithm is called a fully polynomial-time approximation scheme (FPTAS) if its running time

is polynomial in both the input size and the inverse of the relative approximation error. See, e.g., Ch. 8. of [Vaz13].
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Composition of Privacy Profiles

• Somewhat tricky.
• In principle, one can take all neighboring pairs of

datasets, compose M1, …, Mk by adding up the PLRVs.

• Requires us to know the worst-pair of datasets to make
it efficient.

• Even then, how do we know the composition of worst-
case pair for each is a worst-cases pair for the
composition?

14



Dominating pair distributions

• We say that P,Q is a dominating pair of Mechanism M if for
all 𝛼>0

• When equal sign holds for all 𝛼>0, then it is a tight
dominating pair.

15
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reason, it is unclear how to use PLD for deriving worst-
case DP bound under composition except in highly
specialized cases (e.g., Gaussian mechanisms and their
compositions).

Summary. To reiterate, RDP is lossy when converting
to (✏, �)-DP and the PLD formalism cannot be used
to handle the composition generically due to issues
regarding worst-case distributions. The remainder of
the paper will be dedicated to addressing this dilemma.

4 Main results

In this section, we develop a comprehensive solution
towards tighter and more flexible mechanism-specific
privacy accounting for (✏, �)-DP with a data-structure
that allows natural composition.

4.1 Dominating pair of distributions,
composition and subsampling

We first patch the PLD formalism by generalizing the
idea of worst-case pair (which may not exist) to a
dominating pair of distributions and prove a number
of useful properties.
Definition 7 (Dominating pair of distributions). We
say that (P,Q) is a dominating pair of distributions
for M (under neighboring relation ') if for all ↵ � 0

2

sup
D'D0

H↵(M(D)kM(D0
))  H↵(PkQ). (1)

When P,Q is chosen such that (1) takes “=” for all
↵, we say that (P,Q) is a tight dominating pair of
distributions or simply, tightly dominating. If in ad-
dition, there exists a neighboring (D̃, D̃0

) such that
(M(D̃),M(D̃0

)) is tightly dominating, and then we
say (D̃, D̃0

) is the worst-case pair of datasets for mech-
anism M.

Unless otherwise specified, all subsequent results we
present hold for any definitions of neighbors (including
asymmetric ones such as add-only and remove-only,
which will be useful later).

A dominating pair of distributions always exists: one
can trivially take P and Q that have disjoint supports.
What is somewhat surprising is the following
Proposition 8. Any mechanism has a tightly domi-
nating pair of distributions.

On the other hand, worst-case pair of datasets do not
always exist, as is shown by Example 16.

Proposition 8 is the direct consequence of the follow-
ing result which fully characterizes what hockey-stick
divergences and privacy profiles look like.

2
Note that ↵ � 1 corresponds to the typical range of

(✏, �)-DP, but the region for ↵ < 1 is important for compo-

sition and lossless conversions to other representations.

Lemma 9. For a given H : R>0 ! R, there exists
P,Q such that H(↵) = H↵(PkQ) if and only if H 2 H
where

H :=

⇢
H : R>0 ! R

����
H is convex, decreasing,
H(0) = 1 and H(x) > (1� x)+

�
.

Moreover, one can explicitly construct such P and
Q: P has CDF 1 + H⇤

(x � 1) in [0, 1) and Q =

Uniform([0, 1]).

The proof, presented in Appendix C, makes use of the
Fenchel duality of the privacy profile with respect to a
tradeoff function and a characterization of the tradeoff
function due to Dong et al. [2021, Proposition 2.2].

What makes the specific construction in Lemma 9
(hence Proposition 8) appealing is that even if the
output space is complex, the resulting dominating pair
of distributions are of univariate random variables de-
fined on [0, 1]. This resolves a limitation of Koskela
et al. [2020] that requires the mechanism to have either
univariate or discrete outputs.

So far, we have shown the existence of a tightly domi-
nating pairs for all mechanisms (Proposition 8), and
provided a recipe for constructing such a dominating
pair for any valid upper bounds of the privacy profile
(Lemma 9 and Corollary 26 in Appendix C). Next we
will provide two general primitives on how to construct
dominating pairs for more complex mechanisms created
by composition and privacy amplification by sampling.
Theorem 10 (Adaptive composition of dominating
pairs). If (P,Q) dominates M and (P 0, Q0

) dominates
M03, then (P ⇥ P 0, Q ⇥ Q0

) dominates the composed
mechanism (M,M0

).

By induction, this theorem implies that if we construct
the PLD using a dominating pair of distributions for
each individual mechanism, then the composed PLD
can be used to obtain a valid worst-case DP of the
composed mechanism.

Next we present how we can construct a dominating
pair of distributions (and datasets) for mechanisms
under “privacy-amplification by sampling”. This is a
powerful primitive that is used widely in differentially
private ERM [Bassily et al., 2014], Bayesian learning
[Wang et al., 2015] and deep learning [Abadi et al.,
2016]. We consider the following two schemes.

Poisson Sampling Denoted by S�

Poisson. S�

Poisson
takes a dataset of arbitrary size and return a dataset
by including each data point with probability 0  � 
1 i.i.d. at random.

3
M

0
can be adaptively chosen in that it could

depend on the output of M, which requires

supo2Range(M) H↵(M
0(D, o)kM0(D0

, o))  H↵(P
0
kQ

0)
for any value of o.

(Zhu, Dong and W. https://arxiv.org/abs/2106.08567 )

Theorem 1: tight dominating pair always exists.

Theorem 2: Dominating pairs compose adaptively.

Theorem 3: (P,Q) is dominating if and only if M satisfies f-
DP with f = T[P,Q].

https://arxiv.org/abs/2106.08567


Two satisfying consequences

• Advanced composition for (𝜀,𝛿)-DP
• One particular mechanism that attains the privacy-

profile / tradeoff function pointwise.

• Composition of Gaussian mechanism
• Simply adding the PLRV or individual GMs
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3 Proving Strong Composition
3.1 The Simulation Lemma: Reducing to Leaky Randomized Response
To get a handle on the privacy loss, we’ll actually show that once we �x two neighboring data sets, every
(Y, X)-DP algorithm’s behavior is captured by a very simple “leaky” variant of randomized response.

If - and . are random variables taking values in the same set (and with probabilities de�ned
for the same collection of events), we say - ⇡Y,X . if for every event ⇢: %- (⇢)  4Y%. (⇢) + X and
%. (⇢)  4Y%- (⇢) + X .

We would like to characterize this relation in simpler terms. As a starting point, let’s try to imagine
the simplest pair of random variables that satis�es the relationship. It seems like we need one type
of outcome to capture the X additive di�erence in probabilities, and another type that captures the 4Y
multiplicative change. Consider the following two special random variables,* and + , taking values in
the set {0, 1, “I am U”, “I am V”} with the probabilities

Outcome %* %+

0 4Y (1�X)
4Y+1

1�X
4Y+1

1 1�X
4Y+1

4Y (1�X)
4Y+1

“I am U" X 0
“I am V" 0 X

Lemma 3.1 (Simulation Lemma for (Y, X)-DP). For every pair of random variables- ,. such that- ⇡Y,X . ,
there exists a randomized map � such that � (* ) ⇠ - and � (+ ) ⇠ . .

Exercise 3.2. Prove the Simulation Lemma. We provide the following pictorial hint:

A B!!

!"
"#!! "#!"

Figure 2: The “proof" of Lemma 3.1

It is ok to assume that - and . take values in a discrete set.
To proceed, �rst handle the case where X = 0. You have to �nd, for each I, the probabilities that

� outputs I on inputs 0 and 1. Call these probabilities � (I |0) and � (I |1). What linear combinations
of these two variables should equal %- (I) and %. (I) respectively? Solve for � (I |0) and � (I |1). What
assumption allows you to be sure that the resulting numbers can be taken to be probabilities?

To handle the case where X > 0, start by proving that the probabilities of areas � and ⌫ are at most
X . Now proceed under the assumption that both of them have area exactly X . In that case, you can write
%- = X%� + (1 � X)% 0

G and %. = X%⌫ + (1 � X)% 0
~ , where %�, %⌫, % 0

G ,0=3%
0
~ are probability distributions

and % 0
G , %

0
~ satisfy % 0

G ⇡(Y,0) % 0
~ . You can generate %� and %⌫ from the inputs “I am* ” and “I am + ”, and

use what you learned in the case X = 0 to generate % 0
G and % 0

~ under appropriate distributions on 0 and 1.
Finally, extend this solution to handle the general case.

We can now proceed to the proof of Strong Composition (Theorem 1.1).

4

Leaky Randomized Response
is a dominating pair for all
(𝜀,𝛿)-DP mechanisms.



Advanced Composition Theorem for
(𝜀,𝛿)-DP (proof for the 𝛿>0 case)
• Composition of a sequence of k arbitrary (𝜀,𝛿)-DP 

mechanisms is dominated by the composition of k 
leaky randomized response.

17



Composition of Analytical 
Gaussian Mechanisms
• The adaptive composition for a sequence of 

Gaussian mechanisms with noise 
and global L2 sensitivity satisfies
(𝜀,𝛿(𝜀))- DP with where
is a Gaussian mechanism with noise multiplier  

18
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• LKL
i shows the supervision from teachers. The student learns from teachers by minimizing KL

divergence between student’s output distribution p✓ and aggregation of teacher output distributions
p�.

• LNLL
i shows the supervision from the pseudo public set D̃pub generated by GPT. As conventional

language models, our student model is trained by negative log-likelihood (NLL) loss on D̃pub. The
words wi in the training sample is naturally the label for the student model f✓(w1:i�1) at i-th step.

LKL
i = KL
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!
,
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i = � log p✓(wi | w1:i�1), L =

X
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i=1

(LNLL
i + �LKL

i ). (2)

where Li is loss at i-th step, |S| denotes the length of sentence S, and � balances the two terms and
the noise scale � will be discussed in Sec. 5. g(·) is the re-normalization function used in Eq. 1 that
selects the top-k words according to the student’s outputs and re-normalizes on the aggregation of
teacher outputs with noise. 2. According to the efficient knowledge distillation, at each step, the loss
Li is the combination of LNLL

i and LKL
i ) if the student needs supervision; otherwise, Li = LNLL

i .

5 PRIVACY ANALYSIS

5.1 PRELIMINARY OF DIFFERENTIAL PRIVACY

Let D, D0 denote two neighboring datasets which differ at only one individual.
Definition 1 (Differential privacy). For " > 0 and � � 0, a randomized algorithm M : Xn ! Y is
(", �)-differentially private if for any neighboring datasets D ⇠ D0 and any S ✓ Y ,

Pr[M(D) 2 S]  e" · Pr[M(D0) 2 S] + �

The definition ensures that it is information-theoretically impossible for an adversary to infer whether
the input dataset is D or D0 even with arbitrary side information. The definition is also future proof
thanks to its closure to post-processing.
Lemma 2 (Post-processing). If M obeys (", �)-DP, then for any function f , f �M is also (", �)-DP.

One notable properties of DP is that it automatically protects the privacy of groups of multiple units.

Lemma 3 (Group privacy). An (", �)-DP mechanism M on individuals is (k", ek"�1
e"�1 �)-DP on

groups of size k for all integer k � 1.
Lemma 4 (Analytical Gaussian mechanism (Balle & Wang, 2018)). For a numeric query f : Xn !
Rd over a dataset D, the randomized algorithm that outputs f(D) + Z where Z ⇠ N (0,�2Id)

satisfies (", �("))-DP for all " � 0 and �(") = �( �
2� � "�

� )� e"�(� �
2� � "�

� ). where � := �(f)
2 =

maxD⇠D0 kf(D)� f(D0)k2 is the global L2 sensitivity of f and � is the CDF function of N (0, 1).

The above is (", �)-DP of a single Gaussian mechanism, and the following lemma shows that we can
use the same result for an adaptive composition of a sequence of Gaussian mechanisms.
Lemma 5 (Composition of Gaussian mechanisms (Dong et al., 2019)). The adaptive composition of
a sequence of Gaussian mechanism with noise level �1,�2, . . . and global L2 sensitivity �1,�2, . . .
satisfies (", �("))-DP for all " � 0 and �(")  �M(") where M is a Gaussian mechanism with noise
multiplier �/� =

�P
i(�i/�i)2

��1/2.

Specifically, the adaptive composition of k identical Gaussian mechanism with noise multiplier �
satisfies the same privacy guarantee of that of a single Gaussian mechanism with a noise multiplier
�/

p
k. By fixing k and ", we can calibrate the noise by choosing an appropriate � in our algorithm.

2Mathematically, the input of the g(·) may be negative and we re-normalize it to 0. Practically, we observed
being negative is extremely rare since the M is very big (2000) and the first term dominates the input of g(·)

5



PLD formalism and Fourier 
accountant
• Discretizing the density function of the PLRV

• Fast Fourier Transform

• Multiply them together and take inverse FFT.

• Bound the approximation error

19
(Sommer et al. 2019;  Koskela et al, 2020; Gopi et al, 2020)



Characteristic function representation 
of the dominating pairs

For a dominating pair P,Q, it suffices to represent the 
two PLRVs by their characteristic functions.

20

can construct D0 by adding or removing one data point from Z. M : D⇤ ! PO is a randomized
mechanism which returns an output o 2 O by sampling from distribution M(D). Sometimes for
convenience and clarity we define P,Q and p, q to be the distribution and density functions of M(D)

and M(D0
) respectively.

Differential privacy and its equivalent definitions. With these notations clarified, we can now
formally define differential privacy.

Definition 1 (Differential Privacy). A randomized algorithm M is (✏, �)-DP if for every pair of
neighboring datasets D,D0, and every possible output set S ✓ O the following inequality holds:

Pr[M(D) 2 S]  e✏Pr[M(D0 2 S)] + �.

We can alternatively interpret DP from the views of a divergence metric of two probability distribu-
tions, a hypothesis testing view of a binary-classifier, as well as the distribution of the log-odds ratio.
Let us first define these quantities formally.

Definition 2 (Hockey-stick divergence). For ↵ > 0, the Hockey-stick divergence is defined as
H↵(PkQ) := Eo⇠Q[(

dP
dQ(o)�↵)+], where (x)+ := x1(x � 0) and dP

dQ is the Radon-Nikodym-derivative
(or simply the density ratio when density exists for P and Q).

Definition 3 (Trade-off function). Let � be a classifier to distinguish two distributions P from Q
using a sample. ↵� be its Type I error (false positive rate) and �� be its Type II error (false negative
rate). The tradeoff function TP,Q(↵) : [0, 1] ! [0, 1] is defined to be TP,Q(↵) := inf�{�� | ↵�  ↵}.

Definition 4 (Privacy loss R.V.). The privacy loss random variable of for a pair of neighboring
dataset D,D0 under mechanism M is defined as LP,Q := log

M(D)(o)
M(D0)(o) where o ⇠ M(D); similarly,

we have LQ,P := log
M(D0)(o)
M(D)(o) where o ⇠ M(D0

).

These quantities can be used to equivalently define differential privacy [Wasserman and Zhou, 2010,
Barthe and Olmedo, 2013, Kairouz et al., 2015, Balle and Wang, 2018, Balle et al., 2018, Dong et al.,
2021].

Lemma 5. The following statements about a randomized algorithm M are equivalent to Definition 1

1. supD'D0 He✏(M(D)kM(D0
))  �.

2. supD'D0 TM(D),M(D0)(↵) � max{0, 1� � � e✏↵, e�✏
(1� � � ↵).

3. Pro⇠M(D)[LP,Q > ✏]� e✏ Pro⇠M(D0)[LQ,P < �✏]  � for all neighboring D,D0.

We highlight that in all these definitions, it is required for the bound to cover all pairs of neighboring
datasets D,D0.

Mechanism-specific analysis / Functional representation of DP guarantee. Each of these
equivalent interpretations could be used to provide more-fine-grained description of a differential
privacy mechanism M.

Definition 6 (Privacy profile [Balle et al., 2018] and f -DP [Dong et al., 2021]). The privacy profile
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Trade-off functions are T [P,Q] and T [Q,P ], which map the type I error to the corresponding minimal
type II error in testing problems P vs Q and Q vs P respectively.

From these definitions we see that all five functional representations actually require two functions
for each pair of distributions. Below we summarize how one determines the other.

• H↵(QkP ) = ↵H↵�1(PkQ)� ↵+ 1, which is stated as Lemma 45 in Appendix G.

• For ↵ 2 (0, 1), D↵(QkP ) =
↵

1�↵
D1�↵(PkQ). See Proposition 2 of Van Erven and Harremos

[2014].

• G0
(x) = e

xF 0
(x), which is stated as Lemma 46 in Appendix G.

• Using the above formula, �0 can be obtained by the following process: �
Levy’s formula���������! F !

G ! �0.

• If T [P,Q] = f then T [Q,P ] = f�1. See Lemma A.2 of Dong et al. [2021]

We now consider the conversion from the �-function to CDFs using the following Levy’s theo-
rem.

Theorem 19 (Levy). Let � be the ch.f. of the distribution function F and a < b, then

F (b)� F (a) = lim
T!1

1

2⇡

Z
T

�T

e
�ita � e

�itb

it
· �(t) dt.

Note that limT!1,↵!1

R
1

�1

e
�i↵a

i↵
�(↵)d↵ = ⇡. To compute the CDF of the privacy loss RV LP,Q at

b, we can substitude a with �1 and obtain the following result.

Lemma 20.

F (x) =
1

2
+ lim

T!1

1

2⇡

Z
T

�T

ie�itx

t
�(t) dt

G(x) =
1

2
+ lim

T!1

1

2⇡

Z
T

�T

ie�itx

t
�0
(t) dt

Lemma 21.

H↵(PkQ) = F (� log↵)� ↵G(� log↵)

H↵(QkP ) = 1�G(log↵)� ↵(1� F (log↵))

Lemma 22. He"(QkP ) = 1 + f⇤
(�e

"
)

Lemma 23.

f(x) = sup
">0

max{0, 1�He"(PkQ)� e
"x, e�✏

(1�He"(PkQ)� x)}.

Lemma 24. f(↵) = G(F�1
(1� ↵)).
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Table 2: � functions and dominating pairs for basic mechanisms.

[Dong et al., 2021] or an apriori discretization of the output space [Koskela et al., 2021]. This
prompts us to ask:

“Can we compose mechanisms (with known dominating pairs) naturally just like in RDP? ”

To achieve this goal, we propose using the characteristic function of the privacy loss RV.

Definition 15 (characteristic function of the privacy loss RV). Let (P,Q) be a dominating pair of
M, and p, q be the probability density (or mass) function of P,Q. The two characteristic functions
that describes the PLD are

�M(↵) : = EP [e
i↵ log(p/q)

], �0

M(↵) := EQ[e
i↵ log(q/p)

],

where i denotes the imaginary unit satisfying i2 = �1 and ↵ 2 R.

PLDs are probability measures on the real line, and these �-functions are Fourier transforms of these
measures. We provide �-functions for basic mechanisms (see Table 2) and the discrete mechanisms
with closed-form expression. For other intricate and continuous mechanisms (e.g., subsample
variants), we provide efficient discretization methods with upper and lower bound Section E.

Advantages over MGF Comparing to the moment generating function used by the RDP, the
characteristic function differs only in that we are taking the expectation of the complex exponential.
At the price of bringing in complex arithmetics, it has several advantages:

1. � function always exists on the whole real line, while the domain of MGF can be as small as
(trivially) a single point.

2. The integrand in � is always bounded (in complex absolute value) by 1. On the other hand,
the integrand in the MGF can grow to infinity exponentially fast, which sometimes results in
numerical issues.

3. Fourier transform can be inverted by applying another Fourier transform (up to constant
factors), while inverse Laplace transform is notoriously difficult Epstein and Schotland [2008].
Consequently, in obtaining the lossless conversion to (", �)-DP, there is a convenient, numerically
stable inversion formula for �, while there is none for MGF.

Moreover, the adaptive composition over multiple heterogeneous mechanisms remains as straightfor-
ward as that of the RDP.

Proposition 16. Let M1 and M2 be two randomized algorithms. We have the �-function of the
composition (M1,M2) with order ↵ 2 R satisfies: �(M1,M2)(↵) = �M1(↵) · �M2(↵)

Lossless conversion rules. The �-function losslessly can be losslessly converted back and forth
with other representation such as the privacy-profile, tradeoff function, moment-generating function
as well as the distribution function of the privacy loss RV. The conversion rule with prominent
interest is the conversion to (✏, �)-DP. Specifically, for finding � as a function of ✏ (i.e., privacy
profile), we invoke the fourth equivalent definition of (✏, �)-DP in Lemma 5, which depends on the

11



The characteristic functions of the 
dominating pairs compose naturally 
just like RDP.

• Take complex log

• Add up the magnitude,  add up he phase.
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Examples of φ-function for 
common mechanisms

• Others that we know:
• PureDP mechanisms are dominated by randomized response
• ApproxDP mechanisms are dominated by leaky randomized 

response.
• Exponential mechanism is dominated by two logistic distributions.
• and so on …

• Research: expanding the list
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Figure 2: Summary of the various functional descriptions and their conversion rules.

cumulative distribution function (CDF) of the privacy loss random variables LP,Q and LQ,P . In
Appendix B, we establish that these CDFs can be evaluated through an integration of �-functions
via Levy’s formula. The lossless conversions to other quantities are summarized in Figure 2 and
we provide more details in Section B. Interestingly, when we consider a fixed dominating pair of
distributions, all these quantities, including the MGF when it exists in the neighborhood of 0 (which
implies the existence of Renyi-divergence with ↵ > 0 and a lossless inversion formula). Moreover,
most of the conversion formula correspond to well-known transforms such as the Fourier transform,
Laplace transform and its double-sided variant. Except for those involve RDP and hence Laplace
transform, numerical algorithms for implementing these transforms are often available.

4.3 Analytical Fourier Accountant and numerical algorithms
We now propose our analytical Fourier Accoutant (AFA) in Algorithm 1, which is a combination
of the lossless conversion rules and the analytical composition rule (Proposition 16). Given a
sequence of mechanisms (can be varied) applied to the same dataset, the data structure tracks the
log characteristic function of each mechanism in a symbolic form. When there is a (✏, �) request (e.g.
query ✏ with a fixed �), the accountant first constructs two analytical CDFs (with respect to the
privacy loss RV LP,Q and LQ,P ) using Theorem 20. Then the conversion to (✏, �)-DP is obtained
using Lemma 5.

Algorithm 1 Analytical Fourier Accountant
Input: A sequence of mechanisms for composition M1, ...,MK , � or ✏
1: for i = 1, ...,K do

2: Maintain the symbolic accountant
3: log �(M)(↵) log �(M)(↵) + log �(Mi)(↵)
4: log �0

(M)(↵) log �0

(M)(↵) + log �0

(Mi)
(↵)

5: if query (✏, �)-DP then

6: Obtain the CDF FLP,Q(·) from log �(M)(↵) through Theorem 20.
7: Obtain the CDF FLQ,P (·) from log �0

(M)(↵) through Theorem 20.
8: Return � by Lemma 5. ( (For computing ✏ given �, we use bisection to solve �M(✏) = �.))
9: end if

10: end for

AFA vs FFT. Comparing to the FFT-accountant approach [Koskela et al., 2020, 2021, Koskela

12

Zhu, Dong and W. (2020) https://arxiv.org/abs/2106.08567

https://arxiv.org/abs/2106.08567


Analytical Fourier accountant

• Composition:  simply add up the log of phi 
functions
• Conversion to approx. DP via Levy’s formula
• Conversion to tradeoff function via duality.
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Analytical 
Fourier 

Accountant

φ-function of GM
φ-function of Laplace Mech.

φ-function of Rand. Resp.

Ɛ = ?, δ = 1e-8

… … Type I error = 0.05,
Type II error =?

Zhu, Dong and W. (2020) https://arxiv.org/abs/2106.08567
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Checkpoint: Mechanism specific 
analysis and privacy accounting

• Renyi DP is qualitatively different from approximate DP.  
Composition is quite natural with RDP.

• The composition of privacy-profiles and  tradeoff functions 
are equivalent and somewhat messy.
• The key to get it to work is to find a dominating pair
• Using φ-function representation, we get the natural composition of 

RDP, and the tightness of privacy-profile / tradeoff functions.
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Functional view Pros Cons
Renyi DP [Mironov, 2017] D↵(PkQ)  ✏(↵), 8↵ � 1 Natural composition lossy conversion to (✏, �)-DP.

Privacy profile [Balle and Wang, 2018] Eq[(
p

q
� e✏)+]  �(e✏), 8✏ � 0 Interpretable. messy composition.

f -DP[Dong et al., 2021] Trade-off function f Interpretable, CLT messy composition.
PLD [Sommer et al., 2019, Koskela et al., 2020] Probability density of log(p/q) Natural composition via FFT Limited applicability.

Table 1: Modern functional views of DP guarantees and their pros and cons.

contributions are summarized below.

1. We formalize and generalize the notion of “worst-
case” pair distributions discussed in [Sommer et al.,
2019] to a “dominating pair” and prove several basic
properties of the dominating pairs including find-
ing such pairs from any privacy-profiles, adaptive
composition and amplification by sampling. These
results substantially broaden the applicability of
PLD formalism [Sommer et al., 2019] in deriving
worst-case DP guarantees.

2. We propose a lossless representation of the privacy
loss RV by its characteristic function (�-function)
and derive optimal conversion formula to (and from)
privacy-profile, tradeoff-function (f -DP) and the
distribution function of the privacy loss RV. Many
of these conversion rules correspond naturally to
the classical Fourier / Laplace transforms (and their
inverses) from the signal processing literature.

3. We design an Analytical Fourier Accountant (AFA,
extending the Fourier accountant of [Koskela et al.,
2020, 2021]) which represents the complex logarithm
of the � function symbolically. AFA can be viewed as
an extension of the (analytical) moments-accountant
[Abadi et al., 2016, Wang et al., 2019] to complex
↵, thus allowing straightforward composition. Com-
puting � as a function of ✏ for (✏, �)-DP boils down
to a numerical integral which we use a Gaussian
quadrature-based method to solve efficiently and
accurately.

4. Experimentally, we demonstrate that our approach
provides substantially tighter privacy guarantees
over compositions than RDP on both basic mech-
anisms and their subsampled counterparts. Our
results essentially match the results from [Dong
et al., 2021] and [Koskela et al., 2021] but neither
relies on central-limit-theorem type asymptotic ap-
proximation nor requiring choosing appropriate dis-
cretization a priori as in the FFT-based Fourier
Accountant.

Related work: The paper builds upon the existing
work on RDP-based privacy accounting [Abadi et al.,
2016, Mironov, 2017, Wang et al., 2019] as well as f -DP
[Dong et al., 2021]. Our main theoretical contribution
is to substantially broaden the applicability of the PLD
formalism [Sommer et al., 2019] by proposing the notion

of dominating pairs and providing general recipes for
constructing these dominating pairs. The closest to
algorithmic contribution is the work of Koskela et al.
[2020, 2021], who propose Fourier accountant and an
FFT-based approximation scheme, the characteristic
function view can be seen as an analytical version of
their Fourier accountant (hence the name AFA). AFA
is more generally applicable, and allows more flexible
use of existing methods for numerical integral. The
recent work of Gopi et al. [2021] improves the FFT
account substantially. It is complementary to us in
that it does not address the foundational issues of
the PLD formalism, nor do they propose an analytical
representation that allows a more modular design of the
privacy accountant. Notably, we can use any blackbox
numerical integration tool, e.g., Gaussian quadrature,
and set the desired error bound on-the-fly, while an
FFT-accountant requires setting the parameters at
initialization. Finally, Canonne et al. [2020] considered
� function and its numerical / computational properties
but the discussion is restricted to the discrete Gaussian
mechanism.

Privacy accounting is closely related to the classical
advanced composition of (✏, �)-DP [Dwork et al., 2010];
Kairouz et al. [2015] provides the optimal k-fold com-
position of an (✏, �)-DP mechanism and Murtagh and
Vadhan [2016] shows that computing the tightest pos-
sible bound for the composition of k heterogeneous
mechanisms is #P -hard. The recent line of work (that
we are building upon) challenges the basic primitive of
composing (✏i, �i)-DP by composing certain functional
descriptions of the mechanisms themselves, which some-
times avoids the computational hardness (but not al-
ways) and results in even stronger composition than
the best (✏, �)-DP type composition would allow [Bun
and Steinke, 2016].

2 Notations and preliminary

In this section, we review the standard definition of
differential privacy, its RDP relaxation, introduce the
characteristic function and draw connections with RDP.

Symbols and notations. Throughout the paper, we
will use standard notations for probability unless oth-
erwise stated, e.g., Pr[·] for probability, p[·] for density,
E[·] for expectation, F [·] for CDF. ✏, � are reserved for
privacy budget/loss parameters as in (✏, �)-DP, except
in the cases when we write ✏(·) or �(·), where they



Remainder of the lecture

• Autodp demo

• Introduction to differentially private machine 
learning
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The main driving force behind tighter
privacy accounting is the mechanism-
specific analysis.

* Somewhat complex for non-experts.
* Each has their own strengths / limitations.
* Limited availability for algorithmic components.
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contributions are summarized below.

1. We formalize and generalize the notion of “worst-
case” pair distributions discussed in [Sommer et al.,
2019] to a “dominating pair” and prove several basic
properties of the dominating pairs including find-
ing such pairs from any privacy-profiles, adaptive
composition and amplification by sampling. These
results substantially broaden the applicability of
PLD formalism [Sommer et al., 2019] in deriving
worst-case DP guarantees.

2. We propose a lossless representation of the privacy
loss RV by its characteristic function (�-function)
and derive optimal conversion formula to (and from)
privacy-profile, tradeoff-function (f -DP) and the
distribution function of the privacy loss RV. Many
of these conversion rules correspond naturally to
the classical Fourier / Laplace transforms (and their
inverses) from the signal processing literature.

3. We design an Analytical Fourier Accountant (AFA,
extending the Fourier accountant of [Koskela et al.,
2020, 2021]) which represents the complex logarithm
of the � function symbolically. AFA can be viewed as
an extension of the (analytical) moments-accountant
[Abadi et al., 2016, Wang et al., 2019] to complex
↵, thus allowing straightforward composition. Com-
puting � as a function of ✏ for (✏, �)-DP boils down
to a numerical integral which we use a Gaussian
quadrature-based method to solve efficiently and
accurately.

4. Experimentally, we demonstrate that our approach
provides substantially tighter privacy guarantees
over compositions than RDP on both basic mech-
anisms and their subsampled counterparts. Our
results essentially match the results from [Dong
et al., 2021] and [Koskela et al., 2021] but neither
relies on central-limit-theorem type asymptotic ap-
proximation nor requiring choosing appropriate dis-
cretization a priori as in the FFT-based Fourier
Accountant.

Related work: The paper builds upon the existing
work on RDP-based privacy accounting [Abadi et al.,
2016, Mironov, 2017, Wang et al., 2019] as well as f -DP
[Dong et al., 2021]. Our main theoretical contribution
is to substantially broaden the applicability of the PLD
formalism [Sommer et al., 2019] by proposing the notion

of dominating pairs and providing general recipes for
constructing these dominating pairs. The closest to
algorithmic contribution is the work of Koskela et al.
[2020, 2021], who propose Fourier accountant and an
FFT-based approximation scheme, the characteristic
function view can be seen as an analytical version of
their Fourier accountant (hence the name AFA). AFA
is more generally applicable, and allows more flexible
use of existing methods for numerical integral. The
recent work of Gopi et al. [2021] improves the FFT
account substantially. It is complementary to us in
that it does not address the foundational issues of
the PLD formalism, nor do they propose an analytical
representation that allows a more modular design of the
privacy accountant. Notably, we can use any blackbox
numerical integration tool, e.g., Gaussian quadrature,
and set the desired error bound on-the-fly, while an
FFT-accountant requires setting the parameters at
initialization. Finally, Canonne et al. [2020] considered
� function and its numerical / computational properties
but the discussion is restricted to the discrete Gaussian
mechanism.

Privacy accounting is closely related to the classical
advanced composition of (✏, �)-DP [Dwork et al., 2010];
Kairouz et al. [2015] provides the optimal k-fold com-
position of an (✏, �)-DP mechanism and Murtagh and
Vadhan [2016] shows that computing the tightest pos-
sible bound for the composition of k heterogeneous
mechanisms is #P -hard. The recent line of work (that
we are building upon) challenges the basic primitive of
composing (✏i, �i)-DP by composing certain functional
descriptions of the mechanisms themselves, which some-
times avoids the computational hardness (but not al-
ways) and results in even stronger composition than
the best (✏, �)-DP type composition would allow [Bun
and Steinke, 2016].

2 Notations and preliminary

In this section, we review the standard definition of
differential privacy, its RDP relaxation, introduce the
characteristic function and draw connections with RDP.

Symbols and notations. Throughout the paper, we
will use standard notations for probability unless oth-
erwise stated, e.g., Pr[·] for probability, p[·] for density,
E[·] for expectation, F [·] for CDF. ✏, � are reserved for
privacy budget/loss parameters as in (✏, �)-DP, except
in the cases when we write ✏(·) or �(·), where they

But DP is designed to be modular!  Many complex mechanisms are created using 
simple building blocks. There are various primitives and design tools that can be used, 
e.g., amplification by sampling / by shuffling / by post-processing. 



autodp: automating differential 
privacy computation (for both
laypersons and experts)

• Users describe their randomized algorithm to
autodp

• autodp focuses on computing privacy losses
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Open source project:
https://github.com/yuxiangw/autodp

pip install autodp

https://github.com/yuxiangw/autodp


Example code
from autodp.mechanism_zoo import ExactGaussianMechanism, PureDP_Mechanism
from autodp.transformer_zoo import Composition
import matplotlib.pyplot as plt

sigma1 = 5.0
sigma2 = 8.0

gm1 = ExactGaussianMechanism(sigma1,name='GM1')
gm2 = ExactGaussianMechanism(sigma2,name='GM2')
SVT = PureDP_Mechanism(eps=0.1,name='SVT')

# run gm1 for 3 rounds
# run gm2 for 5 times
# run SVT for once

# compose them with the transformation: compose.
compose = Composition()
composed_mech = compose([gm1, gm2, SVT], [3, 5, 1])
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stdout:

Mechanism name is " Compose:{GM1: 3, GM2: 5, SVT: 1} "
Parameters are:  {'GM1:sigma': 5.0, 'GM2:sigma': 8.0, 'SVT:eps': 
0.1}
epsilon(delta) =  2.18001192542518 , at delta =  1e-06
epsilon(delta) =  1.689983703842748 , at delta =  0.0001

# Query for eps given delta
delta1 = 1e-6
eps1 = composed_mech.get_approxDP(delta1)

delta2 = 1e-4
eps2 = composed_mech.get_approxDP(delta2)

# Get name of the composed object, a structured description 
of the mechanism generated automatically
print('Mechanism name is \"', composed_mech.name,'\"')
print('Parameters are: ',composed_mech.params)
print('epsilon(delta) = ', eps1, ', at delta = ', delta1)
print('epsilon(delta) = ', eps2, ', at delta = ', delta2)

# Get hypothesis testing interpretation so we can directly plot 
it
fpr_list, fnr_list = composed_mech.plot_fDP()

plt.figure(figsize = (6,6))
plt.plot(fpr_list,fnr_list)
plt.xlabel('Type I error')
plt.ylabel('Type II error')
plt.show()
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Main classes of autodp

Where did the ‘accountant’ go?

The ‘accountant’ represents a composed mechanism that can be updated by adding new 
mechanisms. This can be represented by keep updating a ‘Mechanism’ with ‘Compose’. 

Mechanism

RDP, f-DP, 𝜖, 𝛿 -DP, φ-
functions

All represented
symbolically.

Calibrator

Transformer
Compose

Amplification 
by sampling
Amplification 
by Shuffling

Parallel-
composition

Group-
composition

Calibrator calibrates noise to privacy 
budget for an arbitrary ‘mechanism’

Argmax 
Selection

Transformers manipulate functions (e.g., RDP) to create new Mechanisms.Mechanism is the base class that describes a 
randomized algorithm and its privacy loss.
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Mechanism class

• Keeps track of the functions that describe the privacy property of a 
mechanism
• RDP function
• Approx-DP privacy profile
• f-DP
• approx-RDP

• Comes with “name” and a dictionary of “parameters”

• Specific mechanisms inherits the base Mechanism class.
• e.g. pureDP_mechanism,  gaussian_mechanism …
• When dedicated computation is available, they can be implemented easily.

• One can declare a Mechanism with any kind of descriptions
• e.g., it propagates from RDP to others.
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Transformer class
• ‘callable’ objects 

• Input:  Mechanism(s), other parameters
• Output: another Mechanism

• For example:
• Composition inherits the Transformer class
• Takes a list of mechanisms, and coefficients
• Output the composed mechanism

• Subsample is a Transformer class:
• Takes a mechanism, subsample rate
• Output:  sampled_mechanism

• The transcript of the computation is logged and parameters concatenated.
• e.g., when using subsampling before applying Laplace mechanism, the computation is 

logged as (Laplace \circ Subsample) and the parameters are now {‘b’:2.0, ‘prob’:0.01}.
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Calibrator class

• A calibrator aims at finding parameter 
configurations of a mechanism such that a pre-
defined privacy budget is obtained.

• It takes a mechanism class (which contains a 
“constructor” that takes dictionary of parameters) 
and privacy budgets: eps, delta

• Optionally, a calibrator could take a utility function 
to maximize.
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Key module of subroutines: 
Converter

• e.g. converter.rdp_to_approxdp
• Take an RDP function, output an epsilon(delta)

• e.g., converter.rdp_to_fdp
• Take an RDP function, output f(FPR)

• e.g. converter.puredp_to_RDP

• These are used extensively in Mechanism and 
Transformer
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Template modules

• RDP_bank, fDP_bank, DP_bank
• Templates of specialized implementations of various 

calculations of different mechanisms

• mechanism_zoo, transformer_zoo, calibrator_zoo
• Implementation of commonly-used mechanisms (inherits the 

base Mechanism class)
• Draw specialized implementations from RDP, fDP, DP banks

• Contributions will be very easily accepted into these 
banks and zoos.
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Demo: Creating a mechanism from 
scratch and calibrating the noise
• Example:  Private Multiplicative Weight with SVT + 

Gaussian mechanism.

• See Jupyter notebook.
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Private MW for online query
release using NumericSparse
Online query release with differential privacy
1. True data , initial synthetic data
2. Adversary selects an online sequence of queries
• If

1. Output
2. Set the loss vector to be
3. Update
4. Increment t, i.e., t = t + 1

• Else: output
19
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<latexit sha1_base64="mFDPhU/RSEplkKR8uPnuO/DWaxc=">AAAB7HicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCt220K4lm862odnsmmSFUvobvHhQxKs/yJv/xrTdg7a+EHh4Z4bMvGEquDau++0U1tY3NreK26Wd3b39g/LhUVMnmWLos0Qkqh1SjYJL9A03AtupQhqHAlvh6HZWbz2h0jyRDTNOMYjpQPKIM2qs5T8+NEjaK1fcqjsXWQUvhwrkqvfKX91+wrIYpWGCat3x3NQEE6oMZwKnpW6mMaVsRAfYsShpjDqYzJedkjPr9EmUKPukIXP398SExlqP49B2xtQM9XJtZv5X62Qmug4mXKaZQckWH0WZICYhs8tJnytkRowtUKa43ZWwIVWUGZtPyYbgLZ+8Cs2Lqmf5/rJSu8njKMIJnMI5eHAFNbiDOvjAgMMzvMKbI50X5935WLQWnHzmGP7I+fwBWxaOXw==</latexit><latexit sha1_base64="mFDPhU/RSEplkKR8uPnuO/DWaxc=">AAAB7HicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCt220K4lm862odnsmmSFUvobvHhQxKs/yJv/xrTdg7a+EHh4Z4bMvGEquDau++0U1tY3NreK26Wd3b39g/LhUVMnmWLos0Qkqh1SjYJL9A03AtupQhqHAlvh6HZWbz2h0jyRDTNOMYjpQPKIM2qs5T8+NEjaK1fcqjsXWQUvhwrkqvfKX91+wrIYpWGCat3x3NQEE6oMZwKnpW6mMaVsRAfYsShpjDqYzJedkjPr9EmUKPukIXP398SExlqP49B2xtQM9XJtZv5X62Qmug4mXKaZQckWH0WZICYhs8tJnytkRowtUKa43ZWwIVWUGZtPyYbgLZ+8Cs2Lqmf5/rJSu8njKMIJnMI5eHAFNbiDOvjAgMMzvMKbI50X5935WLQWnHzmGP7I+fwBWxaOXw==</latexit><latexit sha1_base64="mFDPhU/RSEplkKR8uPnuO/DWaxc=">AAAB7HicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCt220K4lm862odnsmmSFUvobvHhQxKs/yJv/xrTdg7a+EHh4Z4bMvGEquDau++0U1tY3NreK26Wd3b39g/LhUVMnmWLos0Qkqh1SjYJL9A03AtupQhqHAlvh6HZWbz2h0jyRDTNOMYjpQPKIM2qs5T8+NEjaK1fcqjsXWQUvhwrkqvfKX91+wrIYpWGCat3x3NQEE6oMZwKnpW6mMaVsRAfYsShpjDqYzJedkjPr9EmUKPukIXP398SExlqP49B2xtQM9XJtZv5X62Qmug4mXKaZQckWH0WZICYhs8tJnytkRowtUKa43ZWwIVWUGZtPyYbgLZ+8Cs2Lqmf5/rJSu8njKMIJnMI5eHAFNbiDOvjAgMMzvMKbI50X5935WLQWnHzmGP7I+fwBWxaOXw==</latexit><latexit sha1_base64="mFDPhU/RSEplkKR8uPnuO/DWaxc=">AAAB7HicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCt220K4lm862odnsmmSFUvobvHhQxKs/yJv/xrTdg7a+EHh4Z4bMvGEquDau++0U1tY3NreK26Wd3b39g/LhUVMnmWLos0Qkqh1SjYJL9A03AtupQhqHAlvh6HZWbz2h0jyRDTNOMYjpQPKIM2qs5T8+NEjaK1fcqjsXWQUvhwrkqvfKX91+wrIYpWGCat3x3NQEE6oMZwKnpW6mMaVsRAfYsShpjDqYzJedkjPr9EmUKPukIXP398SExlqP49B2xtQM9XJtZv5X62Qmug4mXKaZQckWH0WZICYhs8tJnytkRowtUKa43ZWwIVWUGZtPyYbgLZ+8Cs2Lqmf5/rJSu8njKMIJnMI5eHAFNbiDOvjAgMMzvMKbI50X5935WLQWnHzmGP7I+fwBWxaOXw==</latexit>

qT p̃t
<latexit sha1_base64="ynJ/LB7qHOtusGowoix+udO3UEI=">AAAB+HicbZDLSsNAFIYn9VbrpVGXbgaL4KokIuiy6MZlhd6gjWEymbRDJ5M4cyLU0Cdx40IRtz6KO9/GaZuFtv4w8PGfczhn/iAVXIPjfFultfWNza3ydmVnd2+/ah8cdnSSKcraNBGJ6gVEM8ElawMHwXqpYiQOBOsG45tZvfvIlOaJbMEkZV5MhpJHnBIwlm9XH+5beABchCxPpz74ds2pO3PhVXALqKFCTd/+GoQJzWImgQqidd91UvByooBTwaaVQaZZSuiYDFnfoCQx014+P3yKT40T4ihR5knAc/f3RE5irSdxYDpjAiO9XJuZ/9X6GURXXs5lmgGTdLEoygSGBM9SwCFXjIKYGCBUcXMrpiOiCAWTVcWE4C5/eRU653XX8N1FrXFdxFFGx+gEnSEXXaIGukVN1EYUZegZvaI368l6sd6tj0VrySpmjtAfWZ8/zqWTLQ==</latexit><latexit sha1_base64="ynJ/LB7qHOtusGowoix+udO3UEI=">AAAB+HicbZDLSsNAFIYn9VbrpVGXbgaL4KokIuiy6MZlhd6gjWEymbRDJ5M4cyLU0Cdx40IRtz6KO9/GaZuFtv4w8PGfczhn/iAVXIPjfFultfWNza3ydmVnd2+/ah8cdnSSKcraNBGJ6gVEM8ElawMHwXqpYiQOBOsG45tZvfvIlOaJbMEkZV5MhpJHnBIwlm9XH+5beABchCxPpz74ds2pO3PhVXALqKFCTd/+GoQJzWImgQqidd91UvByooBTwaaVQaZZSuiYDFnfoCQx014+P3yKT40T4ihR5knAc/f3RE5irSdxYDpjAiO9XJuZ/9X6GURXXs5lmgGTdLEoygSGBM9SwCFXjIKYGCBUcXMrpiOiCAWTVcWE4C5/eRU653XX8N1FrXFdxFFGx+gEnSEXXaIGukVN1EYUZegZvaI368l6sd6tj0VrySpmjtAfWZ8/zqWTLQ==</latexit><latexit sha1_base64="ynJ/LB7qHOtusGowoix+udO3UEI=">AAAB+HicbZDLSsNAFIYn9VbrpVGXbgaL4KokIuiy6MZlhd6gjWEymbRDJ5M4cyLU0Cdx40IRtz6KO9/GaZuFtv4w8PGfczhn/iAVXIPjfFultfWNza3ydmVnd2+/ah8cdnSSKcraNBGJ6gVEM8ElawMHwXqpYiQOBOsG45tZvfvIlOaJbMEkZV5MhpJHnBIwlm9XH+5beABchCxPpz74ds2pO3PhVXALqKFCTd/+GoQJzWImgQqidd91UvByooBTwaaVQaZZSuiYDFnfoCQx014+P3yKT40T4ihR5knAc/f3RE5irSdxYDpjAiO9XJuZ/9X6GURXXs5lmgGTdLEoygSGBM9SwCFXjIKYGCBUcXMrpiOiCAWTVcWE4C5/eRU653XX8N1FrXFdxFFGx+gEnSEXXaIGukVN1EYUZegZvaI368l6sd6tj0VrySpmjtAfWZ8/zqWTLQ==</latexit><latexit sha1_base64="ynJ/LB7qHOtusGowoix+udO3UEI=">AAAB+HicbZDLSsNAFIYn9VbrpVGXbgaL4KokIuiy6MZlhd6gjWEymbRDJ5M4cyLU0Cdx40IRtz6KO9/GaZuFtv4w8PGfczhn/iAVXIPjfFultfWNza3ydmVnd2+/ah8cdnSSKcraNBGJ6gVEM8ElawMHwXqpYiQOBOsG45tZvfvIlOaJbMEkZV5MhpJHnBIwlm9XH+5beABchCxPpz74ds2pO3PhVXALqKFCTd/+GoQJzWImgQqidd91UvByooBTwaaVQaZZSuiYDFnfoCQx014+P3yKT40T4ihR5knAc/f3RE5irSdxYDpjAiO9XJuZ/9X6GURXXs5lmgGTdLEoygSGBM9SwCFXjIKYGCBUcXMrpiOiCAWTVcWE4C5/eRU653XX8N1FrXFdxFFGx+gEnSEXXaIGukVN1EYUZegZvaI368l6sd6tj0VrySpmjtAfWZ8/zqWTLQ==</latexit>

Use AboveThresh for this

Use Laplace mechanism

|qT p̃t � qT p| � ↵
<latexit sha1_base64="pPqLxfDlhHC2kKzcUwAbplQXDIo=">AAACDXicbZC7SgNBFIZnvcZ4i1raDEbBxrArgpaijWWE3CAbw+zkJBkyuzvOnBXCJi9g46vYWChia2/n2zi5FJr4w8DHf87hzPkDJYVB1/12FhaXlldWM2vZ9Y3Nre3czm7FxInmUOaxjHUtYAakiKCMAiXUlAYWBhKqQe96VK8+gDYijkrYV9AIWScSbcEZWquZOxzc35V8FLIFqRo2kZ5Qa6gB9TtwT30mVZdlm7m8W3DHovPgTSFPpio2c19+K+ZJCBFyyYype67CRso0Ci5hmPUTA4rxHutA3WLEQjCNdHzNkB5Zp0XbsbYvQjp2f0+kLDSmHwa2M2TYNbO1kflfrZ5g+6KRikglCBGfLGonkmJMR9HQltDAUfYtMK6F/SvlXaYZRxvgKARv9uR5qJwWPMu3Z/nLq2kcGbJPDsgx8cg5uSQ3pEjKhJNH8kxeyZvz5Lw4787HpHXBmc7skT9yPn8AbVObHA==</latexit><latexit sha1_base64="pPqLxfDlhHC2kKzcUwAbplQXDIo=">AAACDXicbZC7SgNBFIZnvcZ4i1raDEbBxrArgpaijWWE3CAbw+zkJBkyuzvOnBXCJi9g46vYWChia2/n2zi5FJr4w8DHf87hzPkDJYVB1/12FhaXlldWM2vZ9Y3Nre3czm7FxInmUOaxjHUtYAakiKCMAiXUlAYWBhKqQe96VK8+gDYijkrYV9AIWScSbcEZWquZOxzc35V8FLIFqRo2kZ5Qa6gB9TtwT30mVZdlm7m8W3DHovPgTSFPpio2c19+K+ZJCBFyyYype67CRso0Ci5hmPUTA4rxHutA3WLEQjCNdHzNkB5Zp0XbsbYvQjp2f0+kLDSmHwa2M2TYNbO1kflfrZ5g+6KRikglCBGfLGonkmJMR9HQltDAUfYtMK6F/SvlXaYZRxvgKARv9uR5qJwWPMu3Z/nLq2kcGbJPDsgx8cg5uSQ3pEjKhJNH8kxeyZvz5Lw4787HpHXBmc7skT9yPn8AbVObHA==</latexit><latexit sha1_base64="pPqLxfDlhHC2kKzcUwAbplQXDIo=">AAACDXicbZC7SgNBFIZnvcZ4i1raDEbBxrArgpaijWWE3CAbw+zkJBkyuzvOnBXCJi9g46vYWChia2/n2zi5FJr4w8DHf87hzPkDJYVB1/12FhaXlldWM2vZ9Y3Nre3czm7FxInmUOaxjHUtYAakiKCMAiXUlAYWBhKqQe96VK8+gDYijkrYV9AIWScSbcEZWquZOxzc35V8FLIFqRo2kZ5Qa6gB9TtwT30mVZdlm7m8W3DHovPgTSFPpio2c19+K+ZJCBFyyYype67CRso0Ci5hmPUTA4rxHutA3WLEQjCNdHzNkB5Zp0XbsbYvQjp2f0+kLDSmHwa2M2TYNbO1kflfrZ5g+6KRikglCBGfLGonkmJMR9HQltDAUfYtMK6F/SvlXaYZRxvgKARv9uR5qJwWPMu3Z/nLq2kcGbJPDsgx8cg5uSQ3pEjKhJNH8kxeyZvz5Lw4787HpHXBmc7skT9yPn8AbVObHA==</latexit><latexit sha1_base64="pPqLxfDlhHC2kKzcUwAbplQXDIo=">AAACDXicbZC7SgNBFIZnvcZ4i1raDEbBxrArgpaijWWE3CAbw+zkJBkyuzvOnBXCJi9g46vYWChia2/n2zi5FJr4w8DHf87hzPkDJYVB1/12FhaXlldWM2vZ9Y3Nre3czm7FxInmUOaxjHUtYAakiKCMAiXUlAYWBhKqQe96VK8+gDYijkrYV9AIWScSbcEZWquZOxzc35V8FLIFqRo2kZ5Qa6gB9TtwT30mVZdlm7m8W3DHovPgTSFPpio2c19+K+ZJCBFyyYype67CRso0Ci5hmPUTA4rxHutA3WLEQjCNdHzNkB5Zp0XbsbYvQjp2f0+kLDSmHwa2M2TYNbO1kflfrZ5g+6KRikglCBGfLGonkmJMR9HQltDAUfYtMK6F/SvlXaYZRxvgKARv9uR5qJwWPMu3Z/nLq2kcGbJPDsgx8cg5uSQ3pEjKhJNH8kxeyZvz5Lw4787HpHXBmc7skT9yPn8AbVObHA==</latexit>

p̃t+1 = Normalize
�
p̃t · exp(�⌘`t)

�
<latexit sha1_base64="CgVE4KmzvvVUjzSaOf3xtEgLq9I="></latexit><latexit sha1_base64="CgVE4KmzvvVUjzSaOf3xtEgLq9I="></latexit><latexit sha1_base64="CgVE4KmzvvVUjzSaOf3xtEgLq9I="></latexit><latexit sha1_base64="CgVE4KmzvvVUjzSaOf3xtEgLq9I="></latexit>

(From Lecture 4)



Next lecture

• Differentially private machine learning

38


