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Recap: last lecture

* Equivalent definitions of differential privacy
* Via Hockey-stick divergence
* Via Tradeoff function

* Analytical Gaussian mechanism

* Mechanism-specific analysis



Recap: HS Divergence as an
equivalent definition of DP

Theorem: M is (&,0)-DP if and only if

SupD:D/ Hee (M(D)HM(D/)) S 5
And if and only if

Prowmpy|Lrg > €| — e Proompn|Lo,p < —€¢| <6
for all neighboring D, D’.

e Obtain exactly optimal Gaussian mechanism.



Recap: Tradeoff function
characterization of DP

Theorem: M is (£,0)-DP if and only if the adversary’s tradeoff
region is lower bound by

feo(a) =max{0,1 —§ —e‘a,e (1 -0 —a)}
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Recap: mechanism-specific analysis

* Describing a mechanism by two numbers (&g,0) is
somewhat crude, and lossy.

* More fine-grained description of a mechanism by a
function
* Privacy profile: §(¢g) --- smallest 6 such that M satisfies

EOIDR 5 p(e) = max H(M(a) | M("))

e Tradeoff function fr, = maxT(M(z), M(z'))

x~x’!

* Renyi DP e (a) = max Dy (M (z)||M(z"))

x~x’

e PLD: Distribution function of PLRV



Recap: Duality between tradeoft
function and privacy profile

Proposition 2.12 (Primal to Dual). For a symmetric trade-off function f, a mechanism is f-DP
if and only if it is (s,é(s))-DP for all e > 0 with §(e) = 1+ f*(—e°).

* Example: Gaussian mechanism
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This lecture

* Composition of mechanism-specific
representations

* RDP accountant
 Fourier accountant

e Unified treatment via a dominating privacy loss
random variable

 And its characteristic function

* autodp: How you would represent DP mechanism
and compute privacy loss



Readings

e “Optimal accounting of Differential Privacy Via
Characteristic Function” by Zhu, Dong and W.
https://arxiv.org/abs/2106.08567

» Autodp tutorial / a Jupyter notebook:
https://github.com/yuxiangw/autodp/blob/master/
tutorials/tutorial new api.ipynb



https://arxiv.org/abs/2106.08567
https://github.com/yuxiangw/autodp/blob/master/tutorials/tutorial_new_api.ipynb

Composition of Mechanism
Specific Representations

* If we have functional representations f3, f5, ..., fi of
a mechanism My, M, ,..., M,

 What is a functional representation of their
composition?



Composition of Mechanism
Specific Representations

1. RDP function: Just add up!
e But... not tight

2. Tradeoff function:

* Somewhat complex.
e A central limit theorem exists

3. Privacy profile:

e Convolution of the distribution of PLRVs for each pair of
neighboring datasets



Renyi DP accountant a.k.a.
analytical moments accountant

RDP of GM
RDP of Laplace Mech.

m— £=7 6=1e-8

RDPacct

RDP of Rand. Resp.

* Tracking RDP for all order as a symbolic functions.

* Numerical calculations for (€, 6)-DP guarantees.

* Could use the “tail bound” lemma
* But more advanced conversion formula / algorithm exists.

(Abadi et al. 2016; Mironov, 2017; W., Balle, Kasiviswanathn, 2019)
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The conversion from RDP to
approximate DP is lossy.

2.5 —— RDP_of GM
-—-- RDP_of RR
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(a) RDP of RR and GM
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(b) f-DP of RR and GM

2.0 A

0.5 A

0.0 A

—— GM_optimal_RDP_conversion
GM_exact
--- RR

0.0 0.1 0.2
delta

0.3 0.4 0.5

(c) (€,9)-DP of RR and GM

Figure 1: The figure illustrates the RDP and f-DP of a Gaussian mechanism with (normalized) o = 1, and a

randomized response mechanism with p =

(&

14+e-

Pane (a) shows the RDP function of RR and GM, clearly, RR also

satisfies the same RDP of the Gaussian mechanism for all a. Pane (b) in the middle compares the f-DP of the
two mechanisms, as well as the f-DP implied by the optimal conversion from RDP. Pane (c) shows the privacy
profile of the two mechanisms, together with Pane (a), it demonstrates that the optimal f-DP and (e, d)-DP of
GM cannot be achieved by a conversion from RDP.
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Composition of Tradeoff functions

* The composed mechanism
M:X—>Yix--xY,is i@ ® fn-DP.

[ J— / /
where [®g:=T(P xP,QxQ). 1‘“
— 10 Composition
: —— GDP from CLT
0.8 ‘: ---- Optimal DP bound
1

e A central limit theorem

* Theorem 3.4 in Dong et al.
2019.

type II error

type I error



Composition of Privacy Profiles

* Somewhat tricky.

* In principle, one can take all neighboring pairs of
datasets, compose My, ..., M, by adding up the PLRVs.

* Requires us to know the worst-pair of datasets to make
it efficient.

* Even then, how do we know the composition of worst-
case pair for each is a worst-cases pair for the
composition?



Dominating pair distributions

* We say that P,Q is a dominating pair of Mechanism M if for
Il >0
TET sup Ho(M(D)|M(D")) < Ho(P|Q).

Y

* When equal sign holds for all @>0, then it is a tight
dominating pair.

Theorem 1: tight dominating pair always exists.
Theorem 2: Dominating pairs compose adaptively.

Theorem 3: (P,Q) is dominating if and only if M satisfies f-
DP with f = T[P,Q].

(Zhu, Dong and W. https://arxiv.org/abs/2106.08567 )



https://arxiv.org/abs/2106.08567

Two satisfying consequences

e Advanced composition for (&,6)-DP

* One particular mechanism that attains the privacy-
profile / tradeoff function pointwise.

Outcome Py Py
0 e (1-9) 1-§ Leaky Randomized Response
: s is a dominating pair for all
e+1 e‘+1 (&,6)-DP mechanisms.
“Tam U" ) 0
“Tam V" 0 o)

 Composition of Gaussian mechanism
e Simply adding the PLRV or individual GMs



Advanced Composition Theorem for
(€,0)-DP (proof for the 0>0 case)

* Composition of a sequence of k arbitrary (&,0)-DP
mechanisms is dominated by the composition of k
leaky randomized response.




Composition of Analytical
Gaussian Mechanisms

* The adaptive composition for a sequence of
Gaussian mechanisms with noise 01,09, ...

and global L2 sensitivity A;, A,,... satisfies
(¢,6(€))- DP with §(g) = drq(e) where M
Is @ Gaussian mechanism with noise multiplier

o/A = (3,(Ai)0:)?) 2




PLD formalism and Fourier
accountant

* Discretizing the density function of the PLRV
* Fast Fourier Transform
* Multiply them together and take inverse FFT.

* Bound the approximation error

(Sommer et al. 2019; Koskela et al, 2020; Gopi et al, 2020)



Characteristic function representation
of the dominating pairs

Prowmpy|Lrg > €] — € Proompn|Lo,p < —€¢] <6
for all neighboring D, D’.

For a dominating pair P,Q, it suffices to represent the
two PLRVs by their characteristic functions.

ba(a) : = Eple 0/, ), (a) = BqleioH(0/7)

Theorem 19 (Levy). Let ¢ be the ch.f. of the distribution function F and a < b, then

T—o00 27

1 T _—ita _ —itb
F(b) — F(a) = lim — /_ Te Z_te L B(t) dt.




The characteristic functions of the

dominating pairs compose naturally
just like RDP.

o) = Ep[eialog(p/q)]j ng\/I(Q) - EQ[eialog(q/p)]

* Take complex log

* Add up the magnitude, add up he phase.



Examples of ¢-function for
common mechanisms

Mechanism Dominating Pair

¢ function

Randomized Response P:Prpl0] =p;Q: Prg[l] =p

Laplace Mechanism  |P: p(z) = ie“"ﬂ/)‘; Q:q(x)= %e"x_lw‘

P:N(1,0%);Q: N(0,07)

Gaussian Mechanism

N A T—
Oa() = (@) = pe™ T 4 (1= p)et
—ai—1 i —1

)
¢M(Oé):¢l/\4(04):% 6%4—@ B +2a%+1(€‘;1_60¢;)>
1 2

pm(e) = ¢y (o) = ezo2 @ 1)

e Others that we know:

* PureDP mechanisms are dominated by randomized response
* ApproxDP mechanisms are dominated by leaky randomized

response.

* Exponential mechanism is dominated by two logistic distributions.

e andsoon ..

* Research: expanding the list



Connection between ¢-function
and other representations

€(a)-Renyi DP
D, (M(D)|| M(D")) < e()
forall D = D'

Lossy
conversion

(¢, 8)-DP
Hee(M(D)|| M(D")) < 8(€)
for all D = D’

Moments

generating function

(Renyi Divergence)

Post’s inversion formula

>
€

Two-sided Laplace transform

Density of privacy

loss RV (PLD)

AN Takle_ . Fourier
real inpu
Take transform
complex input
) N Inverse Fourier
l(_)ne[—s:ded I?ost s “Characteristic transform Integral + Fenchel +
apiace Inversion | eyy’s TP ; Fourier derivative
transform formula forn};ula—" function”¢(t) —:'_:vveyr ;Zourler inverse
Fourier Fourier
transform integral
7 \ 4
HS-Divergence P “Trade-off function”
(Privacy-profile / Fenchel duality (f-DP)
CDF of PLD) €

Zhu, Dong and W. (2020) https://arxiv.org/abs/2106.08567

When a dominating pair (P, Q) is available.

Legend

Representation
ft. RDP-like
“Natural Composition”

Computable

No numerical
tools available
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https://arxiv.org/abs/2106.08567

Analytical Fourier accountant

m— E=7,0=1e-8

¢-function of GM
¢-function of Laplace Mech.

Analytical

Fourier ey 1YPE | €r701 = 0.05,

¢-function of Rand. Resp. Accountant Type Il error =?

 Composition: simply add up the log of phi
functions

e Conversion to approx. DP via Levy’s formula

* Conversion to tradeoff function via duality.

Zhu, Dong and W. (2020) https://arxiv.org/abs/2106.08567
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Checkpoint: Mechanism specific
analysis and privacy accounting

Functional view Pros Cons
Renyi DP [Mironov, 2017] D,(P|Q) < e(a),Va>1 Natural composition lossy conversion to (e,0)-DP.
Privacy profile [Balle and Wang, 2018] Eq[(E —e)4] < 6(ef), Ve = 0 Interpretable. messy composition.

f-DP[Dong et al., 2021]
PLD [Sommer et al., 2019, Koskela et al., 2020]

Trade-off function f
Probability density of log(p/q)

Interpretable, CLT
Natural composition via FFT

messy composition.
Limited applicability.

Table 1: Modern functional views of DP guarantees and their pros and cons.

* Renyi DP is qualitatively different from approximate DP.
Composition is quite natural with RDP.

* The composition of privacy-profiles and tradeoff functions
are equivalent and somewhat messy.

* The key to get it to work is to find a dominating pair

e Using ¢

-function representation, we
RDP, and the tightness of privacy-pro

Eet the natural composition of
ile / tradeoff functions.




Remainder of the lecture

* Autodp demo

* Introduction to differentially private machine
learning



The main driving force behind tighter
privacy accounting is the mechanism-
specific analysis.

Functional view Pros Cons
Renyi DP [Mironov, 2017] D.(P||Q) < ¢(a),Va >1 Natural composition lossy conversion to (€, d)-DP.
Privacy profile [Balle and Wang, 2018] Eqg[(E —e)4] < d(e),Ve= 0 Interpretable. messy composition.

f-DP[Dong et al., 2021]

PLD [Sommer et al., 2019, Koskela et al., 2020]

Trade-off function f
Probability density of log(p/q)

Interpretable, CLT
Natural composition via FFT

messy composition.
Limited applicability.

Table 1: Modern functional views of DP guarantees and their pros and cons.

* Somewhat complex for non-experts.
* Each has their own strengths / limitations.
* Limited availability for algorithmic components.

But DP is designed to be modular! Many complex mechanisms are created using
simple building blocks. There are various primitives and design tools that can be used,

e.g., amplification by sampling / by shuffling / by post-processing.
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autodp: automating differential
privacy computation (for both
laypersons and experts)

* Users describe their randomized algorithm to
autodp

* autodp focuses on computing privacy losses

Open source project:
https://github.com/yuxiangw/autodp

pip install autodp



https://github.com/yuxiangw/autodp

Example code

from autodp.mechanism_zoo import ExactGaussianMechanism, PureDP_Mechanism
from autodp.transformer_zoo import Composition
import matplotlib.pyplot as plt

sigmal=>5.0
sigma2 =8.0

gm1 = ExactGaussianMechanism(sigmal,name='GM1')
gm2 = ExactGaussianMechanism(sigma2,name='GM2')
SVT = PureDP_Mechanism(eps=0.1,name='SVT')

# run gm1 for 3 rounds
# run gm2 for 5 times
# run SVT for once

# compose them with the transformation: compose.
compose = Composition()
composed_mech = compose([gm1, gm2, SVT], [3, 5, 1])



# Query for eps given delta

deltal = 1e-6
epsl = composed_mech.get_approxDP(deltal) stdout:
delta2 = 1e-4 Mechanism name is " Compose:{GM1: 3, GM2: 5, SVT: 1} "

eps2 = composed_mech.get_approxDP(delta2) Parameters are: {'GM1:sigma': 5.0, 'GM2:sigma': 8.0, 'SVT:eps":

0.1}
epsilon(delta) = 2.18001192542518 , at delta = 1e-06
epsilon(delta) = 1.689983703842748 , at delta = 0.0001

# Get name of the composed object, a structured description
of the mechanism generated automatically

(‘Mechanism name is \"', composed_mech.name,"\"’)
(‘Parameters are: ',composed_mech.params) 10
(‘epsilon(delta) =", epsl, ', at delta ="', deltal)
(‘epsilon(delta) =", eps2, ', at delta ="', delta2)

0.8

# Get hypothesis testing interpretation so we can directly plot 5"
it :
fpr_list, fnr_list = composed_mech.plot_fDP() 5 sl

plt.figure(figsize = (6,6))
plt.plot(fpr_list,fnr_list)
plt.xlabel('Type | error’)
plt.ylabel('Type Il error’) 00]
plt.ShOW() 0.0 02 0.4 06 08 10

Type | error

0.2 1
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Main classes of autodp

Mechanism is the base class that describes a Transformers manipulate functions (e.g., RDP) to create new Mechanisms.
randomized algorithm and its privacy loss. ﬁ D'

Mechanism / Transformer \

Parallel-
Compose omposition
C
RDP, f'fDPr (6» 6)'DPr ¢- Amplification Group
I unctions q by sampling composition
A repre;ente Amplification Argmax
symbolically. N by shuffling Selection _Jj
Calibrator calibrates noise to privacy @ D
budget for an arbitrary ‘mechanism’

Calibrator

Where did the ‘accountant’ go?

The ‘accountant’ represents a composed mechanism that can be updated by adding new
mechanisms. This can be represented by keep updating a ‘Mechanism’ with ‘Compose’.



Mechanism class

Keeps track of the functions that describe the privacy property of a
mechanism

e RDP function

e Approx-DP privacy profile
 f-DP

* approx-RDP

Comes with “name” and a dictionary of “parameters”

Specific mechanisms inherits the base Mechanism class.

* e.g. pureDP_mechanism, gaussian_mechanism ...
* When dedicated computation is available, they can be implemented easily.

One can declare a Mechanism with any kind of descriptions
* e.g., it propagates from RDP to others.



Transformer class

* ‘callable’ objects

* Input: Mechanism(s), other parameters
e Qutput: another Mechanism

* For example:
* Composition inherits the Transformer class
* Takes a list of mechanisms, and coefficients
* OQutput the composed mechanism

e Subsample is a Transformer class:
* Takes a mechanism, subsample rate
e OQutput: sampled_mechanism

* The transcript of the computation is logged and parameters concatenated.

* e.g.,, when using subsampling before applying Laplace mechanism, the computation is
logged as (Laplace \circ Subsample) and the parameters are now {'b’:2.0, ‘prob’:0.01}.



Calibrator class

A calibrator aims at finding parameter
configurations of a mechanism such that a pre-
defined privacy budget is obtained.

* It takes a mechanism class (which contains a
“constructor” that takes dictionary of parameters)
and privacy budgets: eps, delta

* Optionally, a calibrator could take a utility function
to maximize.



Key module of subroutines:
Converter

e e.g. converter.rdp_to_approxdp
e Take an RDP function, output an epsilon(delta)

e e.g., converter.rdp_to fdp
* Take an RDP function, output f(FPR)

e e.g. converter.puredp _to RDP

* These are used extensively in Mechanism and
Transformer



Template modules

 RDP_bank, fDP_bank, DP_bank

* Templates of specialized implementations of various
calculations of different mechanisms

* mechanism_zoo, transformer_zoo, calibrator_zoo

e Implementation of commonly-used mechanisms (inherits the
base Mechanism class)

* Draw specialized implementations from RDP, fDP, DP banks

e Contributions will be very easily accepted into these
banks and zoos.



Demo: Creating a mechanism from
scratch and calibrating the noise

 Example: Private Multiplicative Weight with SVT +

Gaussian mechanism.
(From Lecture 4)

Online query release with differential privacy
1. Truedata p = x/n, initial synthetic datap1 = 1/|X|
2. Adversary selects an online sequence of queries

* T pe — ¢T'p| > o+ Use AboveThresh for this

Output qu «——Use Laplace mechanism v
Set the loss vector to be £} := Sign(qTﬁt — qu - q
Update 5, ; = Normalize (]5,5 -exp(—nty))
Incrementt,i.e, t=t+1

P wNPR

* Else: output ¢’ py

* See Jupyter notebook.



Next lecture

* Differentially private machine learning



